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Abstract

:

An ontology-based system can currently logically reason through the Web Ontology Language Description Logic (OWL DL). To perform probabilistic reasoning, the system must use a separate knowledge base, separate processing, or third-party applications. Previous studies mainly focus on how to represent probabilistic information in ontologies and perform reasoning through them. These approaches are not suitable for systems that already have running ontologies and Bayesian network (BN) knowledge bases because users must rewrite the probabilistic information contained in a BN into an ontology. We present a framework called ByNowLife, which is a novel approach for integrating BN with OWL by providing an interface for retrieving probabilistic information through SPARQL queries. ByNowLife catalyzes the integration process by transforming logical information contained in an ontology into a BN and probabilistic information contained in a BN into an ontology. This produces a system with a complete knowledge base. Using ByNowLife, a system that already has separate ontologies and BN knowledge bases can integrate them into a single knowledge base and perform both logical and probabilistic reasoning through it. The integration not only facilitates the unity of reasoning but also has several other advantages, such as ontology enrichment and BN structural adjustment through structural and parameter learning.
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1. Introduction


In Web Ontology Language (OWL), reasoning in ontologies is supported using a sub-language that accommodates a description logic (DL)-based reasoning called OWL DL [1]. OWL DL is the most important OWL sub-language because it supports maximum expressiveness while still providing computational completeness and decidability [2]. The fundamental modeling concept in DL is an axiom, a logical statement related to roles and/or concepts. The mechanism of reasoning using such logic is referred to as logical reasoning.



However, the type of required reasoning is not always purely logical (true or false, 1 or 0) but can also be probabilistic (the degree of certainty or probability that an event will happen, represented by a value between 0 and 1). Bayesian networks (BNs) have been chosen by many previous researchers as models for managing probabilistic reasoning in ontologies [3]. This is because in addition to its ability to perform probabilistic reasoning with prior knowledge, a BN has a graphical structure like that supported by ontological representation in OWL.



Various studies related to the integration of probabilistic information into ontology have been carried out and applied to various areas of research such as image classification [4], knowledge repositories for website evaluation methods [5], and decision support systems for terrorist identification [6]. Probabilistic ontology has great potential as a knowledge base that is able to address challenges of logical and probabilistic reasoning simultaneously.



OWL DL and its variations have been standardised by the World Wide Web Consortium (W3C) for logical reasoning in ontology [7]. However, W3C has not yet established a standard for probabilistic reasoning in ontology. Previous studies have attempted to fill this gap by combining BNs with ontologies to make probabilistic reasoning available for use in ontology, but these have mainly focused on how to represent probabilistic information in OWL notation. For future systems or those that are newly built, the process of establishing an ontological knowledge base containing probabilistic information from the ground up may not be a problem. For systems that already have ontologies and BN knowledge bases, it is unnecessary to rewrite the probabilistic information contained in the BN into the OWL; it will require significant effort, especially if the BN consists of thousands of nodes and relations. In cases such as this, a machine capable of transforming the information contained in the BN into OWL and vice versa is needed.



We have other ideas about this, motivated by the belief that incorporating a BN into an ontology and vice versa should be more than just a transformation process; it should also benefit them both. This paper presents a concept called the Bayesian Network and OWL Integration Framework (or ByNowLife), a novel approach to integrating BNs with OWL by providing an interface for probabilistic reasoning through SPARQL queries. To the best of our knowledge, this work is the first to integrate BNs into OWL and vice versa, and exploit the integration process. The main contributions of this research are as follows: (1) ontology enrichment based on BN knowledge bases; (2) BN structural adjustment through structural learning based on ontology knowledge bases; and (3) support for an integrated probabilistic clause in the SPARQL query format.



This paper is organized as follows: Section 2 outlines previous work related to the merging of ontologies and BNs. Section 3 describes ByNowLife as the proposed approach as well as the translation rules and algorithms used. Section 4 presents the experiment as an implementation framework using two validation cases to demonstrate the feasibility and effectiveness of our approach. Section 5 details the reasoning proof, while Section 6 discusses the results of the experiment and important aspects of the framework. Section 7 concludes the study, and Section 8 suggests several next steps for future work.




2. Related Work


Systematic literature review (SLR) results [3] reveal four published frameworks related to the integration of ontologies with BNs: BayesOWL, Multi-Entity Bayesian Network/Probabilistic OWL (MEBN/PR-OWL), OntoBayes, and HyProb-Ontology. Each framework has pros and cons. Several comparisons of the pros and cons of these frameworks are discussed in [8].



