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Abstract: The atrial fibrillation (AF) is one of the most well-known cardiac arrhythmias in clinical
practice, with a prevalence of 1-2% in the community, which can increase the risk of stroke and
myocardial infarction. The detection of AF electrocardiogram (ECG) can improve the early detection
of diagnosis. In this paper, we have further developed a framework for processing the ECG signal
in order to determine the AF episodes. We have implemented machine learning and deep learning
algorithms to detect AF. Moreover, the experimental results show that better performance can
be achieved with long short-term memory (LSTM) as compared to other algorithms. The initial
experimental results illustrate that the deep learning algorithms, such as LSTM and convolutional
neural network (CNN), achieved better performance (10%) as compared to machine learning
classifiers, such as support vectors, logistic regression, etc. This preliminary work can help clinicians
in AF detection with high accuracy and less probability of errors, which can ultimately result in
reduction in fatality rate.

Keywords: atrial fibrillation; machine learning; cardiovascular; deep learning; healthcare

1. Introduction

Atrial fibrillation (AF) is the major concern with irregular heart rhythms, especially if a person
approaches the age of 65. The heart is a pump used for efficient operation and it is regulated by an
internal pacemaker that controls the heartbeat, the electrical impulse usually starts from the sinoatrial
node [1-3] and moves from atria to ventricles, which can cause regular rhythmic contractions of the
chambers. AF risk remains unacknowledged in some patients, because of its unawareness, and other
patients may be mindful of the erratic behaviour of heartbeat and may be uncomfortable with sensation.
The irregular heartbeat indicates the symptoms of any accidental strokes that may result in further
prolonged illness and, as a result, it leads to ultimate heart failure [4-8]. The AF detection methods
are mainly focused on the RR intervals, short term study of heart rate variability, and sequential
examination to check the existence of P-wave [9]. The current studies are mostly focused on the feature
extraction techniques; therefore, the features have significant fictional effect on the final outcome
of the models. The major improvements in electrocardiogram (ECG) data and the advancement
of Dynamic Neural Network (DNNs) and, in particular, the implementation of algorithms such as
long short term memory (LSTM) and convolutional neural network (CNN). These algorithms can be
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directly trained on the large-scaled dataset that RR Intervals of the ECG signal requirements and the
performance of the ECG models is dramatically improved [10]. It is worth mentioning that, in the past
decade, deep learning (DL) classifiers have been successfully applied in different fields, such as speech
recognition, image classification [11], and many other domains such as natural language processing [12].
However, DL algorithms have not been widely applied for AF detection. However, there are few
studies applied aforementioned classifier for AF prediction, but the comparison results show that the
performance was unsatisfactory when compared to the image classification and image recognition [13].
It is to be noted that there is not any study available to detect the AF using DL classifiers.

In order to overcome the current issues, we build six models that are based on the feature-based
approaches and DL approaches including support vector machine (SVM), multilayer perceptron (MLP),
CNN and LSTM. The feature-based model is trained based on the manually extracted features, and DL
methods are trained on raw data without any feature engineering. It is envisioned that this is the
only exploiting automated feature engineering that focuses on DL for the automatic AF detection and
classification. Additionally, the DL classifiers are compared with shallow learning classifiers.

In summary, the paper reports three major contributions that are outlined below:

o  We developed a novel deep learning architecture for convolutional neural network (CNN) and
long short-term memory (LSTM) to automatically detect AF. In addition, in depth comparison
has been done with state-of-the-art approaches as well as baseline models, such as ResNet and
Convolutional LSTM.

o  Comparative analysis of the proposed approach with two widely online benchmark datasets.

e It is to be noted that, unlike the traditional machine learning algorithms, the deep learning
methods have integrated feature extraction into the model, thus the handcrafted features are
not needed. In addition, these methods can mine well different types of data sources and have
good generalization ability, allowing for the computer to automatically learn and extract related
features for any given issues. We developed an end-to-end approach that is based on deep
learning approaches, which does not require feature selection and feature extraction technique.

e Additionally, we developed novel framework that can detect AF based on raw ECG signals than
instead of other ECG features.

