

 information-11-00100

information-11-00100

Information 2020, 11(2), 100; doi:10.3390/info11020100

Article

Cyber Security Tool Kit (CyberSecTK): A Python Library for Machine Learning and Cyber Security

Ricardo A. Calix *, Sumendra B. Singh, Tingyu Chen, Dingkai Zhang and Michael Tu

Purdue University Northwest, Hammond, IN 46323, USA

*

Correspondence: rcalix@pnw.edu; Tel.: +1-219-989-2013

Received: 21 December 2019 / Accepted: 8 February 2020 / Published: 11 February 2020

Abstract

:

The cyber security toolkit, CyberSecTK, is a simple Python library for preprocessing and feature extraction of cyber-security-related data. As the digital universe expands, more and more data need to be processed using automated approaches. In recent years, cyber security professionals have seen opportunities to use machine learning approaches to help process and analyze their data. The challenge is that cyber security experts do not have necessary trainings to apply machine learning to their problems. The goal of this library is to help bridge this gap. In particular, we propose the development of a toolkit in Python that can process the most common types of cyber security data. This will help cyber experts to implement a basic machine learning pipeline from beginning to end. This proposed research work is our first attempt to achieve this goal. The proposed toolkit is a suite of program modules, data sets, and tutorials supporting research and teaching in cyber security and defense. An example of use cases is presented and discussed. Survey results of students using some of the modules in the library are also presented.

Keywords:

cyber security; machine learning; feature extraction; toolkit

1. Introduction

The cyber security toolkit (CyberSecTK) is a simple Python library for preprocessing and feature extraction of cyber-security-related data. As the digital universe expands, more and more data need to be processed using automated approaches. For instance, the statistics [1] show a rapid growth in internet of things (IoT) devices. Currently, there are over 12 billion devices that can connect to the internet, and it was predicted to reach 14.2 billion in 2019. According to the publication announcement on the Worldwide Semiannual Internet of Things Spending Guide forecast [2], a 13.6% compound annual growth rate (CAGR) is expected over the 2017–2022 period with an estimated investment of 1.2 trillion US dollars by 2022. The proliferation of the IoT will lead to new challenges in the near future. According to [1], the growth of IoT devices usage will lead to an important problem, which will make it difficult for smart environment operators to ascertain IoT devices within their networks and monitor their operations. The Mirai botnet [3] is an example of risks to IoT devices. This denial of service attack is a wake-up call to the IoT industry, which is possible if IoT devices are not secured. Security of IoT devices, in this example, will be key. GHOST [4], an EU Horizon 2020 Research and Innovation funded project, develops an architecture to safeguard home IoT environments with personalized real-time risk control measures to mitigate cyber security events. The system modules a network and data flow analysis (NDFA) to build a profile builder (PB) based on network activities, which in turn notifies a risk engine (RE) to act in order to secure the smart-home IoT ecosystem. Abnormal behavior detection is one of the crucial components in our daily life interaction with IoT environments and devices.

In recent years, cyber security professionals have seen opportunities to use machine learning (ML) approaches to help process and analyze their data. The challenge is that cyber security experts do not have necessary artificial intelligence (AI) trainings to apply ML techniques to their problems. One key aspect is that they do not know how to extract features from cyber-security-related data and to preprocess a data set for ML applications. According to He et al. [5], a deep learning approach is more efficient to analyze the IoT device network traffic within an edge computing environment. The edge computing helps to scale down the size of intermediate data, which is smaller in size compared to input data resulting from efficient feature extraction. An effective AI system trains to learn techniques based on its featured data set. Data preprocessing and feature selection are the steppingstones in ML techniques. Tohari et al. [6] developed a technique based on a combined correlation-based features selection (CFS) technique and particle swarm optimization (PSO) to perform feature selection. The model was designed to analyze the network traffic for intrusion detection systems (IDSs) and achieve high-accuracy prediction. The goal of this library is to help bridge this gap. In particular, we proposed the development of a toolkit in Python that can process the most common types of cyber security data. This will help cyber experts to implement a basic ML pipeline from beginning to end. The proposed research work is our first attempt to achieve this goal. The presented toolkit is a suite of program modules, data sets, and tutorials on YouTube [7], supporting research and teaching in cyber security and defense.

In this paper, we discussed a toolkit for cyber security and ML. In particular, our goal was to provide ways of extracting features from cyber-security-related data for ML applications. The library provides functions and data examples that show different extracted features and associated reasons. We have been developing a library for feature extraction of cyber-security-related data, so it is ready for ML with other libraries like Keras [8], TensorFlow [9], and sklearn [10]. The library in its current form has functions to extract features from Wi-Fi data, standard transmission control protocol/internet protocol (TPC/IP) data, malware related logs, etc.

Libraries are very valuable tools to help AI practitioners to implement their applications. There are many important libraries for data science with Python such as TensorFlow [9], sklearn [10], and pandas [11]. Domain-specific libraries have been used widely in the past and have proven valuable to improve efficiency in the development of ML applications. A good example of a domain-specific library of note is the natural language toolkit (NLTK) [12]. This library helps linguists, data scientists, and others to more efficiently process texts for ML applications. The aim of our proposed library is similar but for cyber security data.

Whereas for NLTK the main source of data was text and language, the main source of data for cyber-security-related problems must be identified. The main sources of data traditionally have been network data in the form of network packet capture protocols (PCAPs), log data, and system files. In [13], Calix and Sankaran looked at network data to address their cyber security problems. In these studies [14], the researchers looked at malware data. Other possibilities include phishing [15], biometrics [16], etc.

