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Abstract: Location prediction has attracted much attention due to its important role in many
location-based services. The existing location prediction methods have large trajectory information
loss and low prediction accuracy. Hence, they are unsuitable for vehicle location prediction of the
intelligent transportation system, which needs small trajectory information loss and high prediction
accuracy. To solve the problem, a vehicle location prediction algorithm was proposed in this paper,
which is based on a spatiotemporal feature transformation method and a hybrid long short-term
memory (LSTM) neural network model. In the algorithm, the transformation method is used to
convert a vehicle trajectory into an appropriate input of the neural network model, and then the
vehicle location at the next time is predicted by the neural network model. The experimental results
show that the trajectory information of an original taxi trajectory is basically reserved by its shadowed
taxi trajectory, and the trajectory points of the predicted taxi trajectory are close to those of the
shadowed taxi trajectory. It proves that our proposed algorithm effectively reduces the information
loss of vehicle trajectory and improves the accuracy of vehicle location prediction. Furthermore,
the experimental results also show that the algorithm has a higher distance percentage and a shorter
average distance than the other predication models. Therefore, our proposed algorithm is better than
the other prediction models in the accuracy of vehicle location predication.

Keywords: location prediction; spatiotemporal feature shadowing; feature static processing; semantic
feature mapping; long short-term memory (LSTM); hybrid LSTM

1. Introduction

With the rapid development and popularization of global positioning technologies and mobile
communication networks, the location information of a moving object can be obtained by many devices,
such as a mobile phone and global position system (GPS)-based equipment. The location information
is the key information to analyze the behavior of the moving object. Based on the location information,
the location predication of the moving object can be performed, which is of great significance in
many location-based services (LBS). In recent years, the location prediction of a moving object was
concerned by many scholars [1,2] and widely applied to many scenarios [3–5], such as package
delivery and advertising recommendation systems. For example, while a package is being delivered,
customers are eager to know where the courier is, and which place he would visit next. For advertising
recommendation systems, places where customers will go can be predicted, and then various kinds of
ads can be recommended to these customers.

The existing location prediction methods mainly include the location prediction methods based on
the Markov chain (MC) model [6–16], the location prediction methods based on frequency pattern (FP)
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mining [17–26], and the location prediction methods based on recurrent neural network (RNN) [27–29].
The location prediction methods based on the MC model are to calculate the probability of the next
location of a moving object by establishing the transfer-probability matrix of the moving object. These
methods have the problems of transfer-state-space explosion and low prediction accuracy. For the
location prediction methods based on FP mining, the moving pattern of a moving object is explored
by mining its historical location trajectories, and then its location is predicted. However, this kind
of method does not consider the sequence relationship of trajectory points in time and space. In the
location prediction methods based on RNN, the trajectory sequence data of a moving object is processed
through the middle recursion layer of the RNN, and then the location of the moving object is predicted.
However, the RNN [28] cannot deal with long sequence dependence very well, thus it will lead to the
gradient explosion and disappearance problems in [30] when dealing with long sequence data.

In recent years, a long short-term memory (LSTM) model [31] was proposed. It can deal with
long sequence dependence very well and has obtained certain results in many fields, such as machine
translation [32], information retrieval [33], and image processing [34]. Therefore, some researchers
proposed some location prediction methods based on the LSTM model [35–37]. The above location
prediction methods usually start with clustering trajectories into frequent regions or stay points,
or simply partitioning trajectories into grids, and then predict the probability of each candidate region,
point or grid, causing large trajectory information loss and low prediction accuracy. In an intelligent
transportation system, the next location of a vehicle generally needs to be accurately predicted according
to the past locations of the vehicle, which needs small trajectory information loss and high prediction
accuracy. This is important for traffic congestion prediction. Hence, the above location prediction
methods are unsuitable for vehicle location prediction.

To solve the problem, we proposed a vehicle location prediction algorithm in this paper.
The algorithm includes a spatiotemporal feature transformation method and a hybrid LSTM neural
network model. The former is used to convert a vehicle trajectory into an appropriate input of the
latter. Then, the vehicle location at the next time is predicted by the latter. The experimental results
indicate that our proposed algorithm effectively reduces the information loss of vehicle trajectory and
improves the accuracy of vehicle location prediction, and is better than the other prediction models in
the accuracy of vehicle location predication.