This paper structured, as follows: in Section 2, related work on the machine learning (ML) and
DL classifiers for AF detection are presented. In Section 3, our novel approach for automated AF
detection using ML and DL are described. In Section 4, the experimental results are discussed. Section 5
provides the discussion of the experimental results. Lastly, a conclusion is drawn out in Section 6 with
future recommendations.

2. Related Work

In this section, the current state-of-the-art approaches for Atrial Fibrillation automatic detection
are discussed. There are different ML and DL methods that are used to detect AF; however, the data
should be transformed into an acceptable representation that enables classifiers to recognize the most
suitable classes. Therefore, the DL methods break these rules and outperform the state-of-art efficiency
method in many fields, such as text classification, image classification, etc. [14-16]. The DL methods
that basically extract and classify the abstract features of the raw data [17-19].

2.1. ML Methods

Bruser et al. [20] proposed an approach for employing bed-mounted sensors for the detection
of AF from the cardiac vibration signals. The approach remotely monitors patients, as well as
various ML classifiers are used in order to evaluate the performance of the approach. Moreover,
Xiong et al. [21] presented an approach based on k-means to identify the AF. The PubMed dataset
is used in order to evaluate the performance of the approach, the empirical results show that the
maximum entropy outperforms other algorithms. Hurnanen et al. [22] introduced a method based on
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the linear classification of the spectral entropy and SCG signals. The performance of the approach is
tested on the thirteen patients. The technique does not require the identification of heartbreak peaks
from SCG data, as it works well on low-quality SCG signals.

Asgari [23] presented a method that employs stationary wavelet transform and ML algorithms,
such as SVM, to detect AF. The method does not require P and R peak detection. The comparison results
with different algorithms demonstrated that the presented method obtains considerable performance.
In addition, Andersen et al. [24] presented a method that is based on ML algorithms in order to
predict AF by using long-term ECG recordings. The method used extracted features from the data.
The experimental results reveal that the model achieved better performance when compared to
state-of-the-art approaches on the same benchmark dataset and the method is more computationally
efficient for processing all recording in less than one minute. Additionally, the procedure has been
tested on healthy subjects with SNR in order to detect any false positive and negative predictions
to clarify the robustness of the technique. The study of misclassified data shows that the classifiers
produce plenty of false positives that impact the approach’s output. The potential solution to this
problem is to locate and manually delete the noise level in the ECG signal to maximise the method’s
efficiency, but this is computationally costly. Wu et al. [25] used different DL algorithms, such as CNN
and LSTM, to improve the performance and, as neural networks, obtained better results without the
feature extraction process. The hybrid approach for CNN and LSTM has been used in order to improve
the performance of AF detection.

Nemati et al. [26] developed an approach that is based on ML algorithms in order to detect multiple
diseases. The approach can detect AF based on the noise that is recorded from the wrist. In addition,
the time of the movement and also ambulatory pulsatile is recorded. The experimental results
were based on the 10-fold cross-validation and the proposed approach obtained a high performance.
The presented approach was accurate in monitoring AF and this approach is the first of its kind
algorithm to receive high performance in general population AF detection.

Recently, Aschbacher et al. [27] introduced a system that can employ a PPG signal in order
to classify the AF without extensive feature engineering; therefore, the system required lots of
pre-processing and used heart rate variability and even statistical approaches for achieving high
accuracy. The AF detection tools that are based on artificial intelligence have great potential for
minimising the risk of AF and it can deliver the early treatment to patients. However, the main
limitation of the system is a lack of comparison with current state-of-the-art approaches. Wang et al.
presented an [4] automated AF detection for the correlation among wavelet coefficient series in ECG
signals. However, the method had performed well in detecting AF in clinical diagnosis and, in order
to evaluate the performance of the feature construction strategy MIT-BIH, the AF database is used in
order to explore the performance of the approach. There are a variety of wireless sensors are used
to detect the AF; however, the short noisy ECG signal is still a big challenge. The DL classifiers are
correctly identified AF from wireless ECG records without feature extraction [28]. Three different
models are using artificial neural network (ANN), binary decision tree, and SVM on 10 ECG signals are
used for comparison. The best classifier for Atrial Fibrillation was a binary decision tree, which split
signal equal to 100 and the worst case is SVM while using one feature [29].

