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Abstract: Big data analytics (BDA) is an increasingly popular research area for both organisations
and academia due to its usefulness in facilitating human understanding and communication. In the
literature, researchers have focused on classifying big data according to data type, data security or
level of difficulty, and many research papers reveal that there is a lack of information on evidence of a
real-world link of big data analytics methods and its associated techniques. Thus, many organisations
are still struggling to realise the actual value of big data analytic methods and its associated techniques.
Therefore, this paper gives a design research account for formulating and proposing a step ahead to
understand the relation between the analytical methods and its associated techniques. Furthermore,
this paper is an attempt to clarify this uncertainty and identify the difference between analytics
methods and techniques by giving clear definitions for each method and its associated techniques
to integrate them later in a new correlation taxonomy based on the research approaches. Thus, the
primary outcome of this research is to achieve for the first time a correlation taxonomy combining
analytic methods used for big data and its recommended techniques that are compatible for various
sectors. This investigation was done through studying various descriptive articles of big data analytics
methods and its associated techniques in different industries.

Keywords: big data analytics methods; big data characteristics; big data techniques; big data
correlation taxonomy

1. Introduction

Big data analytics (BDA) represents an important part of an information system for development
and evolution within organisations. Looking into the literature, a variety of definitions exist for big data
analytics, including: “a help to predict future volumes, gain insights, take proactive actions, and give
way to better strategic decision-making” [1]. Other definitions provide similar interpretations of the
term (for example, see [2–6]. Whereas [7] described BDA as “advanced analytic techniques operating on
big data sets to help discover what has changed and how we should react”. Furthermore, [8] stated that
BDA differ from traditional analytical approaches as instead of tracking care quality and outcomes in a
retrospective view by using deductive reasoning, it uses inductive reasoning for prospective analysis
of data. The definition in [7] considered data analytics as data analytic techniques, which indicates a
vague understanding of the difference between data analytics methods and data analytics techniques.

There are many challenges in big data, the different types of big data challenges were discussed
by [9,10]. The broad challenges of big data (BD) were grouped into three main categories, based on the
data life cycle: data, process and management challenges. However, suggesting how BDA methods
and techniques could address these challenges is out of the paper’s scope.

The purpose of this research is to design a correlation taxonomy of the existing methods and
its associated techniques. This taxonomy is derived from the limitation in the existing literature,
which will be further discussed below after finding the correlation between the methods and the
associated techniques of BDA. The research is constructed according to a design science research (DSR)
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approach used to design the taxonomy. Furthermore, this paper presents useful budding research in
the field of BDA to give a clear understanding of the basic data analytics concepts, to early stage and
interested researchers.

The remainder of this paper is structured as follows: Section 2 includes the necessary background
with an overview of related literature for big data characteristics definitions and BDA usability, which
is followed by Section 3 which includes definitions, different classification of BDA methods based
on literature review and the authors’ classification preference. Section 4 highlights the need for this
research and constitutes of the research methodology, literature review, analysis for the correlation
between BDA methods, correlation between BDA methods, the associated techniques, and finally
analysis for techniques used in research papers. Section 5 is discussion of the authors’ proposed
taxonomy and Section 6 highlights the conclusions and outlines the research limitations and potential
for further research.

