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Abstract: Machine learning algorithms are used in many applications nowadays. Sometimes, we need
to describe how the decision models created output, and this may not be an easy task. Information
visualization (InfoVis) techniques (e.g., TreeMap, parallel coordinates, etc.) can be used for creating
scenarios that visually describe the behavior of those models. Thus, InfoVis scenarios were used to
analyze the evolutionary process of a tool named AutoClustering, which generates density-based
clustering algorithms automatically for a given dataset using the EDA (estimation-of-distribution
algorithm) evolutionary technique. Some scenarios were about fitness and population evolution
(clustering algorithms) over time, algorithm parameters, the occurrence of the individual, and
others. The analysis of those scenarios could lead to the development of better parameters for the
AutoClustering tool and algorithms and thus have a direct impact on the processing time and quality
of the generated algorithms.

Keywords: information visualization; machine learning; evolutionary algorithms; clustering algorithms

1. Introduction

Machine learning algorithms have been successfully applied to several knowledge areas,
such as speech recognition [1], image recognition [2], pattern discovery [3], word processing [4],
the financial market [5], clustering [6], and automated decision support [7]. In general, people view
machine learning models as black boxes in automated decision-making scenarios, since they can be
incomprehensible or present an unclear decision-making process [8–10].

A better understanding of how these machine learning models work could lead to more accurate
models of real-world data. As a consequence, we would improve user confidence and reduce
processing time when generating these models. It is therefore a current computer science challenge
to develop techniques or tools that are able to produce transparent and explainable models and to
provide a description of their internal decision-making process [11–13].

In this context, information visualization techniques (InfoVis) create images that can help users
better understand the data and their relationships. InfoVis may therefore have an important role in the
understanding and analysis of the variety of machine learning models.

In this study, different InfoVis techniques were used to create scenarios that visually describe
the evolutionary behavior of a tool named AutoClustering [14]. This tool uses the estimation-
of-distribution algorithm as an evolutionary approach to automatically identifying the best
density-based clustering algorithm for a given dataset. AutoClustering creates new clustering
algorithms using a combination of the main parts of other algorithms. Some scenarios created were
about population evolution (clustering algorithms) over time (rounds× generations), fitness evolution,
clustering algorithm parameters, and the occurrence of the individual during the generations, among
others. The analysis of those scenarios could improve the understanding of the evolutionary model’s
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behavior and suggest better parameters for AutoClustering. Moreover, this analysis can have a direct
impact on the processing time and the quality of the generated algorithms. Datasets from the UCI
repository and synthetic datasets were used in the experiments with AutoClustering, and the results
were presented in the proposed InfoVis scenarios.

The paper is organized as follows. Section 2 presents the theoretical foundation, including
an introduction to evolutionary computation, estimation-of-distribution algorithms, information
visualization and visual analytics, and AutoClustering. Section 3 presents the related works that used
visualization techniques to explain the behavior of machine learning tools and models. Section 4
presents the datasets and the proposed InfoVis scenarios. Finally, Section 5 presents the final remarks
and future work.

2. Theoretical Foundation

This section includes some background on evolutionary computation, estimation-of-distribution
algorithms, information visualization, and visual analytics. These concepts are important for the full
comprehension of the remainder of the paper.

2.1. Evolutionary Computing

Evolutionary computing is inspired by the natural selection process of Darwin’s Theory of
Evolution. Evolutionary algorithms (EAs) seek to select the best individuals (candidate solutions) for
each generation using a selection method based on a fitness value, which is a measure of the quality
of the candidate solution being represented by an individual. Consequently, the greater the fitness
value of an individual, the more often it is selected; thus, more elements of its “genetic material” will
be transmitted to the next generations of individuals [15].

2.2. Estimation-of-Distribution Algorithms

Estimation-of-distribution algorithms (EDAs) [16] are a more recent approach to evolutionary
computing that is not based on crossover and mutation operators but on the probabilistic distribution
of values from a population to the production of a new population. For each EDA generation, a new
population is produced from a probabilistic distribution of the evaluation of the fittest individuals.
A probabilistic model is formed with each generation on the basis of the evaluation of the previous
generation. The execution of an EDA consists of four main steps [17]:

• Initially, a population of N individuals is produced, generally assuming a uniform distribution
of variables;

• A number m < N of individuals is then selected from the population by any of the selection
methods used in evolutionary algorithms, such as tournament or truncation;

• On the basis of the evaluation of the selected individuals, a better probabilistic model for the
variables is set up;

• On the basis of the distribution obtained in the previous step, a new population of N individuals
is produced.