Feature extraction algorithms aim to extract or engineer meaningful features from their media. These features usually create vector spaces and need to have certain properties related to data distribution, normalization, and dimensionality [17]. Common problems with extracting features from network data are shown as following: differentiating the types of packets, dealing with encryption, and processing payloads. Most network-related studies focus on a specific type of packet (Internet Control Message Protocol (ICMP) or TCP) [13] and usually exclude a payload or treat it separately [18].

Malware detection is another problem, for which we want to apply ML approaches. There are several challenges, however, such as dealing with polymorphic viruses [14]. Malware usually consists of code that multiplies, makes copies of itself and can deliver a payload. Detecting it can be challenging. Traditionally, static malware analysis through the use of hashing of files has been an approach to dealing with it. Polymorphic malware can evade hashing techniques by changing every copy of a new malware instance. To address polymorphic malware detection, a set of techniques referred to as dynamic malware analysis have been used.

Dynamic approaches need malware to run in a sandbox environment and collect the dynamic behavior of the malware. This dynamic behavior consists, usually, of system calls, registry edits, network connections, access of dynamic link libraries (DLLs), etc. A basic pipeline for this was to take the dynamic malware, run it through an emulator, obtain log files of the behavior and extract features from the logs for ML purposes [14]. According to Hamed et al. [19], a components-based approach enables an easier comparison of methods. Where an intrusion detection system (IDS) can be analyzed in three major phases: preprocessing, detection, and empirical evaluation. For example, a network’s physical, datalink, and network packet header’s information can be useful to extract features to analyze network behavior. This can be useful to detect anomalies within a network. A malware image analysis technique in [20] was used to classify, detect and analyze particular malware based on image texture analysis. The visualization technique converts the sample malware’s executable file into binary strings of 0′s and 1′s as a vector, which is then converted into two-dimensional images. The image is further compared in terms of factors such as creation, techniques, execution environment, propagation media, and negative impacts. A behavior-based malware-detection ML technique was also discussed in [21]. The combined malware and benign instance of the data set from Windows’ portable executable (PE) binaries file is processed online to generate dynamic analysis reports. This is then further used for feature selection and analyzed based on available Weka classifiers. One of the proposed modules in our library was designed to process and extract features from log files (e.g., features from dynamic analysis). In its simplest form, the dynamic malware analysis module can treat each log file per malware (or goodware) sample as a text file (similar to how a natural language document would be treated). From there, a simple bag of words approach can be explored, and this is the most basic analysis that can be implemented. Once the features are extracted, to complete the pipeline, the data must be preprocessed and normalized, ML models are built, and results must be analyzed to evaluate performance. Our library interacts well with standard sklearn and TensorFlow functions to complete the ML pipeline. The point of this library is to bring together modules for feature extraction in the domain of cyber security. Whenever possible, we use existing libraries/dependencies to manipulate raw data. For example, we use Python Scapy functions to process network packets. Libraries like sklearn do not have specific modules to extract features from cyber data. Therefore, our proposed library can be used to extract features from cyber data and those extracted features can then be used for ML applications using other tools such as TensorFlow, and sklearn. This library is a work in progress, and more features can be added in the future by incorporating new modules.

The structure of this paper is as follows: first, an introduction of the library and its need was shown. This section was followed by methods and results. Finally, the discussion of results and future work were presented.

2. Materials and Methods

The library consists of simple Python scripts for feature extraction and some tutorial materials for research and teaching of ML for cyber security. The code for the library is available from GitHub via the link in [22]. The library focuses mainly on two types of data, which are network data and malware-related data. For the network data, we provide examples of how to extract data from Wi-Fi data and from regular network data. All inputs are assumed to be PCAP files. The library uses the Python Scapy [23] library to extract the network features. The outputs are comma-separated values (CSV) files that contain features and their values. Currently, we are focusing on TCP packets and the basic wireless local area network (LAN) link-layer headers without looking into the payloads. As we extend the library, we will explore modules for payload extraction. Payload data are more challenging, because they are more diverse. One common way of looking at payload data is to think of them as documents in language. Therefore, NLP types of approaches can be considered. To preserve confidentiality of data transferred, packets are usually encrypted. Analyzing encrypted packets for ML can be very challenging and is currently not addressed by the library directly. However, according to [24], an encrypted wireless network packet can still be analyzed using the link-layer header information. In this paper, we used the same approach to extract features from wireless network packets. Figure 1 shows an example of a wireless LAN frame.

The wireless network packets to test our modules were collected within a simple testbed lab environment, where multiple IoT devices were connected to an access point (AP). Figure 2 illustrates the lab setup environment. The research work focused on collecting wireless packets as an initial approach to feature extraction. The sample data set is available for the library. A commercial off-the-shelf (COTS) radio receiver was used in monitor mode, to passively eavesdrop the wireless network traffic within a controlled lab environment. We preferred the monitor mode over the promiscuous mode due to its capabilities to identify hidden APs, which can passively listen to the wireless network traffic without associating to the network. With this approach, features can be directly extracted based on nonencrypted link-layer header information.

For example, a sample IoT wireless LAN data set contains 21 features with 94 instances as a proof of concept to test the cyber security toolkit. We used Python Scapy [23], an open-source Python library, to collect the wireless network traffic and further extract features using the proposed library based on Scapy’s built-in library support.