2.2. Feature-Based Methods

Sadr et al. [30] developed a method that was based on different features, including RR inter-beat
intervals, time domain, frequency domain, and also distribution features, there are three different
classifiers, such as linear classifier, SVM, and quadratic neural networks, are used to assess the efficiency
of the method. Lim et al. [31] implemented a feature selection technique for AF of ECG morphological
features and heart rate variability and several ML classifiers are used to understand the performance of
the of the feature selection technique. However, there is lack of comparison results with current feature
selection technique, such as information gain and mutual information. Lahdenoja et al. [32] introduced
a system to collect data whlie using a mobile phone that was equipped with Google Android OS to
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detect AF. The system can pre-process, extract features and classify the data. The applications obtained
high performance; however, the application is not available online.

Xia et al. [33] proposed an approach for converting one dimensional ECG into two-dimensional
form by short-time Fourier transform and wavelet transform to detect AF while using SVM.
The experimental results on MIT-BIH, Massachusetts Institute of Technology (MIT)—Beth Israel
Hospital (BIH) AFIB dataset displays the superior performance on the detection of AF. Cao et al. [34]
proposed a data augmentation technique for combining of the ECG episodes to improve the diversity of
samples. The two layered benchmark LSTM is used to train the method. The method was successfully
detect AF in small and imbalanced dataset. However, the key issue is that they have used a large
number of histogram data and threshold values that are difficult to detect AF.

2.3. Wearable Devices for AF Detection

There are different approaches proposed to detect AF using wearable devices, such as smart
watches, For example, Dorr et al. [35] introduced an approach for detecting AF based on the
smart watches with high accuracy. However, it is challenging to obtain high performance from
the wrist. The device can improve the detection of AF in patients with real-time monitoring. However,
the proposed device is required to test on the wider population to monitor AE. ML algorithms improve
outcomes, especially when the diagnose are provided from large datasets or complicated patterns of
data, such as in AF. However, in order to reduce the data, the wavelet transformation is used for the
compression of an image and then compressed image is processed by SVM classifier [2]. From ECG
signals, heart rates are calculated and R peaks are extracted while using R-R intervals. Three classifiers
K-nearest neighbour and random forest classifiers were used [36]. Zhang et al. [37] developed a mobile
app for monitoring AF with active measurement. The sensitivity and accuracy used for monitoring AF
were used in order to evaluate the performance of the approach.

3. Methodology

This section describes our proposed methodology for detecing AF. Figure 1 depicts the proposed
conceptual framework and its details are presented in subsequent sections.

SVM
LR

ML Methods — MLP

XG Boost
ECG Data > AF Detection
DL Methods — CNN

Convolutional
LSTM

BiLSTM

ResNet

Figure 1. An overview of the proposed framework for atrial fibrillation (AF) Detection.

Pre-processing: there are two different pre-processing methods that were applied before feeding
the data into the models, the normalization consists of removing noises from ECG signals and then
zero padding were used:

)
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where x denotes the matrix that is composed by ECG recording with the shape of 8528, 18,000, 1 and o
are the mean and standard deviation of the matrix. please confirm.