The algorithm repeats these steps until a predefined stop criterion is reached, such as the
maximum number of generations.

2.3. Information Visualization and Visual Analytics

In this section, we present basic concepts of information visualization and visual analytics, as well
as the correlation between these fields.
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2.3.1. Information Visualization

A data chart has the power to communicate a large amount of complex information. However,
with an inappropriate representation of the data, it may fail to achieve this goal and become just
a decorative chart [18]. Thus, the area of InfoVis seeks to transform abstract data into a visual
representation readily understood by the user, who is then able to generate new knowledge about the
relationships among data [19]. It can be used for tasks such as identification, multivariate correlation,
search, consultation, exploration, and communication.

According to [20], an InfoVis tool should allow users to perform the following tasks, minimally:

• Overview: provides the user with general context about all the data that will be analyzed;
• Zoom: allows the user to focus on a certain subset of the data to emphasize the analysis, that is,

to analyze a certain context with greater precision;
• Filter: enables the user to reduce the size of the analyzed dataset, limiting the number of items

based on the desired criteria;
• Details-On-Demand: provides additional non-visible information and details about a

particular item;
• Relate: allows the analysis of the relationship among data items;
• History: keeps a history of actions to support the undo function;
• Extract: allows the extraction of sub-collections of detailed data when needed.

2.3.2. Visual Analytics

According to [21], visual analytics combines automated analysis techniques with interactive
visualizations for effective comprehension, reasoning, and decision-making for huge and complex
datasets. Visual analytics can be seen as an integral approach to decision-making, combining
visualization, human factors, and data analysis. In other words, the interactive information
visualization is part of the visual analytics process [22].

In visual analytics, the application of automatic analysis is performed before and after the use
of information visualization. That is the reason why a new mantra was proposed, “Analyze First,
Show the Important, Zoom, Filter and Analyze Further, Details on Demand”, in replacement of the
visualization mantra, “overview first, zoom/filter, details on demand” [22]. The challenge in this
process is to find an integrated solution that combines the best automatic methods for the given
analysis task, then identify its limits, and, finally, choose the best visualization and interaction to
explore the data. The user role in this process is fundamental.

In summary, we selected some visualization techniques that are easily understood and support
the elaboration of scenarios for

• data correlations: TreeMap [23] and Alluvial diagram [24];
• data comparisons: histograms;
• multidimensional analysis: parallel coordinates [25];
• highlight outliers: parallel coordinates and histograms;
• trend analysis: line charts.

2.4. AutoClustering

AutoClustering (https://github.com/LABVIS-UFPA/autoclustering) is a tool that automatically
generates density-based clustering algorithms using the EDA technique [14]. The density-based
clustering algorithms included in the tool are split into main independent procedures called building
blocks. This tool uses a directed acyclic graph (DAG) as an auxiliary data structure for the EDA
(Figure 1). Each vertex of the DAG represents one building block, and the edges represent the
connections between them, considering their input and output parameters. For instance, the DBSCAN
algorithm was decomposed in the building blocks CandidatesByDistance and ClustersByConnectiveness.

https://github.com/LABVIS-UFPA/autoclustering
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Furthermore, the combination of building blocks may form traditional algorithms or new ones by
creating new combinations of building blocks.

Thus, the EDA generates a population of individuals, where each individual represents a
complete density-based clustering algorithm, by combining a sequence of building blocks and
the corresponding parameter values. The most recent version of AutoClustering is based on nine
density-based algorithms: AMR [26], CLIQUE [27], DBCLASD [28], DBSCAN [29], DENCLUE [30],
DESCRY [31], DHC [32], SNN [33], and SUDEPHIC [34]. Some building blocks generate
candidate items for each cluster (createCandidatesByDistance, createClusterByConnectiveness,
createCandidatesByNPts, createClusterByDistribution); some group these candidate items using
a given method (createAttractionTree, createDensityTree, createASH); some organize the items in a
data structure (idDenseAreas, createEquallySizedGrid, createAdaptableKDTree, createAMRTree);
and other building blocks generate clusters using these data structures (createAMRCluster,
createClusterByAttractor, createClusterByPartition, mergeByOverlap, mergeByDistance).