2. Background

The magnitude of data generated and shared by sources and organisations, such as: businesses,
public administrations, numerous industries, non-profit sectors, and scientific research has increased
immeasurably [11]. To give an example of data magnitude, more than 500 million tweets are posted
every single day, 428,571 million share contents of LinkedIn, 7 billion Google searches are launched.
Additionally, a comparison done using [12], shown in Figure 1, compares the search interest in big
data term over 10 years (the x-axis represents the time and y-axis represents the interest in the topic
search). This comparison shows the search of “big data” terms within 2008 (for the whole year) vs.
2018 (for the whole year). The red line shows people’s interest in big data in 2008 whereas the blue line
shows people’s interest in big data 2018. This comparison is made based on interest over time thus the
numbers represent search interest relative to the highest point on the graph for the given region and
time. A value of 100 is the peak popularity for the term. A value of 50 means that the term is half
as popular. A score of 0 means that there was not enough data for this term. The graph shows the
increase in the interest in big data over the 10 past years. The chart also confirms the graph’s results
with a big increase over the years.
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Most definitions of big data analytics focus on the size of the data in storage. Size matters, but
there are other important attributes of big data analytics as well which has been characterised by Erl et
al. (2017) into 5V’s: volume, variety, velocity, veracity, and value as presented in Figure 2. The paper
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provides a comprehensive definition, and breaks the myth that big data analytics is only about data
volume as each of the five V’s has its own ramifications for analytics. According to [13], volume refers
to “the magnitude of data, which has exponentially increased, posing a challenge to the capacity of
existing storage devices” and variety refers to “the fact that data can be generated from heterogeneous
sources”, for example: sensors, Internet of Things (IoT), mobile devices, online social networks, etc., in
structured, semi-structured, and unstructured formats. To give a holistic picture of data classification,
structured data is typically stored in databases or spreadsheets. Text, audio, imagery and video refers to
unstructured data, which sometimes lack the structural organisation required for analysis. Spanning a
continuum between fully structured and unstructured data, the format of semi-structured data does not
conform to strict standards. Velocity refers to “the speed of data generation and delivery, which can be
processed in batch, real-time, nearly real-time, or stream-lines” [14]. Veracity “stresses the importance
of data quality and level of trust due to the concern that many data sources (e.g., social networking
sites) inherently contain a certain degree of uncertainty and unreliability” [15]. Finally, value refers to
“the process of revealing underexploited values from big data to support decision-making” [15].
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According to studies by [15–19], more V’s and other characteristics have been added to support
a better defined big data: such as vision (a purpose), verification (processed data conformed to
some specifications), validation (the purpose is fulfilled), variability (data differentiation), venue
(different platforms), vocabulary (data terminology) and vagueness (indistinctness of existence in a
data), complexity (it is difficult to organise and analyse big data because of evolving data relationships)
and immutability (collected and stored big data can be permanent if well managed). It is worth
mentioning that the correlation taxonomy proposed in this paper is not affected by a number of the big
data analytics characteristics and should be applicable for any number of V’s.

The big data analytics concept was used in many sectors, the latest understanding in academia [20–
23] specified the potential of big data analytics in five main sectors:

• Healthcare: clinical decision support systems, individual analytics applied for patient profiling,
personalised medicine, performance-based pricing for personnel, analysis of disease patterns and
improvement of public health.
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• Public sector: creating transparency with accessible related data, discovering needs, improving
performance, customisation of actions for suitable products and services, decision-making with
automated systems to decrease risks, innovating new products and services.

• Retail: in-store behaviour analysis, variety and price optimisation, product placement design,
improve performance, labour inputs, optimisation, distribution and logistics optimisation,
Web-based markets.

• Manufacturing: improved demand forecasting, supply chain planning, sales support, developing
production operations, web-search-based applications.

• Personal location data: smart routing, geo-targeted advertising or emergency response, urban
planning, new business models.

The importance of big data analytics has laid the groundwork for investigation of the methods
and the techniques involved in big data, which will be explored further in the following section.

3. A Narrative Prospective for Big Data Analytics Methods

As organisations start to adopt analytics as the new science of winning, they need to focus on
understanding the method of analytics that support its insights and enables better decisions [24]. One
way of appreciating these methods is through classification. Therefore, BDA was classified according
to different criteria such as data understanding. In 2009, Thomas Davenport based his idea on looking
at all the data first to understand it and then answer the questions: what has happened? Why it has
happened? What will happen? And how to make the best of it? These four questions were identified
as descriptive, diagnostic, predictive, and prescriptive methods, which will be explained clearly with
examples below:

• Descriptive analytics looks at data and analyses past events for insight as to how to approach the
future; it asks, “what has happened?” An example is to categorise customers by their product
preferences and life stage.

• Diagnostic analytics at this stage, historical data can be measured against other data to answer
the question of “why it happened?” providing a possible way to find out dependencies and to
identify patterns. For example, a retailer filters the sales down to subcategories. Companies
employ diagnostic analytics, as it gives them in-depth insights into a particular problem. At
the same time, a company should have detailed information at their disposal; otherwise, data
collection may turn out to be individual for every issue and therefore time-consuming.

• Predictive analytics turns data into valuable and actionable information; in other words predictive
analytics determines the probable future outcome of an event or a likelihood of a situation
occurring; i.e., “what will happen?” For example, for an organisation that offers multiple products,
predictive analytics can help analyse customers’ spending, usage and other behavior, leading to
efficient cross sales, or selling additional products to current customers. This directly leads to
higher profitability per customer and stronger customer relationships.