In order to train ML classifiers, it is necessary to use fast fourier transform (FFT) in order to
convert signal from time domain to the recorded frequency domain and then proceed to perform the
feature extraction, each of the heart rhythm can be converted into components rhythms. In order to
extract ECG features, first, each ECG is divided into 10 s segments and four QRS detectors have been
applied, gqrs, Pan-Tompkins, maxima search, and match filtering. The voting system is applied to mix
the results of QRS detector, based on the ECG records and QRS labels. There are 83 various features
extracted, such as R-R intervals, single-wave features, and full-wave features. The features, such as
age, gender, and information on commodities, has been used. In order to train the ML models the
principal component analysis (PCA) is used to reduce the dimensionally of the data. However, in order
to train the DL methods, the raw data to train the model.

3.1. ML Models

After feature extraction, there are different machine learning classifiers, including SVM, logistic
regression, MLP, XGBoost, CNN, and LSTM, has been applied in order to evaluate the performance of
the approach.

Support Vector Machine (SVM): the SVM is one of the most well-known machine learning
algorithm that is used to determine the hyperplane for the n-dimensional space of data, the SVM can be
applied to non-linear classifier problem by using different kernel functions [38]. The main idea behind
the SVM is how to divide the space with a decision boundary between data points. The w presents
the vector per perpendicular to a median of the decision boundary, u is unknown vectors, and b is a
constraint. Equation (2) and (3) show the positive and negative equations, respectively:

w-u+b>0 ()

w-u+b<0 3)

Multilayer Perceptron (MLP): the MLP consists of interconnected processing elements called
neurons, the neurons in MLP is connected to inputs with different weights. The output of a neuron is
the summation of all the connected inputs, and then the non-linear processing unit is used which is
called a transfer function. The aim of MLP is to transform the inputs into an understandable output by
learning the relation between input and the output and offer a solution to unseen problems [39—41].
Figure 2 displays the architecture for MLP.

Input Hidden Output
Layer Layer Layer

Input # 1 —»{

Input # 2

Figure 2. Multilayer Perceptron.
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In our experiment, the features are extracted from the fully connected layer in order to train
MLP classifier to identify the AF automatically. The experimental results show that the MLP classifier
contains one hidden layer. The best performance of the MLP classifier is with a learning rate of 0.09.
The number of epochs that is used to train MLP classifier is 100.

Logistic Regression: the logistic regression is also called logit regression which is a mathematical
method used for a statistic to predict the probability of the event that is being processed in the previous
data. The logistic regression can work on binary and multi-class data where the event can be happening,
or the event is not happening [42—44].

XGBoost: XGBoost has been widely used and it is well-known classifier for the detection of AF,
as it has shown superior performance on a large dataset. It is highly flexible and most of the regression,
classification and ranking problems. In order to use XGBoost, we used skicit-learn package to train
the classifier.

3.2. DL Models

Convolutional Neural Networks (CNN) architecture: CNN is a type of classifier that can be
applied for different tasks, such as analysing images, text, and many other fields. However, CNN is
also called shift invariant that can share the weights and also other characteristics. The CNN can be
applied to sentiment analysis, recommendation system, image classification, healthcare, etc. [43,45-47].
CNN is modern version of multi-layer perceptron that means fully connected layers that each neuron
is connected to all other neurons. The regularization technique is added to some characteristics to lose
function. The CNN usually used a novel method towards regularization, the main benefits of these
types of methods are more complex methods to use a small and simple pattern in order to identify the
prediction. CNN has been inspired by biological processes with a connectivity pattern between the
neuron and visual cortex. However, in deep learning, there is not any requirement for extraction of the
features, sometimes in machine learning algorithms, the extracted features can reduce the performance
of the approach, because the appropriate features are not selected by the framework [48-51].