Figure 1. The building blocks’ directed acyclic graph (DAG) as the auxiliary data structure to the
estimation-of-distribution algorithm (EDA).

In general, the individuals are formed by a set of connected building blocks (vertices), a path in
the DAG from the begin to the end. The selection of a building block depends on the weight of each
edge of the graph because the weight represents the probability of two building blocks connecting to
each other to generate an algorithm (individual). Thus, the probability associated with each edge is
updated in each generation of the EDA according to the evaluation of the individuals that used this
edge. According to [14], the following steps describe the execution of AutoClustering:

1. Generate a population of N density-based algorithms. Each individual (or algorithm) represents
a possible path in the DAG.

2. Use the Clest method to evaluate each individual.
3. Eliminate the 50% of individuals with the lowest fitness.
4. Update the probabilities of each edge of the DAG according to the frequency of use in the selected

population (the 50% of individuals with a higher level of fitness).
5. Generate a new population of N individuals using the updated DAG.
6. Add the best individual from the previous population to the current one (implementing elitism).
7. Repeat steps 2–7.

2.5. Fitness Function

The Clest method [35] was used to evaluate the clustering algorithms generated by the EDA.
The Clest method was initially proposed to estimate the number of K groups for a given dataset. Later,
a version of the Clest method was used in [14] to objectively measure the quality of the result obtained
from a clustering algorithm for a given dataset.
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The proposed evaluation method divides the dataset into training and test sets. Then, the
clustering algorithm generated by AutoClustering is used to label the training and test sets, leaving the
actual label unknown. The next step is to train any classifier with the new labeled training set. In this
work, we used the J48 algorithm, which is a Java implementation of the C4.5 decision tree [36]. Finally,
the trained model is applied to the test set to classify the data and calculate the accuracy according to
that model. Thus, the fitness function of the EDA assigns a measure of performance (accuracy) to a
particular individual under analysis on the basis of the result obtained by the Clest method.

3. Related Work

Wu et al. [37] argue that the analysis of evolutionary algorithms is based on a large amount of
data and is therefore not an easy task. Thus, visual analysis tools of evolutionary algorithms would be
of great help. The authors suggest that these tools may have some of the following features:

• Examining individuals and their codifications in detail;
• Tracing the origin and survival of building blocks or partial solutions;
• Tracking ancestral trees;
• Examining the effects of genetic operators;
• Examining the population considering convergence, specialization, etc.;
• Obtaining statistics and trends of the gross population;
• Examining freely in time (generations and rounds) and across populations.

Liu et al. [38] presented a brief systematic review of visualizations proposals for describing
machine learning models in three categories: understanding, diagnosis, and refinement.
Understanding helps researchers to comprehend classification models better. Diagnosis is the step that
uses visualization techniques to allow researchers to better appreciate, for instance, why a training
process did not reach the desired performance. It would be then possible to select better features to
improve model performance. Refinement uses interactive visualization techniques to facilitate the
inclusion of knowledge learned in the diagnostic phase.

Cruz et al. [39] presented the ELICIT tool: Evolutionary Computation Visualization; this is an
interactive tool for visualizing the process of evolutionary algorithms. This tool provides two levels
of views. The first one is named General View to cover the whole population. The second one is
named Individual View to cover a particular individual. In this way, the tool has different types of
representations. Some visualization scenarios are:

• Visualization of the fitness distribution—scatterplot;
• Visualization of genetic operators—matrix of points;
• Visualization of the genetic lineage of an individual—parallel coordinates, histograms.

Mcphee et al. [40] proposed a graph visualization approach to represent the individuals and their
ancestries as the result of a genetic algorithm (GA) processing. This proposal focuses on presenting
the successful and unsuccessful attempts for a node to evolve during the generation and rounds.
Some analysis scenarios are population evolution and individual evolution. The tool highlights
essential moments in the evolutionary process, such as the creation of a new individual. Furthermore,
the visualization uses rectangles to represent the nodes; width and height represent the number of
times a node was selected and the number of children of a node, respectively; and color represents the
successful level of a node.

Daneshpajouh and Zakaria [41] proposed a visualization technique based on histograms, where
each column represents a cluster. The columns are divided into small squares or blocks, and each block
represents a subcluster. Blocks that are in the same horizontal line are in the same generation. Moreover,
the authors used symbols to represent cluster results and how they changed from one generation to
another. The main focus is to perform local searches during the global exploration from one generation
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to another. In this way, the primary purpose of visualization is more to support the analysis of
the dynamics of cluster formations in the GA than to analyze the visualization of high-dimensional
individuals in the GA. Finally, the authors highlighted that the proposed tool enables the study of
search space and analysis of GA behavior, thereby obtaining useful information to manipulate the
search space interactively.