The remainder of this article is organized as follows. Section 2 provides an overview of the
existing location predication methods. In Section 3, we provide the rationale of our proposed algorithm.
Section 4 describes in detail the experimental process, experimental results, and analysis. Finally,
we conclude the paper in Section 5.

2. Related Works

Recently, studies on the location prediction of a moving object have gained increasing popularity.
In the aspect of the location prediction methods based on the MC model, Gambs et al. [6] proposed a
mobile Markov chain (MMC) model to predict the location of a moving object by fusing the historical
trajectory points of the moving object. In [7], Chen et al. proposed a hidden Markov model (HMM) to
predict the location of a moving object. Mathew et al. [8] proposed a hybrid method to predict a moving
object’s location based on the HMM. This method clusters the moving object’s historical trajectory
points, and trains each category using the HMM. Li et al. [9] proposed a location prediction method
based on a mixed multi-step Markov model, which can solve the problems of insufficient trajectory
information utilization and low prediction accuracy in the first-order Markov model, and the problem
of sharp expansion of state space in the multi-step Markov model. Karatzoglou et al. [10] investigated
the performance of Markov chains with respect to modeling semantic trajectories and predicting
future locations, and proposed semantic-enhanced multi-dimensional Markov chains on semantic
trajectories to predict future locations. In [11], Yang et al. applied the density-based spatial clustering of
applications with noise (DBSCAN) algorithm to cluster trajectory points to obtain stay points, and then
used a variable-order Markov model to predict the next location. Lin et al. [12] proposed a Markov
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location prediction method based on moving behavior similarity and user clustering. In this method,
they proposed a moving behavior similarity calculation method that considers both user transfer
characteristics and user region characteristics. Then they clustered users according to the moving
behavior similarity, and used a first-order Markov model to predict the location of the clustered user
groups. Song et al. [13] proposed a location prediction algorithm based on the Markov model and
trajectory similarity for moving objects, aiming at the problem of poor prediction accuracy of low-order
Markov models and high prediction sparsity of multi-order Markov models. This algorithm takes
the trajectory similarity as an important factor of location prediction, and combines the similarity
factor with the Markov model to get the final prediction result. Li et al. [14] put forward a location
prediction algorithm for a moving object, which is based on the movement tendency of the moving
object. This algorithm not only uses the Markov model to model the moving object’s historical activity
trajectory, but also takes the moving object’s movement tendency as an important factor of location
prediction. It takes all the historical stay regions as candidate regions for a future location. In [15,16],
a novel division method was proposed for preprocessing trajectory data. In this method, the feature
points of an original trajectory are extracted according to the change of trajectory structure, and then
important locations are further extracted by using an improved density peak clustering algorithm to
cluster these feature points. Finally, to predict the next location of a moving user, a multi-order fusion
Markov model based on an Adaboost algorithm was proposed.

In the aspect of the location prediction methods based on FP mining, Chen et al. [17] used
the idea of data mining and the method of spatial region division to analyze and identify a user’s
trajectory points, and mined the user’s movement patterns to predict the user’s movement behavior.
Koren et al. [18] proposed a matrix decomposition method that decomposes a user’s behavior matrix
to determine the next probable location of the user, which considers the geographical location and
other features of the user. Zheng et al. [19] mined the location features related to the user’s activity,
then used the method of matrix decomposition to mine the user’s location. Morzy et al. [20] introduced
a data mining approach to predict the location of a moving object. They mined the location database of
moving objects to discover movement rules. Then, they matched the trajectories of the moving object
with these discovered movement rules to build a location probabilistic model of the moving object.
Morzy et al. [21] presented a new method for predicting the location of a moving object. This method
uses the past trajectories of the moving object, and compounds them with those discovered movement
rules in the moving object’s trajectory database. Deng et al. [22] proposed a method to dynamically
analyze the trajectory pattern of a moving object and predict the trajectory point of the moving object,
which is based on that trajectory data of massive users. In this method, an improved pattern mining
model is used to extract the trajectory frequent pattern of the moving object. Then, a dynamic pattern
tree (DPT) algorithm is used to store and query the trajectory frequent pattern of the moving object,
and a location prediction algorithm is used to calculate the best matching degree and get the predicted
location of the moving object. Jeung et al. [23] forecasted the future location of a user by using
predefined motion functions and linear or nonlinear models, then extracted the movement patterns of
the user by using an Apriori algorithm. Yavas et al. [24] utilized an improved Apriori algorithm to find
association rules with support and confidence. These association rules reveal the co-occurrences of
locations. Li et al. [25,26] proposed two kinds of trajectory patterns: the periodic behavior pattern and
the swarm pattern. Trajectories are first clustered into reference spots, and a Fourier-based algorithm is
utilized to detect periods. Then periodic patterns are mined by hierarchical clustering.