Scapy is handy to use in terms of its built-in functions and support community. The user can simply dump network packets and parse them through different layered information within each packet for further analysis. Similarly, Aircrack-ng [25], an open-source Wi-Fi network security toolset, was used to set up a wireless network adaptor in monitoring mode, before we started capturing the wireless network traffic within our testbed lab environment to create a data set.

For our Wi-Fi IoT data example, the library’s module extracts features from wireless network traffic-based PCAP files. The module parses the wireless network layer information using Scapy functions and extracts features based on a predefined list into a final CSV file. In its simplest form, each packet becomes an instance or sample of the output CSV file. The procedure, for this example’s feature extraction approach, is summarized in Algorithm 1 (Figure 3), where IOTwireless.csv is a labeled data set file. Sniff is a Scapy built-in function to control network packets, and it allows users to pass a function with an argument “prn” to perform custom actions. The variable Labels represents the feature labels list to be extracted from the input PCAP file. Dot11 and Dot11Elt are wireless frame layers, which hold information about the connected wireless network. Dot11 and Dot11Elt are layer fields and are the values associated within each packet with the labels defined in Labels.

The malware module focuses on data collected via dynamic analysis (e.g., running a virus in a sandbox through an emulator). The emulator generates logs of the behavior of the malware that is processed for feature extraction. Each log is treated as a document, and its content is treated as words. With this view of the data, features can be extracted using a bag of words approach.

Evaluation

Evaluating a module statistically can be challenging given that we need to assess, in a way, how the code was written and if it is useful to the user. We settled on evaluating the use of some of the modules as part of a class. In particular, we used modules for malware feature extraction and for network data analysis. As part of the class, we also recorded videos and created a virtual machine (VM), data sets, lectures, and labs. We assessed the whole course together and did not focus on a specific module of the library. The survey was conducted to assess the content arrangement and design of the course and to obtain direct feedback on the learning experience. The data came from 19 students who attended classes during the summer of 2019. The open-source learning module was designed to be a week-long ML course for cyber security professional. The course was provided for professionals with a basic knowledge of network security and coding. Most of students in the course possessed very advanced programming skills. The learning module consists of 7 data sets distributed in 15 lectures and 10 labs. All the code modules are implemented in Python and tested in an Ubuntu virtual machine. The VM has many libraries already preinstalled and can be downloaded from [7].

In terms of survey methods and survey data, we followed standard approaches such as in [26]. The survey contained 17 questions, including questions of satisfaction with materials prepared in class, surveys of satisfaction with teaching content and materials, and analysis of teaching results. In addition, participants could write down their other feelings or concerns about the course.

All of the questions in the survey, except for the final comment, used a Likert scale, for a range of 1 to 5. Table 1 shows the scale meanings of the survey answers, and Table 2 demonstrates the survey questions.

Given that this is a library/coding module, it can be difficult to present statistical results of its usefulness and usability. Given that these modules were used in a class run in the summer of 2019, we used the results of the course surveys as an indirect assessment of these materials. In particular, we emphasized those questions that were more pertinent to the library itself. We presented a full list of questions for completion. For our purposes, we focused on question 12 (Q12), in particular, which we felt was the most relevant to assess our module/library.

Through statistical analysis of the survey data with the R language, we presented some issues of note. This paper tried to find out the relationship between course materials, course content, and course satisfaction, so as to help optimize the materials and meet the needs of target groups.

3. Results

Given that this is a library, it can be difficult to present statistical results. However, we ran some of these modules as labs in a course during the summer of 2019. At the end of the class, we collected course surveys. We used some questions in the survey as an indirect way of assessing the library for usability and usefulness. We also assessed the tutorial and videos with the survey to help gauge if the code written for the library was understood by students and if there were correlations.

Finally, we presented a simple use case to illustrate the use of the modules. This use case was taken directly from the lab materials in the course and was related to malware analysis.

3.1. Use Case

The malware module focuses on data collected via dynamic analysis (e.g., running a virus in a sandbox through an emulator). The emulator generates logs of the behavior of the malware that is processed for feature extraction. The contents of the log are shown in Figure 4.

Each log is treated as a document, and its content is treated as words. With this view of the data, features can be extracted using a bag of words approach. The log labels or classes can be included in the name itself for each goodware or malware sample, as can be seen in Figure 5.

In Figure 6, it can be seen that the module uses CountVectorizer, a Python built-in function, to implement the bag of words approach on each log file. Therefore, each log file will become a sample or row in the output data set.

Finally, in Figure 7, CountVectorizer uses pandas to create a data frame containing the output data for every single input log. The output is a CSV file containing all samples.

Figure 8 shows a list of some of the most important wireless IoT features and their respective descriptions. The focus is on protocol transmission and control features. Encrypted payloads were not considered.

Figure 9 includes a list of the top 20 dynamic malware analysis features. Because these features are based on the frequency of occurrence of the individual terms in the log files, the list can be extensive. Therefore, we selected only the top 20 most frequent features. The lists of features are also available on the GitHub link.

As can be seen in Figure 9, the terms can relate to anything that can happen on a windows system. In general, binaries call DLLs, and they open files, make internet connections and perform registry edits. The goal of an ML algorithm would be based on lots of data to learn to associate DLL 37 to malware files and DLL 34 to benign binaries, for example, according to their co-occurrence.