4. Visualization Scenarios

We propose some analytic scenarios that are based on good practices in information
visualization [42] and were introduced in prior works on evolutionary computing techniques or
tools such as [37–39,43]. Most of the prior works have some common scenarios, such as average
fitness, population overview, and individual tracking, among others.

In this way, the contribution of this paper is the proposal of new visualizations for these most
common scenarios and new scenarios to enhance the overall understanding of the behavior of
evolutionary computational methods. The logs of AutoClustering, the tool which automatically
generates density-based clustering algorithms using the evolutionary EDA technique, was used in the
proposal scenarios.

Considering the visual analytics mantra, this paper focuses on steps based on information
visualization techniques. The hypothesis is that the quality of the initial view of the data would
allow for more productive interactions or tasks, such as zoom, filter, analyze further, and details on
demand, and result in useful insights. The proposal scenarios are:

• Data overview: these visualizations present the complete dataset and guide the user in
further analysis.

– Types of individuals;
– Occurrence of individual types per generation;
– Individuals with the best fitness.

• Tracking: these visualizations present the occurrence of individuals in the population and in
each generation.

– Tracking individuals.

• Individual features: these visualizations present the correlation between the individual
parameters and allow for the analysis of outliers, trends, and patterns.

– Correlation between fitness and parameters of the individuals per generation and rounds.

• Fitness: these visualizations aim to analyze the fitness in the population per generation and round
to understand the evolution and diversity of the population.

– Fitness evolution;
– Average of fitness;
– Variance of fitness.

• Compare different datasets: these visualizations aim to compare the results of evolutionary
techniques or tools for different datasets in order to find similarities or differences
between individuals.

– Comparison of individual classes in different datasets.

4.1. Test Setup and Datasets

For the experiments on AutoClustering, we performed 30 rounds of simulations with
500 generations for each dataset. Each round included 50 individuals (clustering algorithms and their
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respective parameters). Tests were based on public domain datasets from the well-known UCI dataset
repository, often used for benchmarking in machine learning research [44]: Cleveland Heart Diseases
(13 attributes, 294 instances), Glass Identification (8 attributes, 214 instances). and BUPA (7 attributes,
345 instances). In addition, we used a high-dimensional synthetic dataset (20 attributes, 2000 instances)
created by the tool proposed in [45].

4.2. Data Overview

The following scenarios provide an overview of the AutoClustering results.

4.2.1. Type of Individuals

This scenario presents an overview of the connections among the existing building blocks in
the AutoClustering DAG that form the types of clustering algorithms. In other words, the types
of algorithms mean the possible combinations of the building blocks. For the Cleveland dataset,
25 types of different clustering algorithms were generated (Figure 2) considering 30 rounds with
500 generations each.

Figure 2. Alluvial visualization organized by occurrence order of each block considering all the rounds.

The alluvial diagram is used to illustrate the connections between building blocks that compose
the types of generated clustering algorithms. These building blocks are arranged on axes (levels)
ordered by the number of occurrences of the blocks. Thus, the building blocks CandidatesBySNN and
ClustersByDistribution, highlighted in red, form a type of clustering algorithm, and the width of this
connection represents how often this type of algorithm occurred. Therefore, alluvial organization
levels can help us to understand how the connections between blocks are made and the types of
algorithms generated.

Axes are divided proportionally into small bars, where each bar represents the number of
occurrences of a particular building block during the formation of an algorithm. For instance,
the DenseAreas building block occurred more often than the AttractionTree, highlighted in green,
as the first block chosen for the creation of algorithms. This kind of information can help us to
understand how the weights of the AutoClustering probability model were adjusted.
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4.2.2. Occurrence of Individual Types per Generation

Figure 3 shows the histograms about occurrences of algorithm types from the first round for the
Cleveland dataset. A total of 16 new clustering algorithms were generated by combining the building
blocks illustrated in Figure 1. This behavior reinforces the evolutionary feature of the tool for creating
new types of clustering algorithms.