We present the novel architectural details of the proposed of the CNN model used for the approach.
Recently, the CNN classifier is one of the most well-known supervised learning techniques in the
field of computer vision due to parameter sharing and sparse connectivity, which make the model
computationally efficient [52,53]. The main benefit of using CNN classifier for this problem is to
automatically detect important features while using any human intervention. For instance, given lots
of data into CNN, it can learn distinctive features for each class itself. In addition, the CNN is
computationally efficient. It is to be noted that most of the DL classifiers do not require any feature
engineering or feature selection, which can cause saving time during the pre-processing and feature
engineering stage of developing a framework. Table 1 displays the structure of the proposed CNN
model. The Co-presented convolutional layer, the Max shows Maxpooling layer, Global shows Global
Max Pooling layer, F shows Fully connected layer, and ReLU is Rectified Linear Unit Activation

Table 1. CNN Architecture, Co @, the Max ?, Global ¢, F 4, ReLU ©.

Layer 1 2 3 4 5 6 7 8 9 10

Type Co Max Co Co Max Co Global F F

Filters 16 32 64 128

Kernal Size 3 2 3 2 3 2 3

Neurons 128 2
Activation  ReLU ReLU ReLU ReLU ReLU SoftMax

# Convolutional layer; ¥ Maxpooling layer; ¢ GlobalMax Pooling layer; ¢ Fully connected layer; ¢ Rectified Linear
Unit Activation.
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Long Short-Term Memory (LSTM): the LSTM architecture is made of input and two different
LSTM layers and, in addition to that, it has one fully connected layer. The LSTM that is made up of
two layers consists of 128 and 64 cells followed by dropout of layers with 0.2 probability and one
dense layer with two different neurons. The main proposed architecture was trained based on Adam
optimizer. The LSTM function is defined, as follows [54]:

it =0 (Wi- [he-1,x¢] + bi) (4)
fi=0 (Wf e, x| + bf) (5)
Iy = tanh (W, - [hy_1, x¢] + b)) (6)

or = 0(Wo - [h—1, x¢] + bo) 7)

c=fiOc_1+it Ol (8)
hy = oy © tanh(c,) )

o is denoted the sigmoid function. tanh is a tangent function that provides an output of [-1, 1], ® is
component-wise multiplication. The old memory is controlled and discarded by f; and i; and they are
used to control information that is stored in the new memory.

ResNet: The Residual Networks is classic neural network used as classification for many computer
vision tasks. The model was winner of ImageNet challenge in 2015. The fundamental with ResNet was
allowed to train the deep neural networks with two-layer ResNet block, two generalized residual blocks
(ResNet Init), two-layer ResNet block from two generalized residual blocks (grayed out connections
are 0), and two-layer RiR block.

4. Experimental Results

In this section, we explain the experimental setup, followed by the results and discussions.
In order to evaluate the performance of the proposed approach, there are different evaluation metrics,
including accuracy, precision, recall, and f-measure are used [54].

Precision = %_fpp (10)

Recall = TP]—"i—iPFI\I (11)

e
Awwmy:TP+;Zi§§+FN 13)

where TP denotes true positive, TN presents true negative, FP is false positive, and FN represents
false negative respectively.

PhysioNet Dataset: In order to understand the performance of our proposed approach, we used
the open labeled dataset of 2017 Physionet challenge dataset which consists of 8528 single channel
ECG waveforms that were donated by the AliveCor. The waveform was recorded on the average of
30 s with a short waveform of 9 s and a long waveform of 61 s. The records were manually labeled
into four different classes, including normal rhythm, AF rhythm, other rhythms, and noisy recording.
The dataset consists of 8528 ECG recordings. The dataset consists of duration for each recording from
9s to 60 s and it has four different class, such as normal, AF, noisy, and other. The sampling frequency
of the record of 300 Hz.

MIT-BIH Atrial Fibrillation Dataset: the dataset consists of 23 ECG recording of human subjects
with AF arrhythmia. Each of the ECG recording signals are sampled with 250 Hz with 12-bit resolution
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over range of 10 millivolts. In this study, we used four segments and labelled each of them based on
the threshold parameter.

In order to evaluate the performance of the approach, the dataset is divided into 70% of training,
20% of testing and 10% of validation. The generalisation model has been evaluated while using the
performance of the model on 48 short-term recording. The dataset consists of four different subjects
that are more likely to learn the feature. Table 2 shows the summary of parameters to train ML and
DL models.