3.2. Survey Analysis

The analysis in Table 3 showed that there was no correlation between Q12 and Q1, Q2, and Q3. Knowing how to extract features was not correlated to understanding Weka (Q1: p-value = 0.427), sklearn (Q2: p-value = 0.809), and TensorFlow (Q3: p-value = 0.303). Correlation was considered significant at p-value ≤ 0.05. This sounds reasonable, since feature extraction and the use of ML algorithms are things that can be learned separately.

In addition, a relevant analysis was also conducted to prove whether lecture and lab files helped students understand ML, and the results are shown in Table 4. It is obvious that the preparation of lectures and labs (Q4 and Q5) was helpful for understanding course logic and understanding ML (Q8: p-value = 0.029; Q10: p-value = 0.021).

The survey results (Figure 10) indicated that after this one-week course, 77.36% students feel they have a better understanding of ML and how it can be applied to cyber security problems, 15.79% do not know if they understand how ML works, and 10.53% think they cannot understand ML from this course (Figure 10).

In Figure 11, we focused again on Q12. The pie chart shown in Figure 11 shows that 88.88% students agree that they “can pre-process data into vector space model formats for use in machine learning applications”, while 5.56% disagree with that.

From Figure 12, it can be seen that 88.89% have a better understanding of deep neural networks and the rest of them think they have the opposite opinions. This showed that there is strong interest in deep learning by students, and we will extend the library to reflect this aspect.

Table 5 shows the summary statistics of each question. Only the mean of Q11 was under 4, which meant videos were not useful for helping students to get improvement from this course or they did not have time to watch them. It is important to note that the videos were not made available to most of students prior to taking the course.

4. Discussion

In this paper, we presented and discussed a new library for ML and cyber security. To assess the usefulness of the materials (e.g., the modules for feature extraction), we considered the following question:

	
“Is there any relation between learning materials and mastery of knowledge?”

Spearman correlations are often used to assess relationships related to sequential variables, which is well suited for the data studied in this paper, because a Likert scale was used to represent the results of the survey, from strong agreement to strong disagreement. According to Table 4, Q5 and Q8 are related, because the p-value obtained by the correlation test is less than 0.05. The result can be understood like this: “With a better understanding of lectures and labs, students feel they can solve cyber security problems using machine learning”, which is a good example to show the course materials are helpful for students to use and learn. Finally, Figure 11 shows that 88.88% students agree that they “can pre-process data into vector space model formats for use in machine learning applications”.

Future Work

Future work will involve improving the library and adding more modules. Possible future data sets and modules that can be added include web security data, phishing data, steganography data, etc. Additionally, we will provide more use cases of how to use the library in various other applications.

Author Contributions

R.A.C. wrote most of the paper and guided/supervised all work. S.B.S. collected data from IoT sources, created modules for Wi-Fi and integrated the full library. T.C. wrote code for network and malware feature extraction. D.Z. performed the statistical analysis. M.T. supervised the IoT network cyber security and cyber security feature extraction. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by DoD/NSA (grant number: H98230-18-1-0330).

Conflicts of Interest

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

	

IOT Statistics. Available online: https://ipropertymanagement.com/iot-statistics (accessed on 14 December 2019).

	

IDC Forecasts WorldWide Technology Spending on the Internet of Things to Reach $1.2 Trillion in 2022. Available online: https://www.idc.com/getdoc.jsp?containerId=prUS43994118 (accessed on 14 December 2019).

	

Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and other botnets. Computer 2017, 50, 80–84. [Google Scholar] [CrossRef]

	

Spathoulas, G.; Evangelatos, S.; Anagnostopoulos, M.; Mema, G.; Katsikas, S. Detection of abnormal behavior in smart-home environments. In Proceedings of the 2019 4th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Piraeus, Greece, 20–22 September 2019. [Google Scholar]

	

Li, H.; Ota, K.; Dong, M. Learning IoT in edge: Deep learning for the Internet of Things with edge computing. IEEE Network 2018, 32, 96–101. [Google Scholar] [CrossRef]

	

Tohari, A.; Aziz, M.N. Data Preprocessing and Feature Selection for Machine Learning Intrusion Detection Systems. ICIC Express Lett. 2019, 13, 93–101. [Google Scholar]

	

Course. Available online: http://www.ricardocalix.com/teaching/teaching.htm (accessed on 10 February 2020).

	

Keras. Available online: www.keras.io (accessed on 10 February 2020).

	

Tensorflow. Available online: www.tensorflow.org (accessed on 10 February 2020).

	

Pedregosa. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]

	

Pandas. Available online: www.pandas.pydata.org (accessed on 10 February 2020).

	

Loper, E.; Bird, S. NLTK: the Natural Language Toolkit. In Proceedings of the ETMTNLP ‘02 Proceedings of the ACL-02, Workshop on Effective tools and methodologies for teaching natural language processing and computational linguistics-Volume 1, Stroudsburg, PA, USA, 17 May 2002; pp. 63–70. [Google Scholar]

	

Calix, R.A.; Sankaran, R. Feature ranking and support vector machines classification analysis of the NSL-KDD intrusion detection corpus. In Proceedings of the The Twenty-Sixth International FLAIRS Conference, St. Pete Beach, FL, USA, 22–24 May 2013. [Google Scholar]

	