Figure 3 helps to illustrate the distribution of the algorithm types over the generations. From this,
it is possible to observe a high number of occurrences of the ClustersByAttractors and DHC algorithms.
In addition, the visualization illustrated in Figure 3 shows that these algorithms may have generated
good results. In this way, the results of these two types of algorithms can be analyzed separately, and
this can help to identify the characteristics that they may have in common.

Figure 3. Histograms of total occurrences of blocks in each of the 500 generations considering a
single round.

Another point to emphasize is the occurrence analysis of the algorithm types per generations
and rounds. For instance, ASH->AttractionTree->DensityTree also presented a high occurrence rate.
However, DenseAreas->AMRTree->MergeByDistance is an example of an algorithm type that did not
occur for several generations.

These analyses provide some indicators about the evolution of the AutoClustering probability
model over generations. Other similar chart suggestions are the occurrence of blocks per generation,
occurrence of one or more types of algorithms, or the individual occurrence (algorithm plus parameters)
per generation or round. Thus, this visualization can help the user identify the algorithms that are
created the most over the generations.

4.2.3. The Best Fitness

For the visualization and comparison of the best fitness values among the types of algorithms
generated by AutoClustering, we used the TreeMap technique (Figure 4) on the Cleveland Heart
Diseases dataset with 30 rounds and 500 generations.

The TreeMap technique creates visual data groups and maps data values according to area size
and color. The presented configuration forms two groups: one for new algorithms (highlighted in
red) and another for algorithms already known in the literature. The area size represents the average
number of occurrences of each algorithm for all rounds, and the visual items are ordered from the
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top left corner to the bottom right corner. The color represents the fitness value, where a darker color
means a greater fitness value.

In the group of new algorithms, the ASH->AttractionTree->DensityTree obtained the best fitness
with 96.48% (highlighted in yellow). Among the known algorithms, the DHC algorithm achieved
the best fitness of 99.99% (highlighted in green). For this dataset, few new algorithms obtained good
results. However, the best fitness of this group was among the overall best fitness values. Thus, the
possibility to create individuals more adapted to different dataset profiles could be the critical point
between good and bad results in the clustering task.

Figure 4. Overview of algorithms using the Treemap visualization technique considering the highest
fitness value and the mean occurrence rates of the clustering algorithms after all rounds.

4.3. Tracking

This section presents a scenario to track individuals.

Tracking Individuals

On the basis of the initial setup of AutoClustering, the tool generates 25,000 individuals, and
around 10,000 of these individuals are unique (algorithm + parameters). Figure 5 shows a scatterplot
organized by individuals and generations from the first round of the BUPA dataset. Only individuals
with a fitness value greater than 99.5% are presented.

In the chart, the best five individuals, with respect to the results of fitness and occurrences, are
highlighted by colors. All five individuals are related to the AttractionTree->DensityTree algorithm
with a fitness value equal to 100%. The final algorithm indicated by AutoClustering as the result is
highlighted in red; it is the algorithm with the highest fitness in generation 500.

This kind of chart allows the user to visually track the generated individuals and to analyze the
behavior of the tool. The algorithm highlighted in red show ups in the early generations, but it is
later replaced by the algorithm highlighted in green, which has the same fitness value. This raises a
question: Why does this algorithm disappear after a few generations and reappear later with such an
excellent fitness value?

The first explanation is that the tool uses elitism, which is an evolutionary computing technique
that aims to select the best individuals generated for the next generation. AutoClustering selects only
one individual for the next generation on the basis of two main points: the highest fitness value and
the more recent individual. Another explanation is related to the updates to the probability model
over the generations with the best individuals. Since the algorithm highlighted in red is an excellent
individual, it has a good chance of appearing among individuals in the next generations.
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Figure 5. Visualization to track the best individuals in a population.

4.4. Individuals Feature

This section presents a scenario to analyze individuals’ features.

Correlation between Fitness and Parameters

The first round of the synthetic dataset was used to analyze the parameters of the individuals.
The tool generated 25,000 individuals (50 individuals per generation), and 17,024 of these
individuals had a fitness equal to zero. Also, there were 10,943 unique individuals (algorithm plus
parameters), and 3039 of these individuals presented a fitness different from zero. Although the
AdaptableKDTree->MergeByOverlap had the highest occurrence number (803) among the generated
algorithms, the algorithm AttractionTree->DensityTree (650) was the winner in most of the generations,
and it had the best fitness: 99.9999999974321%.

