eHealth and Artificial Intelligence
Abstract
:1. Introduction
2. Contribution
Funding
Conflicts of Interest
References
- Moses, H.; Matheson, D.H.; Cairns-Smith, S.; George, B.P.; Palisch, C.; Dorsey, E.R. The anatomy of medical research: US and international comparisons. JAMA 2015, 313, 174–189. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Silva, B.M.; Rodrigues, J.J.; de la Torre Díez, I.; López-Coronado, M.; Saleem, K. Mobile-health: A review of current state in 2015. J. Biomed. Inform. 2015, 56, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [Green Version]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Angulo, A.P. Gene selection for microarray cancer data classification by a novel rule-based algorithm. Information 2018, 9, 6. [Google Scholar] [CrossRef]
- Li, Y.; Shen, L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors 2018, 18, 556. [Google Scholar] [CrossRef] [PubMed]
- Almubarak, H.A.; Stanley, R.J.; Stoecker, W.V.; Moss, R.H. Fuzzy color clustering for melanoma diagnosis in dermoscopy images. Information 2017, 8, 89. [Google Scholar] [CrossRef]
- Baumann, B. Polarization sensitive optical coherence tomography: A review of technology and applications. Appl. Sci. 2017, 7, 474. [Google Scholar] [CrossRef]
- Sluimer, I.; Schilham, A.; Prokop, M.; Van Ginneken, B. Computer analysis of computed tomography scans of the lung: A survey. IEEE Trans. Med. Imag. 2006, 25, 385–405. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.K.; Pachori, R.B.; Kanhangad, V.; Panigrahi, B.K. Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals. IEEE J. Biomed. Health Inform. 2017, 21, 888–896. [Google Scholar] [CrossRef]
- Pirlo, G.; Diaz, M.; Ferrer, M.A.; Impedovo, D.; Occhionero, F.; Zurlo, U. Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In Proceedings of the 8th International Conference on Image Analysis and Processing, ICIAP 2015, Genoa, Italy, 7–11 September 2015; pp. 290–297. [Google Scholar]
- Impedovo, D.; Pirlo, G.; Mangini, F.M.; Barbuzzi, D.; Rollo, A.; Balestrucci, A.; Impedovo, S.; Sarcinella, L.; O’Reilly, C.; Plamondon, R. Writing generation model for health care neuromuscular system investigation. In Proceedings of the 10th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2013, Nice, France, 20–22 June 2013; pp. 137–148. [Google Scholar]
- Impedovo, D.; Pirlo, G. Dynamic Handwriting Analysis for the Assessment of Neurodegenerative Diseases: A Pattern Recognition Perspective. IEEE Rev. Biomed. Eng. 2018, 12, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Stacey, D.; Légaré, F.; Lewis, K.; Barry, M.J.; Bennett, C.L.; Eden, K.B.; Holmes-Rovner, M.; Llewellyn-Thomas, H.; Lyddiatt, A.; Thomson, R.; et al. Decision aids for people facing health treatment or screening decision. Cochrane Database Syst. Rev. 2017, 4, CD001431. [Google Scholar] [CrossRef]
- Chung, K.; Boutaba, R.; Hariri, S. Knowledge based decision support system. Infor. Technol. Manag. 2016, 17, 1–3. [Google Scholar] [CrossRef]
- Impedovo, D. Velocity-based signal features for the assessment of Parkinsonian handwriting. IEEE Signal Process. Lett. 2019, 12, 209–220. [Google Scholar] [CrossRef]
- Dentamaro, V.; Impedovo, D.; Pirlo, G. LICIC: Less Important Components for Imbalanced Multiclass Classification. Information 2018, 9, 317. [Google Scholar] [CrossRef]
- Cilia, N.; De Stefano, C.; Fontanella, F.; Raimondo, S.; Scotto di Freca, A. An Experimental Comparison of Feature-Selection and Classification Methods for Microarray Datasets. Information 2019, 10, 109. [Google Scholar] [CrossRef]
- Giles, S.; Fiori, S. Glomerular Filtration Rate Estimation by a Novel Numerical Binning-Less Isotonic Statistical Bivariate Numerical Modeling Method. Information 2019, 10, 100. [Google Scholar] [CrossRef]
- D’Aloia, M.; Longo, A.; Rizzi, M. Noisy ECG Signal Analysis for Automatic Peak Detection. Information 2019, 10, 35. [Google Scholar] [CrossRef]
- Casalino, G.; Castellano, G.; Pasquadibisceglie, V.; Zaza, G. Contact-Less Real-Time Monitoring of Cardiovascular Risk Using Video Imaging and Fuzzy Inference Rules. Information 2019, 10, 9. [Google Scholar] [CrossRef]
- Song, J.; Zhang, Z. A Modified Robust FCM Model with Spatial Constraints for Brain MR Image Segmentation. Information 2019, 10, 74. [Google Scholar] [CrossRef]
- Senatore, R.; Della Cioppa, A.; Marcelli, A. Automatic Diagnosis of Neurodegenerative Diseases: An Evolutionary Approach for Facing the Interpretability Problem. Information 2019, 10, 30. [Google Scholar] [CrossRef]
- Impedovo, D.; Pirlo, G.; Vessio, G. Dynamic Handwriting Analysis for Supporting Earlier Parkinson’s Disease Diagnosis. Information 2018, 9, 247. [Google Scholar] [CrossRef]
- De Stefano, C.; Fontanella, F.; Impedovo, D.; Pirlo, G.; Scotto di Freca, A. Handwriting analysis to support neurodegenerative diseases diagnosis: A review. Pattern Recognit. Lett. 2019, 121, 37–45. [Google Scholar] [CrossRef]
- Dresp-Langley, B. Towards Expert-Based Speed–Precision Control in Early Simulator Training for Novice Surgeons. Information 2018, 9, 316. [Google Scholar] [CrossRef]
- Civita, A.; Fiori, S.; Romani, G. A Mobile Acquisition System and a Method for Hips Sway Fluency Assessment. Information 2018, 9, 321. [Google Scholar] [CrossRef]
- Massaro, A.; Maritati, V.; Savino, N.; Galiano, A.; Convertini, D.; De Fonte, E.; Di Muro, M. A Study of a Health Resources Management Platform Integrating Neural Networks and DSS Telemedicine for Homecare Assistance. Information 2018, 9, 176. [Google Scholar] [CrossRef]
- Palestra, G.; Rebiai, M.; Courtial, E.; Koutsouris, D. Evaluation of a Rehabilitation System for the Elderly in a Day Care Center. Information 2019, 10, 3. [Google Scholar] [CrossRef]
- Amato, F.; Marrone, S.; Moscato, V.; Piantadosi, G.; Picariello, A.; Sansone, C. HOLMeS: eHealth in the Big Data and Deep Learning Era. Information 2019, 10, 34. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Impedovo, D.; Pirlo, G. eHealth and Artificial Intelligence. Information 2019, 10, 117. https://doi.org/10.3390/info10030117
Impedovo D, Pirlo G. eHealth and Artificial Intelligence. Information. 2019; 10(3):117. https://doi.org/10.3390/info10030117
Chicago/Turabian StyleImpedovo, Donato, and Giuseppe Pirlo. 2019. "eHealth and Artificial Intelligence" Information 10, no. 3: 117. https://doi.org/10.3390/info10030117
APA StyleImpedovo, D., & Pirlo, G. (2019). eHealth and Artificial Intelligence. Information, 10(3), 117. https://doi.org/10.3390/info10030117