Cabrera, A.; Calix, R.A. On the Anatomy of the Dynamic Behavior of Polymorphic Viruses. In Proceedings of the International Conference on Collaboration Technologies and Systems (CTS), Orlando, FL, USA, 31 October–4 November 2016; pp. 424–429. [Google Scholar] [CrossRef]

	

Basnet, R.; Mukkamala, S.; Sung, A.H. Detection of Phishing Attacks: A Machine Learning Approach. In Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing; Prasad, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 226. [Google Scholar]

	

Amigud, A.; Arnedo-Moreno, J.; Daradoumis, T.; Guerrero-Roldan, A. A Behavioral Biometrics Based and Machine Learning Aided Framework for Academic Integrity in E-Assessment. In Proceedings of the 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), Ostrawva, Czech Republic, 7–9 September 2016; pp. 255–262. [Google Scholar] [CrossRef]

	

Calix, R. Getting Started with Deep Learning: Programming and Methodologies using Python, 1st ed.; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017. [Google Scholar]

	

Iqbal, I.M.; Calix, R.A. Analysis of a Payload-based Network Intrusion Detection System Using Pattern Recognition Processors. In Proceedings of the 2016 International Conference on Collaboration Technologies and Systems (CTS), Orlando, FL, USA, 31 October–4 November 2016; pp. 398–403. [Google Scholar] [CrossRef]

	

Hamed, T.; Ernst, J.B.; Kremer, S.C. A survey and taxonomy on data and pre-processing techniques of intrusion detection systems. In Computer and Network Security Essentials; Springer: Cham, Switzerland, 2018; pp. 113–134. [Google Scholar]

	

Aziz, M.; Patrot, A. Overview of malware analysis and detection. Int. J. Comput. Appl. 2015, 975, 8887. [Google Scholar]

	

Firdausi, I.; Erwin, A.; Nugroho, A.S. Analysis of machine learning techniques used in behavior-based malware detection. In Proceedings of the 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, Jakarta, Indonesia, 2–3 December 2010. [Google Scholar]

	

CyberSecTK. Available online: https://github.com/sumendrabsingh/CyberSecTK-Library (accessed on 10 February 2020).

	

Scapy. Available online: https://scapy.net (accessed on 10 October 2019).

	

Rajib, R.M.; Sandra, S.; Ragv, S.; Nils, O.T. Link-Layer Device Type Classification on Encrypted Wireless Traffic with COTS Radios. In European Symposium on Research in Computer Security; Springer: Cham, Switzerland, 2017; Part II; pp. 247–264. [Google Scholar]

	

Aircrack-ng. Available online: https://www.aircrack-ng.org (accessed on 10 October 2019).

	

Calix, R.A.; Mallepudi, S.A.; Knapp, G.M.; Nahmens, I. Factors that Influence Usage of Knowledge Management by Information Technology Professionals at Institutions of Higher Education. J. Manag. Eng. Integr. 2010, 3, 73. [Google Scholar]

[image: Information 11 00100 g001 550]

Figure 1. Wireless local area network (WLAN) frame structure (IEEE 802.11 standard frame format).

Figure 1. Wireless local area network (WLAN) frame structure (IEEE 802.11 standard frame format).

[image: Information 11 00100 g001]

[image: Information 11 00100 g002 550]

Figure 2. Internet of things (IoT) testbed environment setup.

Figure 2. Internet of things (IoT) testbed environment setup.

[image: Information 11 00100 g002]

[image: Information 11 00100 g003 550]

Figure 3. Algorithm 1—feature extraction.

Figure 3. Algorithm 1—feature extraction.

[image: Information 11 00100 g003]

[image: Information 11 00100 g004 550]

Figure 4. Log of malware behavior.

Figure 4. Log of malware behavior.

[image: Information 11 00100 g004]

[image: Information 11 00100 g005 550]

Figure 5. Log files for goodware and malware.

Figure 5. Log files for goodware and malware.

[image: Information 11 00100 g005]

[image: Information 11 00100 g006 550]

Figure 6. Initialization of CountVectorizer.

Figure 6. Initialization of CountVectorizer.

[image: Information 11 00100 g006]

[image: Information 11 00100 g007 550]

Figure 7. Extraction of features.

Figure 7. Extraction of features.

[image: Information 11 00100 g007]

[image: Information 11 00100 g008 550]

Figure 8. IoT wireless features.

Figure 8. IoT wireless features.

[image: Information 11 00100 g008]

[image: Information 11 00100 g009 550]

Figure 9. Dynamic analysis of malware features.

Figure 9. Dynamic analysis of malware features.

[image: Information 11 00100 g009]

[image: Information 11 00100 g010 550]

Figure 10. Survey results on students’ answers to Q8.

Figure 10. Survey results on students’ answers to Q8.

[image: Information 11 00100 g010]

[image: Information 11 00100 g011 550]

Figure 11. Survey results on students’ answers to Q12.

Figure 11. Survey results on students’ answers to Q12.

[image: Information 11 00100 g011]

[image: Information 11 00100 g012 550]

Figure 12. Survey results on students’ answers to Q16.

Figure 12. Survey results on students’ answers to Q16.

[image: Information 11 00100 g012]

[image: Table]

Table 1. Likert scale.

Table 1. Likert scale.

	Scale
	Answer

	1
	Strongly disagree

	2
	Disagree

	3
	Neither agree nor disagree

	4
	Agree

	5
	Strongly agree

[image: Table]

Table 2. Survey questions.

Table 2. Survey questions.