For this scenario, parallel coordinate visualization (Figure 6) was chosen because of its
multidimensional characteristic and capacity for correlating between data. The technique uses parallel
axes to represent the data dimensions. The values of each attribute are mapped along one of the axes.
The attribute values of the same data record connect lines crossing all the axes. Thus, it is possible to
analyze the visualization by looking for patterns, trends, and outliers.

Analyzing only the AttractionTree->DensityTree individuals, whose parameters are DHC_SIGMA,
DHC_MINPTS, and DHC_THRESHOLD, it is possible to see in Figure 6 that the values of the respective
parameters are in the ranges [2.5; 15], [6.6; 20], and [24; 60]. Furthermore, Figure 6 shows that the
SIGMA and THRESHOLD parameters are the most influential parameters for achieving a good fitness
value (99.9%), with ranges between the values [4.1; 10.3] and [37.7; 60.0], respectively. For a fitness
equal to 0%, the parameters also are SIGMA and THRESHOLD, with ranges between [11.8; 15] and
[54.4; 60.0], respectively. In other words, if you had high values of SIGMA and very high values of
THRESHOLD parameters, then the fitness result would be 0%. Finally, a more extensive analysis of
these parameters in different dataset profiles could optimize the parameter values related to each
building block for generating good individuals.
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Figure 6. Correlation between fitness and parameters for the AttractionTree->DensityTree algorithm.

Regarding the evolution of individuals with fitness values higher than 99.5%, it is possible to
identify two patterns in Figure 7. The first one concerns the individuals created at the beginning of
the rounds and maintained over the next generations; the second one is about individuals with good
fitness that had some parameters changed (such as MINPTS, which does not directly influence fitness
values), which helped to generate other excellent individuals.

Figure 7. The occurrences of individuals with fitness of more than 99.5% created along the generations.

4.5. Fitness

This section presents a scenario to analyze the fitness over the generations and rounds.

4.5.1. Fitness Evolution

The line graph matrix illustrated in Figure 8 shows the fitness evolution of the algorithms created
over the generations for the Cleveland dataset. The test with this dataset generated five different
algorithms: CLIQUE, DBSCAN, DENCLUE, DHC, and New. This new algorithm is formed by the
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building blocks ASH→AttractionTree→DensityTree. Thus, Figure 8 shows the changes in the fitness
values for each generation during the rounds.

Figure 8. Line chart that shows the fitness values of the best algorithm generated over the generations.

In the chart in Figure 8, 90% of the rounds reached the maximum fitness value between 100 and
150 generations, and the latest fitness growth occurred in generations 282 and 407. This may indicate
the possibility that the initial parameters for the tool could be better defined. It is possible to analyze
reducing the number of generations or the number of rounds.

Lines R3 and R6 represent the two rounds that had a change in fitness after 200 generations.
The black circle on the line highlights the generation in which the fitness changed for these two
cases—generation 282 and 407, respectively. Furthermore, this change in fitness after a “stabilization”
can be analyzed to gather more details about it. However, it was observed that the change in fitness
represented a minimal gain that is below 1%. Also, the green squares highlight the rounds with
the best result. In these rounds, the solution that obtained the best result was the DHC algorithm
with an average fitness above 99%. Additionally, analyzing the logs, for both examples, showed
that the individual before the best one is the same algorithm type with different parameters. Thus,
the stability analysis may depend on the problem under analysis, since such a small change can be
considered irrelevant.

4.5.2. Average of the Fitness

The line chart in Figure 9 shows the average fitness values for individuals with a fitness
different from 0% in each generation. The variability represented in the chart reinforces the
diversity of the generated population, as individuals have a range of fitness values, considering
their various parameters.
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Figure 9. Line chart that shows the average fitness over the generations for individuals with fitness
different from 0%.

4.6. Compare Different Datasets

This section presents a scenario to analyze the tool’s result for different datasets.

Comparison of Algorithm Types in Different Datasets

Figure 10 presents the comparison of AutoClustering results for the Cleveland (highlighted in
blue) and Glass Identification (highlighted in orange) datasets. TreeMap was set to group hierarchically
by dataset name and algorithm name. The area size represents the occurrence of each algorithm type.
The colors represent the fitness values. The green color highlights individuals with fitness equal to
100%, the yellow color highlights individuals with fitness values between 99.5% and 99.99%, and the
red color highlights individuals with fitness values equal to 0%. Furthermore, a filter was performed
to include only individuals with fitness values greater than 75% and fitness equal to 0%.