BayesOWL [9] was the first framework to attempt to integrate ontology with BN. It was created with the primary goal of representing the BN in Resource Description Framework (RDF)/OWL notation in a simple structure to be used as the ontology knowledge base. Alongside general nodes, BayesOWL generates bridge and intersection nodes to facilitate the modeling of relations between classes. Reasoning is done using the decomposed iterative proportional fitting procedure (D-IPFP) algorithm [10] to calculate the probability values for each node in the system. In addition to including a graphical user interface (GUI) for direct use, BayesOWL was also designed for software developers by providing application programming interface (API) in the form of Java packages. This is notable because it provided an interface for software developers to create their own ontology-based applications capable of representing probability values in its OWL knowledge base. However, BayesOWL does not have query support in SPARQL format as a query standard in its knowledge base. In addition, BayesOWL does not feature a blending process or “symbiotic mutualism” between ontologies and BNs, so it does not offer ontology enrichment or BN network structural adjustment through structural and parameter learning.



MEBN/PR-OWL does a different way by creating a separate environment for users who want to perform a combined operation between BN and ontology. According to work pertaining to MEBN and its application characteristics, namely UnbBayes-MEBN [11,12,13,14], this application is aimed more at processing probabilistic graphical models (PGMs) but with support for outputting results in RDF/OWL format with PR-OWL style. Because the process must be done in a separate application environment, practically software developers cannot use the engines provided by this framework. Reasoning in the PR-OWL knowledge base is carried out through the generation of a situation-specific BN (SSBN), which is the minimum BN construction sufficient to calculate the probability values of target nodes based on existing evidence values. The SSBN generation algorithm was initially introduced by Laskey in [14] with the bottom-up algorithm, which was later refined by Santos in the Bayes–Ball algorithm [15]. Similarly to BayesOWL, MEBN/PR-OWL cannot query in SPARQL format, does not offer ontology enrichment and does not support BN structural and parameter learning based on ontology knowledge bases.



OntoBayes [16] is the successor of BayesOWL, and the two share many similarities. The knowledge structure in OntoBayes is simpler than that of BayesOWL; OntoBayes does not generate additional nodes or control nodes. Thus, the OWL document structure in OntoBayes can easily be transformed into a BN with simple rules. If BayesOWL uses D-IPFP as its reasoning algorithm, then OntoBayes utilizes the Netica-J API library as its reasoning engine. OntoBayes has logical query support in SPARQL format but does not support probabilistic clauses in it. OntoBayes also does not provide component-reuse support, so its engines are unlikely to be exploited by application developers. Ontology enrichment and BN structural and parameter learning are also not supported by this framework.



HyProb-Ontology [17] is a framework that enhances the data input and reasoning processes of its predecessors. Instead of using ordinary BNs, HyProb-Ontology uses a hybrid BN that incorporates BNs for probabilistic reasoning on discrete variables and conditional Gaussian fuzzification for probabilistic reasoning on continuous variables. There is no significant improvement other than these.



Several algorithms for transforming ontology into BNs have been investigated by previous researchers. Two were proposed by Fenz et al. [18], who outline the procedure for translating an ontology into a BN and Ishak et al. [19], who describe an algorithm for transforming (morphing) an ontology into the form of an object-oriented BN (OOBN). These two algorithms inspired the one we developed for merging an ontology into a BN. In addition, we developed an algorithm to merge a BN into an ontology.



Of the features of previous frameworks, there are three aspects that have never before been successfully implemented in past research: ontology enrichment based on BN knowledge bases, the adjustment of BN structures through structural and parameter learning based on ontology knowledge bases and support for an integrated probabilistic clause in SPARQL query format. This study accomplished these three goals in the form of an enhanced framework, as described in the following sections.




3. Proposed Approach


This section describes our proposed approach, namely the ByNowLife framework, its translation rules, the reasoning proofs and the merging algorithms it uses.



3.1. The ByNowLife Framework


We propose a framework for systems using ontologies as their knowledge bases and requiring both logical and probabilistic reasoning abilities simultaneously. We call it ByNowLife, which stands for Bayesian Network and OWL Integration Framework. It is shown in Figure 1.