Table 2. Summary of Parameters.

Algorithms Parameters

MLP Max iteration = 300

SVM Kernel Linear

CNN, ResNet Adam Optimizer, 10 Layer
LSTM, Convolutional LSTM  2-LSTM Layer, 0.2 probability
XGBoost Kernel Linear

Logistic Regression Random-state = 0

Table 3 shows the summary of ML and DL classifiers. The DL algorithms, such as CNN and
LSTM, achieved better performance as compared to ML classifiers using PhysioNet, as shown in
the Table. Table 4 show the summary of ML and DL classifiers. As shown in the Table the DL
algorithms such as CNN and LSTM achieved better performance as compared to ML classifiers while
using MIT-BIH Atrial Fibrillation. Table 5 shows the summary of results for ML and DL classifiers
to identify the AF. The comparative experimental results show that the deep learning algorithms,
such as LSTM and CNN, achieved better performance as compared to traditional ML classifiers.
The experimental results show that CNN and LSTM achieved better performance when compared to
traditional ML classifier. The proposed CNN architecture does not require any feature engineering
as compared to machine learning classifier and it can generate the best performance as compared
to machine learning algorithms such as MLP and logistic regression. We need to point out that
the proposed CNN is more accurate to use the feature learning as compared to MLP and logistic
regression, because the proposed approach can improve the AF detection by using DL classifiers.
However, the CNN results show that the capability of learning features of identify of AF which can
outperform in another ML algorithm. In order to evaluate the current results the Convolutional LSTM
and ResNet have been added. However, the baseline ResNet and Convolutional LSTM achieved lower
performance as compared to the proposed architecture for CNN and LSTM. However, the training
time for Convolutional LSTM is lower than the training time for CNN and LSTM. Tables 3-6 has been
updated. In addition, the ResNet took a long time to train the model. It is to be noted that the major
drawback for ResNet is that is takes a long time to train the model. In addition, the convolutional
LSTM required lots of resources and trained data to be trained on the AF dataset; therefore, it obtained
lower performance as compared to proposed architecture for CNN and LSTM.
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Table 3. Summary of machine learning (ML) and deep learning (DL) classifiers—PhysioNet.

9of 15

Models F1-Score

Training  Testing N A o N Average

Accuracy Accuracy
SVM 0.9652 0.737 0.836 0.700 0.527 0.333 0.722
MLP 0.9596 0.664 0.764 0.643 0.518 0.373 0.673
Logistic Regression 0.9686 0.712 0.756 0.691 0.521 0.356 0.701
XGBoost 0989 0.764 0.852 0.688 0.608 0.585 0.765
CNN 0.9905 0.865 0.90 0.865 0.809 0.675 0.860
LSTM 0.9949 0.875 0921 0.869 0.812 0.681 0.863
Convolutional LSTM  0.8652 0.811 0.78 0.75 0.71 0.70 0.81
ResNet 0.8352 0.792 077 076 0.75 0.72 0.75

Table 4. Summary of ML and DL classifiers MIT-BIH Atrial Fibrillation.

Models F1-Score

Training  Testing

Accuracy  Accuracy B o Average
SVM 0.923 0.712 0.786 0.697 0.56 0486 0.78
MLP 0.915 0.657 0.709 0.65 0.534 0431 0.699
Logistic Regression 0.92 0.708 0741 0.684 054 0472 0.70
XGBoost 09525 0.682 0.711 0.677 0.56 0481 0.74
CNN 0.982 0.812 0.835 0.781 0.733 0.718 0.826
LSTM 0.984 0.829 084 0793 0.762 0.751 0.788
Convolutional LSTM  0.972 0.801 0.80 0.79 0.79 0.772 0.78
ResNet 0.953 0.784 077 076 074 0.72 0.74

Table 5 presents the summary of results for ML and deep learning classifiers in order to identify
the AF using MIT-BIH Atrial Fibrillation. The initial experimental results demonstrate that the
deep learning algorithms, such as LSTM and CNN, achieved better performance when compared to
traditional machine learning classifiers.