Figure 10. Treemap with the organization of fitness throughout the generations for the Cleveland Heart
Diseases and Glass Identification datasets.

Figure 10 shows that the best algorithm consisted of the AttractionTree->DensityTree (DHC)
building blocks for both datasets. Moreover, the Glass Identification dataset presented more individuals
with fitness values equal to 100%. Furthermore, the results for algorithms that presented fitness equal to
0% were similar for both datasets. Finally, AutoClustering generated the best algorithm types (yellow
and green items) more frequently for the Glass Identification dataset than for the Cleveland dataset.

Figure 11 illustrates another comparison scenario using a histogram matrix. This visualization
shows the occurrences for each type of algorithm. The algorithms DenseAreas->ClustersByPartition,
ASH->ClustersByAttractors, and CandidatesByDistance->ClusterByConnectiveness are highlighted in
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green because they had different occurrence patterns for the two datasets. Furthermore, the
AttractionTree->DensityTree algorithm (highlighted in purple) presented the best fitness values for
the Cleveland dataset, but there was quite a different occurrence pattern for the Glass Identification
dataset. Moreover, the initial part of the histogram, highlighted in yellow, shows an increasing number
of occurrences for the ClustersByAttractors algorithm. This growth means that as the probability model
evolved over generations, this algorithm was more likely to be created by AutoClustering. Thus, it
provides information about how the probability model evolved for each of the datasets.

Figure 11. Histogram matrix of the algorithm occurrences for the Cleveland Heart Diseases and the
Glass Identification datasets.

5. Final Remarks and Future Works

The demand for understanding and replicating models that are automatically generated by
machine learning techniques is high, since such models not only affect scientific works but also have a
direct impact on regular tasks, for example, personal loan analysis or medical benefits authorization.
Sometimes, it is necessary to explain how the systems and tools made their decisions or how the rules
were created on the basis of real data, and this is not an easy task.

Among the different research areas dedicated to facilitating the understanding of machine learning
methods, it is worth highlighting visual analytics. It combines automated analysis techniques with
interactive visualizations for understanding, reasoning, and decision-making. It is particularly useful
when analyzing large datasets, which is usually the case for results and logs of these types of algorithms.

Of all the steps in the visual analytics process, the visualization step is essential because
data visualization techniques can create visual representations to facilitate the perception of data
relationships, patterns, trends, and outliers. The visualization scenarios proposed in this work support
the analysis and understanding of the evolutionary techniques’ behavior.

For the analysis task, we propose some visualization scenario classes: data overview of a
population, individual tracking, quality of generated individuals and their parameters, and comparison
of the tool’s results when applied to different datasets.
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The AutoClustering tool was used as a case study for different datasets. AutoClustering uses
an estimation-of-distribution algorithm to automatically create density-based clustering algorithms
by combining building blocks of classic existing algorithms. We analyzed the results and looked for
behavioral patterns during the evolutionary process.

Applying the visualization scenarios to AutoClustering results, it was possible to understand the
construction of the algorithms through the connections of building blocks. The occurrences and fitness
of the generated algorithms helped to understand how the probability model evolved throughout the
rounds. Moreover, the visualization scenarios allowed for the visual tracking of individuals throughout
the generations, as well as the analysis of their parameters, ultimately indicating the best clustering
algorithms for a given dataset. Finally, the comparison scenarios visually presented the behavior of
AutoClustering for different datasets. Thus, the set of proposed visualization scenarios could improve
the decision-making process and the specific strategies for each dataset and their initial parameters.

Some of the analysis scenarios are valid for other evolutionary techniques, such as population
overview, best individual in the population, individual tracking, and parameter analysis. Therefore,
the techniques used for the proposed visualization scenarios may be applied to other evolutionary
approaches with little adaptation. However, each evolutionary technique has its particular features
and challenges, so they may require new visualization scenarios. For instance, not all evolutionary
techniques use the probability model for the generation of candidate solutions.

As future work, we suggest the creation of an interactive dashboard with proposed visualization
scenarios to better support the analysis task. Another suggestion is the use of interactive visualization
scenarios during the training and testing steps with recommended adjustments to the model
configuration. We also plan to use the proposed visualization scenarios to analyze the behavior of
other evolutionary approaches. Another proposal is to perform usability studies for the visualization
scenarios. Finally, there is potential for the elaboration of new visualization scenarios, for example,
analyzing the updates of the probability model weights used by the EDA.
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