• Prescriptive analytics automatically synthesises big data, mathematical sciences, business rules,
and machine learning to make predictions and then suggests decision options to take advantage
of the predictions, asking “how to make the best of it?” An example is to determination of the best
pricing and advertising strategy to maximise revenue.

In 2019, Davenport added another question “What if we take action? Which was represented by
an automated analytics method that follows the prescriptive method [25]. A similar classification was
presented in [26] where three analytical stages were presented: descriptive and exploratory, predictive
and prescriptive where data preparation methods were considered in an advanced stage. Other BDA
classifications are valid too, such as [27] classification for BDA methods according to security data that
includes statistical methods, machine learning and knowledge-based methods whereas [28] presented
generic architecture for big data analytical approaches, allowing classification according to the data
storage layer, the distributed parallel model, and the type of database used.
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The Davenport’s BDA classification [29] is the preferred and most-popular structure because of
the integration, ordering and compatibility between the methods; hence, it will be adopted in this
paper. Figure 3 illustrates how big data analytics methods complement each other. The analytics
for big data should start with the descriptive method that helps to gain insight from historical data
then grow to the diagnostic analytics for clustering, predictive analytics helps to designate the future
outcomes and prescriptive methods involved in making decisions. The following sections will discuss
and present the BDA correlations based on the method’s integration factor, presented in this section.
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4. Research Methodology

To develop the proposed correlation taxonomy, the authors have applied the problem-centred
approach of the design science research methodology (DSRM) presented by [30]. Five DSRM activities
were drawn to come to a rigorous and relevant research results [31] as listed and defined in Table 1.

Table 1. The design science research methodology (DSRM) activities application.

DSRM Activity Research Application

Identify problem and motivate

The existing problem was identified from existing literature and
previous research projects. The research problem identified was the lack
of realising the actual correction between big data analytic methods and

its associated techniques based on a known approach.

Define objectives of a solution
To develop a structural model combining analytic methods used for big

data and its recommended techniques based on research approaches
that are compatible for various sectors.

Design and development

Several phases were required to fully develop a taxonomy aimed at
formatting and structuring big data analytics techniques according to

research approaches. The full understanding of each phase evolves and
improves the taxonomy concept. The taxonomy was reviewed against
big data analytics techniques (and methods) creating finer taxonomy.

Demonstration and evaluation

The demonstration and evaluation formed the basis for the design phase
of the following iteration. For the future a final evaluation scenario will
be used in order to raise the discussion on the importance and limitation

of the presented correlation taxonomy in this research.

Communication Research published in academic papers.
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Thus, to provide a clear structure of the big data analytics correlation taxonomy based on research
approaches, a clear understanding for the big data analytical methods correlation is fundamental.
Besides, a correlation between the techniques and the methods needed to be investigated. In conclusion,
based on existing literature in the big data analytics field, two correlations were explored in this
paper: first, correlation between big data analytical methods; and second, correlation between big data
analytical methods and techniques. The outcomes are presented below:

4.1. Stages of Big Data Analytical Methods

The relationship between the BDA methods presented in [32] was based on the difficulty criteria,
the methods were ranked according to their difficulty and value. For example, the descriptive method
is considered the easiest stage with the least value compared with the other three methods, whereas the
prescriptive method has the highest value and difficulty. The research in this paper will be based on
the concepts in [29,32] to develop the method analytical categories. Figure 4 illustrates the analytical
categories based on the relation among the four methods. It shows the outcome from one method
which will be the input for the next one. It also represents a development in the analytical level by
finishing each stage and providing deeper analysis for the problem, as described below with supported
examples adopted from [33]:

Stage One: Descriptive analytics stage where the information is categorised, for example gaining
insight from historical data. For example, a healthcare provider will learn how many patients were
hospitalised in the previous month.

Stage Two: Diagnostic analytics stage includes the data aggregation, reporting, drilling and
clustering of the data into subcategories. For instance, a healthcare provider compares patients’
response to a promotional campaign in different regions.