This framework consists of three main parts: the Application, the Reasoner and the Knowledge Base. The Application can either be independent software or a software agent written in a common programming language, such as C/C++, Java, PHP, or Python. The Reasoner involves two components: (1) the Logical Reasoner, assigned to perform logical reasoning based on SROIQ specifications in OWL 2 DL and (2) the Probabilistic Reasoner, assigned to perform probabilistic reasoning for the Knowledge Base in the form of a BN, OOBN, or dynamic BN (DBN). The Knowledge Base contains knowledge of two forms: ontology knowledge in OWL/RDF format and BN knowledge in XML of Decision Systems Laboratory (XDSL) format [20]. In the Knowledge Base, there is a component named the Morpher that conducts data transformation from standardised ontologies (OWL/RDF) to XDSL (and vice versa). The Morpher also serves to enrich the ontology with the probability values of the nodes and links in the BN. The probability values of the nodes in the BN are translated into axioms in the ontology and links are translated into relations. This framework allows the application to query the Knowledge Base in SPARQL format for logical reasoning and the hasProbValueOf special property for probabilistic reasoning.



ByNowLife was developed not only as a theoretical foundation in combining logical with probabilistic knowledge bases but also a technical implementation that can be tested with various test cases. Online technical implementation of this framework can be found on the ByNowLife website [21]. The system requires input in the form of logical knowledge-based files (.owl) and probabilistic knowledge-based files (.xdsl). After both files are uploaded and the knowledge bases have been integrated, the user can query to communicate with the system. Users can also download the resulting .owl and .xdsl files from the system if needed. Figure 2 shows a screenshot of the website’s content.




3.2. Translation Rules


We adopted the translation rules of Fenz et al. [18] for the BN as well as those from Ishak et al. [19] for the OOBN. Both Fenz and Ishak account for the class for BN transformation into ontology, while our approach puts the class aside and prefers to replace it with the individual. This is because in its implementation, an ontology scheme is assumed to be deterministic or precise, but this is not so with the instance of the ontology. This means that the classes and its hierarchy are deterministic. However, the relationship between an individual and a class/concept is valid with a certain probability. In the same way, the relationship between two individuals or between individuals with data types is valid with a certain probability. Thus, uncertainty operations must be applied to relationships between individuals but not those between classes. See [22] for a more detailed explanation.



A BN contains the following elements:

	
Node;



	
Inter-node relationship (Link);



	
Scale and Weight of a node, both independently and in relation to other nodes; and



	
Factual values (Evidence) from one or several nodes based on facts.








On the other hand, an ontology contains the following elements:

	
Concept or Class;



	
Instance of a class (Individual);



	
The attributes inherent in the class or individual (Properties) along with their Values; and



	
Inter-class or inter-individual Relationships.








The rules used to transform elements in BNs into ontologies are as follows:

	
Node → Individual. Nodes in BNs are transformed into Individuals in ontologies.



	
Link → Relationship. Links in BNs are transformed into Relationships or Object Properties in ontologies.



	
Scale → Property. Scales are values that a Node may have. Scales in BNs are transformed into Data Properties in ontologies.



	
Weight → Value. Weights is the value of the influence of a Node on another Node. Weights in BNs are transformed into Values of Data Properties in ontologies.



	
Evidence→ Value. Evidence in BNs is transformed into Values of Data Properties in ontologies.









3.3. Merging Algorithms


We present the two merging algorithms used in the Morpher. The Algorithm 1 merges BNs into ontologies, and the second merges ontologies into BNs.



3.3.1. Merging BNs into Ontologies


We have developed an algorithm to merge the information contained in a BN into an ontology. The steps are as follows.

	
Check the ontology. If there are no properties as follows, then create the following:

	
An object property named influences_;



	
An object property named influenced_by_; and



	
A data property named hasProbValueOf.








Create a rule or an axiom so that the object property influences_ is an inverse of the object property influenced_by_, and vice versa.



	
For each node of the BN, do the following:

	
If the node is not yet in the ontology:

	a.1.

	
Get the T ← template class selected from one of the nodes in the BN or a default class named Generic as a subclass of the owl class: Thing (http://www.w3.org/2002/07/owl#Thing). The selection rule of T as a template class is explained in the OntoGetFirstTemplateClass function.




	a.2.

	
Create an individual with the same name as the node as an instance of class T;




	a.3.

	
Create a data property named hasProbValueOf for the individual, and set its data property value equal to the node’s probability value.









	
If the node already exists in the ontology but does not have a hasProbValueOf data property, then do the following:

	b.1.