In the aspect of the location prediction methods based on RNN, Liu et al. [27] extended the
original RNN [28], and proposed a spatiotemporal recurrent neural network (ST-RNN) to predict the
next location of a moving object. This method applies the spatiotemporal features, but ignores the
dependence problem of long trajectory sequence, which will lead to the decrease of prediction accuracy.
Molegi et al. [29] proposed a location prediction method, called spatiotemporal features-based recurrent
neural network (STF-RNN). This method is to input the spatiotemporal features directly into the
network, and extract the internal representation of the spatiotemporal features through the network
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self-learning. However, the traditional RNN models cannot deal with the trajectory sequence of large
amounts of historical trajectory data, which will lead to the problems of gradient disappearance,
gradient explosion and historical information loss during parameter training [30], while the LSTM
model [31] can solve these problems. The LSTM model has obtained some achievements in many fields,
such as machine translation [32], information retrieval [33] and image processing [34]. Wu et al. [35]
proposed a spatiotemporal semantic network algorithm based on the LSTM model to predict the
location of a moving object. First, a spatial-temporal-semantic (STS) feature extraction algorithm is
used to convert the trajectory to location sequences with fixed and discrete points in the road networks.
Then, an LSTM-based model is constructed to predict the further location of the moving object.
Gao et al. [36] proposed a location distributed representation model (LDRM) to solve the dimension
disaster, which is caused by too many locations in the trajectory data of a moving object. In this model,
a high-dimensional one-hot vector which is difficult to deal with is reduced to a low-dimensional
location vector which contains the moving object’s motion mode. Then, the model is combined with
the LSTM model to predict the location of the moving object. In [37], Xu et al. proposed a short-term
and long-term memory (ST-LSTM) model based on the spatiotemporal features, aiming at the problem
that the existing location prediction studies ignore the correlation between time and space.

Additionally, the above location prediction methods often start with clustering trajectories into
frequent regions or stay points, or simply partitioning trajectories into grids, and then predict the
probability of each candidate region, point or grid, causing large trajectory information loss and low
prediction accuracy. With the continuous expansion of urban size, the scale of urban traffic network is
growing, and the number of vehicles is also increasing. As a result, traffic congestion has gradually
evolved into an unavoidable problem. In an intelligent transportation system, the next location of a
vehicle generally needs to be accurately predicted according to the past locations of the vehicle, which
needs small trajectory information loss and high prediction accuracy. This is important for traffic
congestion prediction. Hence, the above location prediction methods cannot be applied in vehicle
location prediction.

3. Our Proposed Algorithm

Our proposed algorithm consists of a spatiotemporal feature transformation method and a hybrid
LSTM neural network model, as shown in Figure 1. In this algorithm, the original trajectory data of a
vehicle is preprocessed at first. Then, the spatiotemporal feature transformation method is used to
convert the preprocessed vehicle trajectory data into an input X that is suitable for the hybrid LSTM
neural network model. Finally, X is run through the hybrid LSTM neural network model, and an
output Y is obtained.
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In Figure 1, the spatiotemporal feature transformation method includes a spatiotemporal feature
shadowing process, a feature staticizing process and a semantic feature mapping process. The hybrid
LSTM neural network model consists of one or more LSTM combination layers, zero or more Dense
combination layers, and one output combination layer. The LSTM combination layer includes an LSTM
layer, an Activation layer, and a Dropout layer. The Dense combination layer includes a Dense layer,
an Activation layer, and a Dropout layer. The output combination layer includes a Dense layer and an
Activation layer. The Dropout layer means that some neural units are temporarily discarded from the
neural network according to a certain probability during the training process, preventing over-fitting.