Table 5. Summary of Results—PhysioNet.

Accuracy Precision Recall F1-Score Time

SVM 0.737 0.72 0.71 0.722 2min24s
MLP 0.664 0.67 0.66 0.673 1min40s
Logistic Regression 0.712 0.70 0.69 0.701 1min 38s
XGBoost 0.764 0.76 0.75 0.765 2min3s
CNN 0.865 0.86 0.85 0.860 5min 32s
LSTM 0.875 0.86 0.85 0.86 6 min 28 s
Convolutional LSTM  0.811 0.81 0.80 0.81 5min 02 s
ResNet 0.792 0.78 0.78 0.79 13min21s

The proposed DL approaches, including CNN and LSTM, achieved better performance as
compared with traditional machine learning classifiers, such as SVM, MLP, Logistic regression,
and XGBoost, as shown in Table 6. The overall accuracy of LSTM is 87.5%. The main reason why deep
learning model achieved better performance as compared to a machine learning model is the feature
extraction ability of DL classifiers. However, the main problems of deep learning classifiers is the
computation speed. The TensorFlow Python package is used in order to train the model. The models
trained used two hundred epochs with back propagation, the Adam optimizer is used for minimising
the categorical cross-entropy loss function. In order to find the best accuracy for CNN, the different
layers of CNN have been used in order to find out the best accuracy for CNN. The 2017 Physionet
challenge dataset has been evaluated with a different number of convolutional layers, as shown in
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Table 7. The initial experimental results show that, as the number of convolutional layers are increased,
the performance is improved and, also, once the number of convolutional layers increased to five,
the performance is decreased gradually. Therefore, we have chosen four convolutional layers, as the
performance is improved. It is worth to mention that, as number of convolutional layers increased,
the model takes more time to train. According to the results shown in Tables 7 and 8, the precision,
recall and f-measure for layer 4 is better as compared to other layers. In addition, the cohen’s kappa
statistical values were above 0.8, where it shows that our proposed system is the most perfect approach
in detecting AF.

Table 6. Summary of Results—MIT-BIH Atrial Fibrillation.

Accuracy Precision Recall F1-Score Time

SVM 0.712 0.78 0.77 0.78 2min2s
MLP 0.657 0.69 0.68 0.699 1min37s
Logistic Regression 0.708 0.70 0.70 0.70 1min12s
XGBoost 0.682 0.74 0.73 0.74 2 min 28 s
CNN 0.812 0.82 0.81 0.826 5min2s
LSTM 0.829 0.78 0.77 0.788 5min 31 s
Convolutional LSTM  0.8012 0.80 0.79 0.80 4min 32s
ResNet 0.784 0.78 0.77 0.78 14 min 18 s

Table 7. CNN-Results-Physionet.

Layer Accuracy Precision Recall F1-Score
Layer1 79.29 0.79 0.78 0.79
Layer2 81.54 0.81 0.80 080
Layer3 82.67 0.82 0.81 0.82
Layer4 86.5 0.86 0.85 0.86
Layer5 83.91 0.83 0.82 0.83

Table 8. CNN-Results- MIT-BIH Atrial Fibrillation.

Layer Accuracy Precision Recall F1-Score

Layer1 76.18 0.76 0.75 0.76
Layer2 7821 0.78 0.77 0.78
Layer 3 80.04 0.80 0.78 0.78
Layer4 81.2 0.82 0.81 0.82
Layer5 79.31 0.79 0.78 0.79

There are different layers of LSTM that have been used to find the best model architecture to
detect the AF in order to find the best accuracy of LSTM. As shown in Table 9, the 2017 Physionet
challenge dataset has been evaluated with a different number of LSTM layers. The experimental
results reveal that an increased number of LSTM layer increases the time to train the model and, as the
number of layers are decreased, the model is faster to train. According to results, as the number of
layer increase from one to two, the performance of the model is rapidly improved. However, as the
number of the layers increased from two to three layer the accuracy decreased gradually. The two-layer
LSTM achieved better performance in terms of other evaluation metrics, such as precision, recall,
and f-measure. In addition, Table 10 evaluated a different number of LSTM layers with MIT-BIH Atrial
Fibrillation dataset. As shown, the LSTM algorithm with two-layer achieved better performance when
compared to other layers.
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Table 9. Long Short-Term Memory (LSTM) Results—Physionet.