	Number
	Question

	1
	Was Weka a useful tool/topic to learn about?

	2
	Was sklearn a useful tool/topic to learn about?

	3
	Was TensorFlow a useful tool/topic to learn about?

	4
	Were the lectures helpful to better understand the topics?

	5
	Did you find the lecture and lab documents helpful to better understand the topics?

	6
	Was the use of a flash drive with a VM helpful for working on the lab problems?

	7
	Did you find the challenge data sets useful?

	8
	After this 1-week course, do you feel you have a better understanding of machine learning and how it can be applied to cyber security problems?

	9
	Did you find the use of AWS as a large data set useful to your learning?

	10
	Did you find the distribution of time between lecture and labs appropriate?

	11
	Were the video recording useful to your learning?

	12
	Overall, do you feel that you can convert raw data to the vector space model format for machine learning purpose?

	13
	Overall, do you feel you can now better analyze data sets with Weka?

	14
	Overall, do you feel you can now better analyze data sets with sklearn?

	15
	Overall, do you feel you can now better analyze data sets with TensorFlow?

	16
	Do you have a better understanding of deep neural networks and their advantages?

	17
	Comments (provide any additional comments)

[image: Table]

Table 3. Significant correlations between machine learning tools and feature extraction (Q12).

Table 3. Significant correlations between machine learning tools and feature extraction (Q12).

	

	

	
Q1

	
Q2

	
Q3

	
Q12

	
Correlation

	
–0.200

	
0.061

	
–0.257

	
p-value

	
0.427

	
0.809

	
0.303

	
Q13

	
Correlation

	
0.033

	

	

	
p-value

	
0.897

	

	

	
Q14

	
Correlation

	

	
0.238

	

	
p-value

	

	
0.341

	

	
Q15

	
Correlation

	

	

	
–0.213

	
p-value

	

	

	
0.397

[image: Table]

Table 4. Significant correlations between course materials and course understanding.

Table 4. Significant correlations between course materials and course understanding.

	

	

	
Q4

	
Q5

	
Q8

	
Correlation

	
0.537

	
0.502

	
p-value

	
0.021

	
0.029

	
Q10

	
Correlation

	

	
0.524

	
p-value

	

	
0.021

[image: Table]

Table 5. Summary statistics per question.

Table 5. Summary statistics per question.

	Question
	Mean
	SD
	Minimum
	Maximum

	Q1
	4.632
	0.761
	2
	5

	Q2
	4.579
	0.607
	3
	5

	Q3
	4.947
	0.229
	4
	5

	Q4
	4.222
	0.647
	3
	5

	Q5
	4.211
	0.855
	2
	5

	Q6
	4.632
	0.597
	3
	5

	Q7
	4.368
	0.597
	3
	5

	Q8
	4
	1
	2
	5

	Q9
	4.474
	0.841
	3
	5

	Q10
	4.5
	0.816
	2
	5

	Q11
	3.667
	0.888
	3
	5

	Q12
	4.278
	0.826
	2
	5

	Q13
	4.778
	0.428
	4
	5

	Q14
	4.278
	0.575
	3
	5

	Q15
	4.5
	0.618
	3
	5

	Q16
	4.111
	1.079
	1
	5

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file8.jpg
log.
vectorizer.py

les

| BadRabbit1.CSV
Badrabbit2.CSV
Badrabbit3.CSV
Good1.CSV
Good2.CSV
| Good3.CSV

media/file13.png
dtm = vectorizer.fit_transform(text)

df = pd.DataFrame(dtm.toarray(), index=labels, columns=vectorizer.get_feature_names())
df.index.name = "labels"
df.to_csv(r'matrix.csv"')

media/file12.jpg
dtm = vectorizer.fit_transform(text)

df = pd.DataFrame(dtn. toarray(), index=labels, columns=vectorizer.get_feature_nanes())
df . index. name = "labels"
df.to_csv(r'matrix.csv')

media/file18.jpg
m Suongly disagree
Disagree

Noither agree or disagree

Agree

15.79| B Stongly agree

36.84 % 10.53 %

0%

36.84%

media/file9.png
2 log_files _ @. BadRabbit1.CSV
| vectorizer.py @ Badrabbit2.CSV
d. Badrabbit3.CSV
@ Good1.CSV
d. Good2.CSV
d. Good3.CSV

media/file14.jpg
Features Description
Verson “The radiotap frame control feld indicates the current WLAN protocol
The radiotap frame control feld aligns onto natural word boundaries,
Pad which means all &, 16-, 32- and 64-bit ields must begin separately to avoid
unaligned access to radiotap capture fields.
Len Tt specifies entce length of radiotap data including radiotap headers
Rate Data transfer ate of a device, e.g., 20 Mbjs
Frequency 0P8 el s o d;vx:'z,:ev, radio wave spectrum types a,
Ttspecifes the supported spectrum-coding method of a device designed (o
Chumltags it ol =
BN AntSigral Transmitting wireless device radio antenna strength in dBm
Antena Number of availabl transceiving radio antennas
Sigge Tt pecifes the frame subtype, e, association request (0000), assodiation
response (0001), beacon (1000), and probe request (0100).
% Ttdetermines the function of frame type, .. management (00), control (O1),
i or data (10).
Proto WLAN protoco version
Ttspecifis a wircless frame flag, e g, to-DS, from DS, etry, power, and
FChield
protected.
= Connection ID assigned between a source and a destination over 2 period
within the maximum datagram lifetime (MDL)
Addrl Wireless device MAC address (destinationrecipient)
Adde) ‘Wiseless device MAC address (relay/souzce)
Adds3 Wireless device MAC address (BSSID)source/destination)
sC Wireless packets sequence control
Addd Wircless device MAC address (BSSID)source)
Dott ELD ‘Dot beacon type-specifc e, 0 for management i e, SSID
Dot Eltlen Length of specific Dot11EI packet sequence payload
Doti{Eltinfo Information of the Dot11EIt packet sequence