3.1. Spatiotemporal Feature Transformation

3.1.1. Spatiotemporal Feature Shadowing Process

The original trajectory of a vehicle is usually composed of a series of trajectory points, and its
expression is L =

{
pi
∣∣∣i = 1, 2, 3, · · · , N

}
, where pi denotes the i-th trajectory point of the original

vehicle trajectory and pi = (loni, lati, ti), loni is the longitude of pi, lati is the latitude of pi, ti is the
time of pi, and N is the number of trajectory points of the original vehicle trajectory. As a result of the
different sampling intervals and possible loss of trajectory points, the trajectory points of the original
vehicle trajectory may be uneven on the time dimension. If the original trajectory data of the vehicle is
directly imported into a location predication model, the uncertainty of the model will increase, and the
prediction accuracy of the model will decrease. Therefore, the original trajectory data of the vehicle
needs to be shadowed according to its spatiotemporal features, making the trajectory points of the
shadowed vehicle trajectory even on the time dimension.

To solve this problem, a proper interval should be selected firstly. The time interval is mainly
determined by the demand for specific services, and should be generally larger than the average
sample rate [35]. If a time interval ∆t is selected, then the number of trajectory points of the shadowed
vehicle trajectory will be as follows:

N′ =
⌊ tN − t1

∆t

⌋
(1)

Correspondingly, the original vehicle trajectory L =
{
pi
∣∣∣i = 1, 2, 3, · · · , N

}
will be transformed

into the shadowed vehicle trajectory L′ =
{
p′ j

∣∣∣∣ j = 1, 2, 3, · · · , N′
}
, where p′ j denotes the j-th trajectory

point of the shadowed vehicle trajectory and p′ j = (lon′ j, lat′ j, t′ j), lon′ j is the longitude of p′ j, lon′ j is
the latitude of p′ j, t′ j is the time of p′ j. If t′ j = ti, then lon′ j = loni and lat′ j = lati, i.e., p′ j = pi.
Otherwise, lon′ j and lat′ j are calculated respectively as follows:

lon′ j =
loni+1 − loni

ti+1 − ti
(t′ j − ti) + loni (2)

lat′ j =
lati+1 − lati

ti+1 − ti
(t′ j − ti) + lati (3)

where ti and ti+1 are the time of the previous trajectory point pi and the time of the next trajectory point
pi+1, respectively. In other words, the previous trajectory point pi and the next trajectory point pi+1 are
linearly shadowed to p′ j at t′ j.

3.1.2. Feature Staticizing Process

Stationary time series data is of great significance to time series modeling [38]. Therefore,
time series data should be checked first to see if it is non-stationary. If it is non-stationary, then it
needs to be transformed into stationary time series data before it is modeled. Time series graph is the
simplest method to check whether time series data is stationary [39]. Unit root test is a test method
commonly used in the statistical test. It is more accurate and important for testing the stability of time
series data [40].
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In this paper, we first checked whether the shadowed vehicle trajectory

L′ =
{
p′ j

∣∣∣∣ j = 1, 2, 3, · · · , N′
}

is stationary by observing its time series graph. Then we used
the unit root test method of Augment Dickey-Fuller (ADF) [40] to further test whether it is
stationary. The ADF test method consists of the following three models [40], as shown in Equations
(4)–(6), respectively.

∆Xt = δXt−1 +
m∑

i = 1

βi∆Xt−i + εt (4)

∆Xt = α+ δXt−1 +
m∑

i = 1

βi∆Xt−i + εt (5)

∆Xt = α+ βt + δXt−1 +
m∑

i = 1

βi∆Xt−i + εt (6)

where t denotes the time, X denotes the tested variable, ∆X denotes the one-order difference of X,
α denotes the constant term, βt denotes the trend term, βi∆Xt−i denotes the lagging difference term,
m denotes the number of lagging difference terms, and ε denotes the residual term. The original
assumption of the ADF test method is H0 : δ = 0. An ADF test starts with the third model, then the
second model, and the first model. If the ADF test rejects H0 : δ = 0, then the ADF test can be stopped.
Otherwise, the ADF test continues until the first model is tested.