Layer Accuracy Precision Recall F1-Score
Layer1 75.89 0.75 0.74 0.75
Layer2 87.5 0.86 0.85 0.86
Layer3 83.96 0.83 0.82 0.83

Table 10. LSTM Results—MIT-BIH Atrial Fibrillation.

Layer Accuracy Precision Recall F1-Score
Layer1 75.89 0.75 0.74 0.75
Layer2 87.5 0.86 0.85 0.86
Layer3 83.96 0.83 0.82 0.83

Comparison with State-of-the-Art Approaches

Table 11 demonstrates the comparison of our proposed approach with other state-of-the-art
approaches. As demonstrated, our proposed approach achieved better performance in terms of
accuracy, precision, recall, and f-measure.

Table 11. Comparison with state-of-the-art Approaches.

Ref. Accuracy Precision Recall F1-Score
Rubin et al. [55] 80 0.80 0.79  0.80
Warrick et al. [56] 77.16 0.77 076 076
Our Proposed Approach  86.5 0.86 0.85  0.86

5. Discussion

The performance achieved on PhysioNet and MIT-BIH Atrial Fibrillation datasets on deep learning
classifiers, such as CNN and LSTM, beats the traditional machine learning classifiers, such as MLP and
logistic regression. The performance achieved on these datasets indicates that our proposed unique
data-driven DL models outperform traditional feature extraction techniques. It is to be noted that
the proposed model has been trained on the NVIDIA GeForce 940M GPU with 384 Cuda cores and
2 GB DDR3.

The major strength of deep learning algorithms that their ability to generalise well on the learning
good representation of data. It is to be noted that the datasets used in our study consist od lots of
noise and invariance to factors that may contribute to irregularity of heart rhythms, which can cause
low performance in the proposed deep learning classifiers. However, in our method, the current
invariance can be obtained while using combination of time frequency and attention to mechanism
that can detect the AF with better performance. For example, change the position the high heart rate
in the time-frequency. One of the main limitations with machine learning methods is lack of gold
standard labels datasets. Therefore, in this study, there are two widely online benchmark datasets used,
which are clinically annotated. It is to be noted that there are still lots of noise available in dataset.
In summary, this paper provides motivation for researcher to utilize the deep learning models in order
to detect the AF, because the preliminary experimental results demonstrate that the deep learning
models achieved better performance when compared to traditional machine learning classifiers. To the
best of our knowledge, this is the first study to consider the AF prediction. Our future work will
be more focused on the ensemble classification of machine learning and deep learning classifiers to
achieve better performance in terms of detecting AF.
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6. Conclusions

The abnormal activity of the heart can cause cardiac arrhythmias, which can cause atrial fibrillation
(AF). The AF is one of the most common types of heart failure, which can lead to a high mortality
rate. More than 70% of AF occurred without the notice of patients and around eight million people in
the world are suffering from this disease. Therefore, it is required to develop a novel technique for
accurately and proactively detecting AF. In this study, we presented a novel framework to detect AF
while using both machine and deep learning techniques. Most of the current approaches required
feature selection; however, in this work, we proposed a deep learning algorithm, which does not require
any feature engineering. The experimental results demonstrated that the deep learning approaches
achieved better performance as compared to traditional shallow learning classifiers, such as SVM.
As future work, we are planning to develop a real-time approach in order to detect AF without the
requirement of any labelled data.
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