	
Create a data property named hasProbValueOf for the individual and set its data property value equal to the node’s probability value.














	
For each node of the BN, do the following:

	
Get the individual that matches the node.



	
For each parent of the individual:

	b.1.

	
If the parent does not have an object property named influences_, then add the influences_ object property from the parent to the individual.









	
For each child of the individual:

	c.1.

	
If the child does not have an object property named influenced_by_, then add the influenced_by_ object property from the child to the individual.














	
Finish. The BN has been merged into the ontology.








Below is the intended algorithm based on the steps described above (Algorithm 1).





	
Algorithm 1. MergeBN: Merging a Bayesian network into an Ontology




	
Input

 OntoSourceFile: source file of the ontology

 BNContextName: context name of the BN

 BNFileName: file name of the BN

Output

 OntoOutputFile: output file of the ontology that has been merged with the BN

Description

 This algorithm merges a Bayesian network with all its beliefs info into an ontology




	
1

	
begin

	




	
2

	
 O ← OntoLoad(OntoSourceFile)

	




	
3

	
 BN ← BNLoad(BNSourceFile)

	




	
4

	
 ObjPropInfluences ← “influences_” + BNContextName

	
{Step 1}




	
5

	
 ObjPropInfluencedBy ← “influenced_by_” + BNContextName




	
6

	
 DataPropHasProbValue ← “hasProbValueOf” + BNContextName




	
7

	
 if (ObjPropInfluences ∉ properties of O) then




	
8

	
  AssertInverseObjectProperties(ObjPropInfluences, ObjPropInfluencedBy)




	
9

	
 else if (ObjPropInfluencedBy ∉ properties of O) then




	
10

	
  AssertInverseObjectProperties(ObjPropInfluencedBy, ObjPropInfluences)




	
11

	
 end if




	
12

	
 if (DataPropHasProbValue ∉ properties of O) then




	
13

	
  CreateNewDataProperty(DataPropHasProbValue)




	
14

	
 Nodes ← GetAllNodes(BN)

	
{Step 2}




	
15

	
 foreach (node in Nodes) do




	
16

	
  if (node ∉ individuals of O) then




	
17

	
   T ← OntoGetFirstTemplateClass(node)

	
{Step 2.a}




	
18

	
   ind ← CreateNewClassInstance(T)




	
19

	
   prob ← GetNodeProbValue(node)




	
20

	
   AssertNewDataProperty(ind, DataPropHasProbValue, prob)




	
21

	
  else




	
22

	
   if (DataPropHasProbValue ∉ properties of O) then

	
{Step 2.b}




	
23

	
    ind ← GetClassInstance(node)




	
24

	
    prob ← GetNodeProbValue(node)




	
25

	
    AssertNewDataProperty(ind, DataPropHasProbValue, prob)




	
26

	
   end if

	




	
27

	
  end if

	




	
28

	
 end foreach

	




	
29

	
 foreach (node in Nodes) do

	
{Step 3}




	
30

	
  nod ← GetClassInstance(node)

	
{Step 3.a}




	
31

	
  parents ← GetAllParents(node)

	
{Step 3.b}




	
32

	
  foreach (par in parents) do




	
33

	
   ind ← GetClassInstance(par)




	
34

	
   if (ObjPropInfluences ∉ properties of ind) then




	
35

	
    AssertNewObjectProperty(ind, ObjPropInfluences, nod)




	
36

	
  end foreach




	
37

	
  children ← GetAllChildren(node)

	
{Step 3.c}




	
38

	
  foreach (child in children) do




	
39

	
   ind ← GetClassInstance(child)




	
40

	
   if (ObjPropInfluencedBy ∉ properties of ind) then




	
41

	
    AssertNewObjectAndProperty(ind, ObjPropInfluencedBy, nod)




	
42

	
  end foreach




	
43

	
 end foreach




	
44

	
 OntoOutputFile ← SaveOntology()

	
{Step 4}




	
45

	
 return OntoOutputFile




	
46

	
end.







A description of the functions used in MergeBN algorithm above is given in Table 1.



The OntoGetFirstTemplateClass function works by comparing the nodes in the BN that are most similar (i.e., has the same set of parents and children) to the node being investigated in the ontology. This assumption is the most likely to find a template class of a node in the BN that its instance to be created in the ontology. A template class is required to create an individual because, in an ontology, an individual must be an instance of a class. If no node is similar to the node being investigated, the OntoGetFirstTemplateClass function returns a Generic class, which is a subclass of owl:Thing by default. The maximum complexity of the OntoGetFirstTemplateClass algorithm is O(n2), where n is the number of nodes in the BN document.