Stage Three: Predictive analytics stage is an important stage because it helps to designate the
future outcomes, by using statistical and machine-learning techniques. This stage is where the data
will be analysed, classified, simulated and summarised to give a prediction; and it gives a good
understanding for the forthcoming events. For example, a health care provider predicts the risk of
investing in new medical devices based on registered patients.

Stage Four: The final prescriptive analytics stage is the optimisation stage, where the best
framework will be given to secure the best futuristic outcome. It also involves taking decisions using
deeper learning techniques. For example, in the health care industry, you can better manage the patient
population by using prescriptive analytics to measure the number of patients who are clinically obese,
then add filters for risk factors like diabetes and low-density lipoproteins (LDL) cholesterol levels to
determine where to focus treatment.

Figure 4 shows a well-built structured correlation chain between the analytical methods based on
the four stages. It is clearly shown that these methods cannot function in parallel besides the methods
that do not intersect between each other.
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4.2. Correlation between Big Data Analytical Methods and Techniques

Not many academic papers are available to provide taxonomy for big data analytics techniques.
Only one research paper by [34] was found which offers taxonomy according to big data analytics
techniques. The paper developed a categorised indexing techniques taxonomy to provide insight to
enable researchers to understand and select a technique as a basis to design an indexing mechanism
with reduced time and space consumption for big data and Mobile Cloud Computing. The categories
are non-artificial intelligence, artificial intelligence, and collaborative artificial intelligence indexing
methods. Furthermore, another study has tried to provide the link between the analytical methods
and techniques presented by [26], focused on big data analytics methods and its associated techniques,
including those associated with data preparation and descriptive, predictive, and prescriptive analytics
as shown in Table 2. Mathematical calculation and visualisation techniques were under the descriptive
and exploratory method, whereas machine learning, linear and non-linear regression, classification,
data mining, text analytics, Bayesian methods and simulation techniques were considered under the
predictive method. Stochastic models of uncertainty, mathematical optimization under uncertainty
and optimal solutions techniques were listed under prescriptive method.
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Table 2. Big data analytical (BDA) methods and their associate techniques according to [26].

BDA Method BDA Techniques

Descriptive and Exploratory Mathematical Calculation Visualisation

Predictive

Machine Learning
Linear and Non-Linear Regression

Classification
Data Mining

Text Analytics
Bayesian Methods

Simulation

Prescriptive
Stochastic Models of Uncertainty

Mathematical Optimization Under Uncertainty
Optimal Solutions

Table 2 removes the vagueness in understanding the difference between data analytics methods and
techniques as it groups the techniques which are suitable for a specific analytical stage. The table groups
the techniques according to the three methods proposed in [26]. Therefore, this section will provide
examples of known big data analytics technologies that are implemented in research papers based
on the findings represented in Figure 4 Section 3 (the four analytical methods proposed: descriptive,
diagnostic, predictive and prescriptive methods). Table 3 lists examples of known technologies for each
analytic method mentioned before. Yet, given the breadth of the available techniques, an exhaustive
list of techniques is beyond the scope of a single paper. As shown in Table 3, the work presented in [35]
adopted a descriptive method in the research as it was based on questionnaires and interview techniques
to collect the data required, whereas the visualisation technique used was ExcelPro. Similarly, the
research work in [36] paper as the 4th generation of supervisory control and data acquisition (SCADA)
system was adopted as the descriptive method and implemented Web-application (WebForms class
library which was hosted in Microsoft Azure servers) as a visualisation technique. The research
in [37] paper used a particle swarm algorithm as a clustering technique for its diagnostic methods
and MATLAB software as the visualisation technique. Logistic regression models (statistical models
based on traditional mathematical equation) and artificial intelligence (AI) [38] modelling are used
as predictive methods alongside genetic algorithms (GA) [39] and neuro-fuzzy [40] techniques used
for classification. Excel, and Simulink software were the visualisation techniques. The work in [41]
provided a good example for prescriptive methods as a system was developed to provide the optimum
routing protocol according to the context. OPNET was the visualisation technique used.

Table 3. Analytical methods sampling techniques.