media/file20.jpg
Strongly disagree
Disagree

Neither agree or disagree
Agree

Strongly agree

]
]
=
=

44.44%

5.56 %

5.56 %

0%

44.44%

media/file23.png
Strongly disagree
Disagree

Neither agree or disagree
Agree

Strongly agree

(]
(]
O
O
(]

5.56 %

5.56 %

38.89 %

media/file5.png
Algorithm 1. Wireless network traffic feature extraction

Input: PCAP

Qutput: C5V Featured dataset in comma-separated values file

Labels: version, Pad, Len, Rate, ChannelFrequency, ChannelFlags, dBm_Ant5ignal, Antenna,
subtype, type, proto, FCfield, ID, addrl, addr?, addr3, 5C, addrd, Dot11EIt]1.ID, Dot11Elt]l.len,
Dotl1Eltl.info

import scapy
file = openWrtie ("IOTwireless.csv”)
file.writeLine (Labels)
function wiot (frame)
it frame.haslayer (Dotll) then
for packets = frame
file.writeLine (“%s, %0s,", frame.Dotl] layers fields,)
it packets.haslayer (Dotl1Elt) then
packets = Dot11EIt
file.writeLine (“%s, %s, ", frame.payload.Dotl1Elt layers fields,)
file.writeLine (newline)
sniff (offline = input (“Enter the plcap file:”), prn = wiot)

media/file15.png
Features Description
_ The radiotap frame control field indicates the current WLAN protocol
Version _
Versiomn.
The radiotap frame control field aligns onto natural word boundaries,
Pad which means all &-, 16, 32-, and 64-bit fields must begin separately to avoid
unaligned access to radiotap capture fields.
Len It specifies entire length of radiotap data including radiotap headers.
Rate

Data transfer rate of a device, e.g., 2.0 Mb/s
ChannelFrequency Operating channel frequencies of devices, i.e., radio wave spectrum types a,
b, g andn
ChannelFlags It specifies the supported SPEC’frm_n—de_'rEg method of a device designed to
avoid collision.
Transmitting wireless device radio antenna strength in dBm

DBM_AntSignal

Antenna Number of available transceiving radio antennas
Subtype It specifies the frame subtype, e.g., association request (0000), association
- response (0001), beacon (1000), and probe request (0100).
Type It determines the function of frame type, i.e., management (00), control (01),
: or data (10).
Proto WLAN protocol version
ECHield It specifies a wireless frame flag, e.g., to-DS, from-D5, retry, power, and
protected.
D Connection ID assigned between a source and a destination over a period
within the maximum datagram lifetime (MDL)
Addrl Wireless device MAC address (destination/recipient)
Addr? Wireless device MAC address (relay/source)
Addr3 Wireless device MAC address (B55ID/source/destination)
SC Wireless packets sequence control
Addrd Wireless device MAC address (B55ID/source)
Dotl1EIt.ID Dotll beacon type-speditic e.g., 0 for management i.e., 551D
Dotl1Eltlen Length of specific Dot11EIt packet sequence payload
Dotl1Elt.info

Information of the Dot11Elt packet sequence

media/file19.png
Strongly disagree
Disagree

Meither agree or disagree
Agree

Strongly agree

EEEON

15.79

36.84 % 10.53 %

0 %

36.84 %

media/file2.jpg
&
o=}
Q..€

nav.xhtml

 information-11-00100

 		
 information-11-00100

media/file11.png
vectorizer = CountVectorizer(stop_words='english', max_features=1000)

media/file6.jpg
"Time of Day","Process Nam

"3:11:17.8988718
"3:11:17.8988843
"3:11:17.8988899
"3:11:17.9011089
"3:11:17.9011173
"3:11:17.9011237
"3:11:18.0114931

Operation","Path"
"Explorer. EXE" RegQueryVi
"Explorer. EXE" RegSetVali
PM", "Explorer. EXE","2368" , "RegSetVali
PM earchIndexer.exe","2700","File!
»"SearchIndexer.exe","2700"
'SearchIndexer.exe","2700","File!
"VMwareTray.exe","2520","CreateF

P
P

media/file1.png
Frame Control Duration Address 1 Address 2 Address 3 Scequeh.ncle Address 4 Payload Encrypted CRC
ontro
2 Bytes 2 Bytes 6 Bytes 6 Bytes 6 Bytes 2 Bytes 6 Bytes 0-2312 Bytes 4 Bytes

media/file10.jpg
vectorizer = CountVectorizer(stop_words='english', max_features=1000)

media/file7.png
"Time

"3
"3
"3
"3
"3
"3
"3

11:
11:
11:
11:
11:
11:
11:

of

17.
17.
17.
17.
17.
17.
18.