The complexity analysis of the MergeBN algorithm where n is the number of input nodes in the BN document is explained in Table 2.



So, the complexity of MergeBN algorithm is O(n2) or a quadratic polynomial.




3.3.2. Merging Ontologies into BNs


We have developed an algorithm, called MergeOnto, to merge the information contained in an ontology into a BN. The following are some of the terms used in this algorithm:

	
Fixed Nodes: nodes in a BN that are marked for their unchanging probability values during the parameter learning process.



	
Foreign SubNode: an individual in an ontology that has a parent in both the ontology and a BN, but does not itself exist in the BN.



	
Sibling: A sibling of individual X means another individual in an ontology that has the same class as individual X.








The steps in the MergeOnto algorithm are as follows:

	
Get all nodes from the BN.



	
Record each BN node in the Fixed Nodes list.



	
Get all Foreign SubNodes from the ontology.



	
For each F ← Foreign SubNode, do the following:

	
Get S ← Siblings of F. If S is not empty, then follow the next steps:

	a.1.

	
Get a T ← selected template node from one member of S. The selection rule of T as a template node is described in the BNGetFirstTemplateNode function.




	a.2.

	
Clone T as a new node, N, of the BN. The duplication process brings parents and children information from T.




	a.3.

	
Remove N along with its children from the Fixed Nodes list.




	a.4.

	
Calculate the probability values of N by looking for the center of distribution (e.g., using a moving windows average algorithm) based on the probability value distribution of nodes in S.




	a.5.

	
Generate sample data for nodes not listed in Fixed Nodes (e.g., using partial orders for the structure discovery algorithm).




	a.6.

	
Perform the parameter learning process based on the sample data and the Fixed Nodes list (e.g., using expectation-maximization [EM] technique).














	
Done.








Below is the algorithm’s process based on the steps described above (Algorithm 2).





	
Algorithm 2. MergeOnto: Merging an ontology into a Bayesian network




	
Input

 OntoSourceFile: source file of the ontology

 BNSourceFile: source file of the BN

 BNDataFile: file name of the BN data sample

 BNResultFile: file name of the resulting BN after the merging process

Output

 (none)

Description

 This algorithm merges an ontology into a BN

Var

 FixedNodes: Collection




	
1

	
Begin

	




	
2

	
 O ← OntoLoad(OntoSourceFile)

	




	
3

	
 BN ← BNLoad(BNSourceFile)

	




	
4

	
 Nodes ← GetAllNodes(BN)

	
{Step 1}




	
5

	
 foreach (node in Nodes) do

	
{Step 2}




	
6

	
  FixedNodes.Add(node)

	




	
7

	
 end foreach

	




	
8

	
 SubNodes ← GetAllForeignSubNodes(O, BN)

	
{Step 3}




	
9

	
 foreach (node in SubNodes) do

	
{Step 4}




	
10

	
  S ← OntoGetSiblings(node)

	
{Step 4.a}




	
11

	
  if (S ≠ ∈) then

	




	
12

	
   T ← BNGetFirstTemplateNode(node, S)

	
{Step 4.a.1}




	
13

	
   N ← BNCloneNode(T, node, ref FixedNodes)

	




	
14

	
   FixedNodes.Remove(node)

	
...




	
15

	
   SetCenterOfDistribution(node, S)

	
...




	
16

	
   GenSampleDataFile(node, BNDataFile) 

	




	
17

	
   BNLearn(BNDataFile, FixedNodes, BNResultFile)

	
{Step 4.a.6}




	
18

	
  end if

	




	
19

	
 end foreach




	
20

	
end.







Description of the functions used in the MergeOnto algorithm, where m is the number of input nodes in the ontology document and n is the number of input nodes in the BN document, is given in Table 3.



The BNGetFirstTemplateNode function works by comparing the individuals in a set of siblings in the ontology that are most similar (i.e. has the same set of parents) to the individual being investigated in the BN. This assumption is the most likely to find the template node of a class in the ontology that its instance to be created in the BN. If no class is similar to the class being investigated, the BNGetFirstTemplateNode function returns null and the class being investigated will not be created in the BN. The maximum complexity of the BNGetFirstTemplateNode algorithm is O(n2), where n is the number of nodes in the BN document.