Big Data Analytic
Method Sample of Techniques Visualisation Software Research

Descriptive Data collection ExcelPro
SCADA [35,36]

Diagnostic Clustering techniques MATLAB [37]
Predictive Modelling classification Excel, and Simulink [38–40]

Prescriptive Optimal solutions OPNET [41]

It clearly shows from Table 3 that the authors recognised the effect of the visualisation technique
and its existence in all big data analytics methods due to its importance in presenting the information
to the individuals in a professional and structured manner. Visualisations could be accomplished by
using common tools such as bar charts, box plots, and scatter plots. This will have a great impact on
the data analysis and reduce the chance of missing important information. From Table 3. It has been
concluded that there is a need for another big data analytics taxonomy which will provide a bigger
picture to link between big data analytics methods and techniques.
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5. Big Data Analytics Correlation Taxonomy

Analytics methods and techniques have been applied to various phases of the analytical lifecycle,
e.g., identification, preparation, aggregation and visualisation, however the application of various
analytical techniques to big data has been limited with research having been conducted by only a few
over the past 20 years. While limited, such research has been highly effective in proposing different
sets and kinds of classification, however a problem that has not been effectively researched is how
those techniques are classified and how such an activity can be made systematic via a clear taxonomy
that integrates the classification of those analytical methods and its associated techniques. This paper
investigates this problem and introduced a novel correlation taxonomy based on the findings presented
in the previous sections. The rationale of introducing this taxonomy is offering a better big data
analytics topology by examining the existing big data analytics methods, as well as understanding
what types of techniques map with the existing methods. The taxonomy also draws a clear relationship
between research approach methods and big data analytics methods techniques and represents
the correlation between big data analytical methods and techniques based on research approaches.
This taxonomy aims to classify big data analytics methods and techniques according to well-known
research approach methods. This taxonomy determines the right techniques (and consequently the
methods) that will equip new researchers in the field with the right tools. The taxonomy proposed is
presented in Figure 5. The new structural model illustrates the relationship among big data analytics
techniques and their methods according to quantitative and qualitative approaches. A quantitative
approach is a strategy for systematic collection, organisation and interpretation of information, this
approach is implemented to generate data to allow researchers to quantify the problem by having
data sets. Whereas a qualitative approach aims to gain a degree of understanding for the affecting
parameters. Based on these definitions the techniques were classified. In this taxonomy, data gathering
techniques were counted as a quantitative research approach as shown in Figure 5, whereas clustering,
classification, prediction, summarisation and optimisation techniques were all considered as qualitative
research approach.
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Figure 5. Big data analytic correlation taxonomy.

BD analytics methods could have a different classification based on the findings from the previous
sections which suggest data gathering techniques belong to descriptive analytic methods and clustering
is a good example of a diagnostic analytics method whereas classification, prediction and summarisation
techniques are all listed under predictive analytics methods, whereas, optimisation techniques are
considered as prescriptive analytics methods. In the new proposed classification the descriptive
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analytics method belongs to the quantitative research approach, whereas diagnostic, predictive and
prescriptive analytics methods belong to the qualitative research approach.

6. Conclusions

The development of the big data analytics correlation taxonomy for identifying BDA methods
and its associated techniques based on research approach methods was achieved through the
cross-fertilisation of two stages to understand the correlation between the analytical methods and the
correlation of the analytical methods and its associated techniques. These were deemed relevant and
helpful in addressing the lack of guidelines for researchers to understand the correlation between big
data analytic methods and its associated techniques. Therefore, the main contribution and novelty of
this paper is our proposal of a big data analytics taxonomy techniques according to a research approach
and big data analytics methods.

This paper has reviewed and reflected big data analytics and presented the current interest in
this field. It has defined what was meant by big data, then highlighted the fact that big data analytics
has many characteristics and it is worth mentioning that the correlation taxonomy proposed in this
paper is not affected by a number of the big data analytics characteristics and should be applicable for
any number of Vs’. Furthermore, the paper has investigated the most popular sectors where big data
analytics made an impact. After defining the existing analytical methods, this paper made the case for
a new analytical methods category and how they complement each other. Design science research
has been adopted and five DSRM elements were chosen to accomplish the project, which helped in
developing the concept successfully.

Finally, the work presented here is ongoing. The following phases of the research will be to:
(1) continue the investigation on the validity of big data analytics characteristics used in industry;
(2) continually test and assess the proposed taxonomy in a specific sector; (3) identify and highlight the
positive and negative implication examples; and (4) specify the limitations and the difficulties raised;
and (5) update the taxonomy based on the outcomes from the previous points.
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agreed to the published version of the manuscript.
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