Day","Process Name","PID","Operation”,"Path"

8988718
8988843
8988899
9011089
9011173
9011237
0114931

PM","Explorer.EXE","2368","RegQueryV:
PM","Explorer.EXE","2368","RegSetVali
PM","Explorer.EXE","2368","RegSetVali
PM","SearchIndexer.exe',"2700","F1ile!
PM","SearchIndexer.exe',"2700","File!
PM","SearchIndexer.exe" ,"2700","F1le!
PM","VMwareTray.exe","2520","CreateF.

media/file16.jpg
Features Description

events 31b3856ad%1e5 6 Windows system updting service packages comupt
n GneNote email association o send contents to notebooks by
o emaiing
DirectX crrorleading o fchnical support scams, paying for
b unnecessary technical support sevice.
Error code 37 leading t technical support scams, paying for
resources 31b3856ad364e35 5 o S W
riginal equipment manulactuer version used (0 buld &
Lo windows system
. ‘Gperating system misconiiguring, missing of damaging.
m 31960364356 important system files eading tosystem exash with errors
NET framework vuilnerability could allo for securty
resources_BO3SI11d50a30_en Pl
Service stop erto tying (o onnect (0 a pinte server in
cient 316385634364e35_6 G
s Relational database service error
N Windows updates pach ercr,leading (o system cash, and
s boos loader manager eror.
Core SIEOE6a3AeT 6 Windows remote desktop service access eror
N Servicesdirectory application or web service use
Mty authentication error de (o account group policy

Windows O5 network adaptor stops/disables error, 5.
Stop: 0x00000004 (parameter], parameter2 paameter3,

inf 31638562d361e35_6
parametert)
IROL NOT LESS OR EQUAL
cesources SI8GAEIE 6 Windows DNS service updates configuration rules,
[— Sotess 5 VNN ystens2 componentizes secvice confguration
resources BO3BUITIA00 6 Windows securty updates for NET framevvork

‘Microsoftdata access components contain core data access

max components, .5, Microsoft SQL server.

pro—— Mot widows opctig e, Syplo APBEDLL

rivercass 316562364635 6 Windows security updates instalation problems-

mei_system Security update for. NET framevork service

media/file3.png
OT Smart Device\ '
Network

.~ wireless
. Access Point .
. ' -

Wireless

\ 1OT Smart Device
Ethernet

_ Network

media/file22.jpg
Strongly disagree
Disagree

Neither agree or disagree
Agree

Strongly agree

=
o
=
=
=

5.56 %

5.56 %

38.89 %

media/file17.png
Features

Description

events 31bf3856adi36dedd 6

Windows system updating service packages corrupt

onent

OneNote email association to send contents to notebooks by
emailing

directx

DirectX error leading to technical support scams, paying for
unnecessary technical support service

resources 31bf3856adi6de3dd 8

Error code 37 leading to technical support scams, paying for
unnecessary technical supports service

OE1T

Original equipment manufacturer version used to build a
windows 5}*5tem

adm_31bf3856ad36de3d 6

Operating system misconfiguring, missing or damaging
important system files, leading to system crash with errors

resources b03fbf7/f11d50a3a_en

INET framework vulnerability could allow for security
feature bypass.

client_31bf3856ad364de3> 6

Service stc-p error trlt,?:ing to connect to a pri:nter server 1n
windows (error Ox00000006)

rds

Relational database service error

pcat

Windows updates patch error, leading to system crash, and
boots loader manager error.

core 31bt3856adibde3ds 6

Windows remote deskt{}p service access errofr.

identity

Services directory application or web service user
authentication error due to account group policy

inf_31bf3856adibdeldd 6

Windows QS network adaptor stops/disables error, e.g.,
Stop: 0x0000000A (parameterl, parameter’, parameter3,
parameterd)

IROQL NOT LES5 OR EQUAL

resources 31bf3856ads64dedd 6

Windows DNG5 service updates configuration rules.

anguagepack_31bf3856ad364e35_6

Windows systemﬁz componentizes service cu:mﬁguratiﬂn
error.

resources b03f5t7f11d50a3a 6

Windows security updates for. NET framework.

mdac

Microsoft data access components contain core data access
components, e.e., Microsoft SOL server.

dll 31bf3856ad364e3d 6

Microsoft windows operating system, crypto API32.DLL
file

driverclass 31bf3856ad364e30 6

Windows security updates installation problems.

msil_system

Security update for. NET framework service

media/file4.jpg
Algorithm 1. Wiseless network traffic feature extraction

Input: PCAP.
Output: CSV Featured dataset in comma-separated values file
Labels: version, Pad, Len, Rate, ChannelFrequency, ChannelFlags, dBm_AntSignal, Antenna,

subtype, type, proto, FCfield, ID, addr, addr2, adds, SC, addrd, Dot11EItLID, Dotl1EitLlen,
Dotl1EltLinfo

import scapy
file = openWirtie (“I0Tiwireless.csv”)
fileawriteLine (Labels)
function wiot (frame)
if frame haslayer (Dotl1) then
for packets = frame.
file:writeLine (“%s, %s, ...”, frame.Dot11 layers felds,)

if packets haslayer (DotL1EIf) then

‘packets = Dotl 1Elt

flewriteLine (“%s, %s, ... ”, frame payload Dotl1Elt layers fields,
filewriteLine (newline)

sniff (offline.

Jut (‘Ente the fap i), pm = wiot)

media/file0.jpg
S

oy

—
oamnye

media/file21.png
Strongly disagree
Disagree

Neither agree or disagree
Agree

Strongly agree

|
O
=
|
=

5.56 %

5.56 %

0 %

44.44 %