The complexity analysis of the MergeOnto algorithm is explained in Table 4. So, the complexity of the MergeOnto algorithm is O(n3) or a cubic polynomial.






4. Experiment


We have implemented the ByNowLife framework into an application software prototype. The application was developed using C#. It uses OWLAPI for .Net Libraries as an ontology reader and writer, Pellet as a logical reasoner, and Structural Modeling, Inference, and Learning Engine (SMILE) as its probabilistic reasoner. We built a ByNowLife library package that contains three main modules: (1) a module to handle queries and their execution results, (2) a module that controls and coordinates logical and probabilistic reasoning and (3) a Morpher/Transformer module that translates OWL/RDF into XDSL (and vice versa). Examples of cases solved using this technique are given below.



4.1. Case #1: Investment Problem


An investor has shares in the following companies: Mandiri, KPC and Telkomsel. Mandiri is a bank, KPC is a mining company and Telkomsel is a telecommunications company. Each stock has a Price property. However, a government policy affects the fluctuation of stock prices. The latest condition of the case, as represented in two documents (OWL and XDSL), can be seen in Figure 3 and Figure 4 below.



In the XDSL document, there are rules that the Fiscal_Policy influences stock prices and that the fluctuation of stock prices will affect investors’ incomes, as shown in Figure 4. This structure was visualized using GeNIe Modeler [23] software.



Suppose that we want to answer the following query: display a stock name that has a price ≥5000 and the highest impact on profit of all. In this case, we cannot answer the query by using only one knowledge document nor only one reasoning type. We need both types.



To return stock names with a price ≥5000, we need data from the OWL document, where information about stock prices resides. To determine which of these stocks has the highest impact on profit, we need data from the XDSL document, where rules about the impact of stocks on income resides. The data must be combined to be complete. This is where the Morpher is needed.



The Morpher will create individuals that did not previously exist in the OWL document; in this case, Income is created as a Generic type. The Generic type is a subclass of Thing. The Morpher will then create a special property called hasProbValue for every individual in the system. The Reasoner will set probabilistic values in the XDSL document based on the data in the OWL document, perform probabilistic reasoning and then return the result to the OWL document by updating its respective property values. The result of running the program is shown in Figure 5 and Figure 6.




4.2. Case #2: Social Customer Relationship Management (CRM) in Higher Education


This case illustrates the decision-making process in the investment in social CRM development in a higher education institution, namely Bogor Ibn Khaldun University (Universitas Ibn Khaldun Bogor [UIKA]) [24].



Social CRM is CRM combined with the power of social media to generate new approaches in maintaining and enhancing relationships with customers. A social CRM model contains semantic relationships between stakeholders and factors that must be understood thoroughly to identify the roles of each stakeholder and factor in the business process. The stakeholders are the university (including the units inside), prospective students, current students and alumni. Their semantic relationships have consequences for logical reasoning.



The factors are items contained in the critical success factors (CSFs). The CSFs consist of budget and project management, knowledge management, technology selection and adaptation, vendor relationships, information technology (IT) infrastructure, training, culture and leadership. These eight factors determine the successful implementation of social CRM and were identified by Meyliana et al. [25]. This social CRM model examines the cause and effect relationships of CSFs in terms of the successful implementation of social CRM in the university. These causal relationships have consequences in probabilistic reasoning.



UIKA is a university that cares about its customers and pays special attention to its implementation of social CRM. It allocates funds for various activities at annual budget meetings, including those supporting the implementation of social CRM. Departments or units directly involved in the implementation of social CRM at UIKA include the Human Resources (HR) Department, the Public Relations (PR) Department, the Computer and Information Systems (CIS) Unit, the Academic Administration (AA) Bureau, the Administration and Financial Resources (AFR) Bureau and the Quality Assurance (QA) Unit.



Figure 7 shows a simplified model that illustrates the semantic relationships between entities at UIKA. Each department/unit has its own budget for supporting the successful implementation of social CRM. Other information related to CSFs that determines the success of social CRM implementation at UIKA is illustrated in Figure 8.



Suppose that we want to answer the following queries: (1) Display units that handle CSFs and their budget allocations for the successful implementation of social CRM—in this case, we can only query the OWL document for a result; (2) List three factors of CSFs that most influence the successful implementation of social CRM—in this this case, we can only query the XDSL document for a result; and (3) List three units that handle CSFs and their budget allocations, which are prioritized to address the successful implementation of social CRM—in this case, we need to query both the OWL and XDSL documents simultaneously for a result. An example of SPARQL syntax for query no. 3 is as follows:

	
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>



	
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>



	
PREFIX socialcrm: <http://localhost/latihan/ontologies/socialcrm#>



	
SELECT ?UnitName ?BudgetAllocation ?CSFVar ?SuccessRate



	
WHERE {?UnitName rdf:type socialcrm:Unit.



	
    ?CSFVar rdf:type socialcrm:CSF.



	
    ?UnitName socialcrm:Budget ?BudgetAllocation.



	
    ?UnitName socialcrm:handle ?CSFVar.



	
    ?CSFVar socialcrm:hasProbValueOfSuccessRate ?SuccessRate}



	
ORDER BY DESC(?SuccessRate)



	
LIMIT 3








The system will generate a knowledge base that combines data from both the OWL and XDSL documents. The query will then be executed against the generated knowledge base to get a result. Examples of results can be seen in Figure 9 and Figure 10 below.





5. Reasoning Proof


The conventional reasoning query process is done in two steps. The first step is to perform probabilistic reasoning within the BN knowledge base. The second step, based on the reasoning in the first step, is reasoning within the ontology knowledge base; this returns the final result of the reasoning. The reasoning query process on ontology-based systems that utilize ByNowLife is completed in just one step by sending logical and probabilistic reasoning queries in SPARQL format. This is because ByNowLife transforms BNs into ontologies (through the merging process) automatically before reasoning is performed on the ontology knowledge base. It can be proven that the conventional two-step process of reasoning is a subset of ByNowLife’s reasoning process; that is, the reasoning done by ByNowLife encompasses conventional reasoning.



For example, O is an ontology:


O = (C1, I1, P1, R1, X1)



(1)




where C are classes or concepts, I are individuals, P are properties attached to a class or individual, R are inter-class or inter-individual relationships and X are axioms. BN is a Bayesian network:


BN = (N, V, ρ)



(2)







Here, N represents a set of nodes, V represents a set of vertices (links) and ρ represents the set of conditional probability values of every node in the BN.



When BN transformed into O, the transformation rules as described in Section 3.2 are applied:

	
N → I2



	
V → R2



	
ρ → P2








The result of the integration between O and BN can then be calculated as follows.

	
O’ = O ⋃ BN with



	
C’ = C1



	
I’ = I1 ⋃ I2



	
P’ = P1 ⋃ P2



	
R’ = R1 ⋃ R2



	
X’ = X1








5.1. The Two-Step (conventional) Reasoning Process


The logical reasoning process (ℛO) in O and the probabilistic reasoning process (ℛBN) in BN:



ℛO(O) ∈ (C1, I1, P1, R1, X1)



ℛBN(BN) ∈ {P2}



Thus, the following can be obtained:



ℛBN(BN) ⋃ ℛO(O) ∈ (C1, I1, {P1 ⋃ P2}, R1, X1)



          (C1, I1, P’, R1, X1)




5.2. The Simultaneous Reasoning Process Used by ByNowLife


The logical reasoning process (ℛO) and the probabilistic reasoning process (ℛBN) in O’ are



ℛO(O’) ∈ (C’, I’, P’, R’, X’)



ℛBN(O’) ∈ {P2} ⊆ {P’}



Thus, the following can be obtained:



ℛBN(O’) ⋃ ℛO(O’) ⊆ ℛO(O’)



Therefore, the integration of probabilistic and logical reasoning in the transformed ontology is a subset of logical reasoning in the ontology. This is because:



(C1, I1, P’, R1, X1) ⊆ (C’, I’, P’, R’, X’)



so


ℛBN(BN) ⋃ ℛO(O) ⊆ ℛBN(O’) ⋃ ℛO(O’) ⊆ ℛO(O’)



(3)







It can be proven that probabilistic reasoning in BN followed by logical reasoning in O is a subset of probabilistic and logical reasoning in O’, which is a subset of logical reasoning in O’. Because probabilistic reasoning in BN followed by logical reasoning in O is a subset of probabilistic and logical reasoning in O’, there are cases where queries cannot be answered except by combining these knowledge bases and querying them. This occurs, for example, when there is an individual that does not exist in the probabilistic knowledge base but exists in the logical knowledge base while the individual is an entity that is taken into account during probabilistic reasoning.



Investment Problem Case—Scenario 2. In Case #1 concerning an Investment Problem (see Section 4.1), there was another individual in the ontology named “Indocement” (as depicted in Figure 11), but in the probabilistic knowledge base, no Indocement node was found (see Figure 4). The resulting reasoning flow from the query in Section 4.1 is shown in Table 5.



Using the ByNowLife framework, the system will create the Indocement node in a probabilistic knowledge base and then calculate its probability value using a parameter learning algorithm as follows (Figure 12).



The reasoning flow for the query answer is illustrated in Table 6.



From this case, it can be seen that two-step reasoning provides different results than the simultaneous reasoning of ByNowLife: two-step reasoning returns Telkomsel while simultaneous reasoning by ByNowLife returns Indocement. This is because through two-step reasoning, the BN system cannot calculate probability values for the Indocement node because it does not exist in the BN document.





6. Discussion


ByNowLife was developed as a framework using different concepts or paradigms from existing frameworks that integrate BNs with ontologies. Existing integration frameworks only focus on how to represent probabilistic information by using ontology notation and perform reasoning with it. ByNowLife was created not only to represent probabilistic information in ontology notation and perform reasoning with it but also to enhance integration through ontology enrichment and structural and parameter learning mechanisms. With ByNowLife, ontology is enriched with information from probabilistic structures and values in the BN and, conversely, the BN structure is augmented with information contained in the ontology through structural learning. The determination of the probability values of new nodes added to the system and those related to them is accomplished through a parameter learning mechanism.



Related studies on representing probabilistic information in ontological notation and reasoning with it are more focused on the rules of representation than on the transformation of existing BN knowledge bases. Consequently, an assumption arises that the inclusion of probabilistic information in ontologies must be done from the beginning when designing the ontology itself. In practice, however, the domain engineer and the knowledge engineer have roles in preparing the knowledge base. Domain engineers struggle with the concept structure of a domain along with its logical rules, and the knowledge engineer examines causality models of inter-node relationships in a problem domain. The domain engineer’s work results in a logical knowledge base (ontology), while the knowledge engineer’s work results in a probabilistic knowledge base (BN). A union of the two types of knowledge bases through transforming existing knowledge bases so that the processing time is much faster is a more efficient solution than having to redesign them from the beginning.



We found that a number of related studies have also touched on this concept, even though partially, by transforming ontologies into OOBNs [16,19,20]. However, we did not find the opposite, transformers/morphers that transform BNs into ontological notations. We see that this is possible due to the assumption of previous frameworks that the integration of probabilistic information into ontologies must be done at the beginning of ontology construction, not through the transformation process. One work that discusses topics somewhat similar to the concepts examined within this study was completed by Ishak et al. [19]. Instead of using BNs, this team used OOBNs.



Such related studies discuss the transformation process of an overall ontology knowledge base into the form of a BN or OOBN. ByNowLife has a different approach; it uses the Markov blanket [26] principle. For reasoning in a case, only related nodes are necessary to answer a given query. The transformation of the ontology is only carried out on individuals belonging to the Markov blanket of nodes contained in the BN.




7. Conclusion


The concept of ontology and BN integration was developed based on the need for a framework able to integrate logical and probabilistic reasoning simultaneously to exploit integration. The integration algorithms were developed to integrate BNs into ontologies and vice versa, as shown in Section 3.3. The major benefits obtained from the proposed concept are as follows:

	
Ontology enrichment based on probability values from BNs, as shown in Case #1: the Investment Problem and Case #2: Social CRM in Higher Education;



	
The adjustment of BN structure through structural and parameter learning, as shown in the two cases, which are discussed clearly in Section 4; and



	
The ease of querying a knowledge base with probabilistic clauses in SPARQL format.








The framework and its implementation in prototype form have been demonstrated in the Investment Problem and Social CRM for Higher Education cases. The findings from these scenarios show that this framework efficiently performs both logical and probabilistic reasoning simultaneously.




8. Future Work


In future work, we want to enhance the template class selection technique as implemented in the BNGetFirstTemplateNode function. Currently, the function’s implementation is only based on the similarity of the direct descendant class to the class being investigated. We must consider the next steps to be taken when the template node is derived from the indirect descendant class or when the function returns several alternative template nodes because, in an ontology, an individual can be derived from several classes at once. The template class selection technique will also become more complex by including not only parental similarities but also the similarities of children in determining the template class.
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