If the shadowed vehicle trajectory L′ =
{
p′ j

∣∣∣∣ j = 1, 2, 3, · · · , N′
}

is non-stationary, then it needs to

be statically processed. In this paper, L′ =
{
p′ j

∣∣∣∣ j = 1, 2, 3, · · · , N′
}

was statically processed by using
one-order difference, which makes it stationary. The expression of one-order difference is as follows:

∆Xt = Xt+1 −Xt (7)

Correspondingly, the shadowed vehicle trajectory L′ =
{
p′ j

∣∣∣∣ j = 1, 2, 3, · · · , N′
}

would be

transformed into a one-order difference vehicle trajectory L′′ =
{
∆p′k

∣∣∣k = 1, 2, 3, · · · , N′ − 1
}
, where

∆p′k denotes the k-th one-order difference trajectory point of the one-order difference vehicle trajectory
and ∆p′k = (∆lon′k, ∆lat′k, ∆t′k). ∆lon′k denotes the one-order difference between the longitude of
p′k+1 and the longitude of p′k, and ∆lon′k = lon′k+1 − lon′k. ∆lat′k denotes the one-order difference
between the latitude of p′k+1 and the latitude of p′k, and ∆lat′k = lat′k+1 − lat′k. ∆t′k denotes the
one-order difference between the time of p′k+1 and the time of p′k, and ∆t′k = t′k+1 − t′k.

3.1.3. Semantic Feature Mapping Process

After the spatiotemporal feature shadowing process and the feature staticizing process,
the one-order difference vehicle trajectory L′′ =

{
∆p′k

∣∣∣k = 1, 2, 3, · · · , N′ − 1
}

cannot
be directly imported into a location prediction model. It is necessary to reconstruct
L′′ =

{
∆p′k

∣∣∣k = 1, 2, 3, · · · , N′ − 1
}

semantically to meet the location prediction model. During
time series modeling, it is usually necessary to use the last time step as an input variable and use the
next time step as an output variable. Therefore, to predict the location of the next time, we proposed
the semantic feature mapping process of L′′ =

{
∆p′k

∣∣∣k = 1, 2, 3, · · · , N′ − 1
}
, as shown in Figure 2.

From Figure 2, the prediction of trajectory points of L′ =
{
p′ j

∣∣∣∣ j = 1, 2, 3, · · · , N′
}

is realized

through the prediction of one-order difference trajectory points of L′′ =
{
∆p′k

∣∣∣k = 1, 2, 3, · · · , N′ − 1
}
.

For example, for an input ∆p′1 = p′2 − p′1, there is an output ∆p′2 = p′3 − p′2 that is predicted,
so p′3 = ∆p′2 − p′2. In other words, p′3 is predicted by using p′1 and p′2.
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3.2. Hybrid LSTM Neural Network

3.2.1. LSTM Layer

The LSTM layer consists of a series of LSTM units, called LSTM model [31]. Compared with
other neural networks, the LSTM model has three multiplicative units, i.e., input gate, output gate,
and forget gate. The input gate is used to memorize some information of the present, the output
gate is used for output, and the forget gate is used to choose to forget some information of the past.
The multiplicative unit is mainly composed of a sigmoid function and a dot product operation, where
the sigmoid function has a range of [0, 1] and the dot product operation can determine how much
information is transmitted. If the value of the dot product operation is 0, then no information is
transmitted. All information is transmitted if the value of the dot product operation is 1. In the forget
gate, all the information from the previous hidden state and the current input is passed to the sigmoid
function, which has a range of [0, 1]. Close to 0 means discard, and close to 1 means keep. The LSTM
unit [31] is shown in Figure 3.
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In Figure 3, ft denotes the forget gate, it denotes the input gate, and ot denotes the output gate,
which together control the cellular state Ct that stores historical and future information. xt and ht

respectively represent input and output information of the LSTM unit. The processing expressions of
the LSTM unit [31] are as follows:

ft = σ(W f · [ht−1, xt] + b f ) (8)
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it = σ(Wi · [ht−1, xt] + bi) (9)
~
Ct = tanh(WC · [ht−1, xt] + bC) (10)

Ct = ft ∗Ct−1 + it ∗
~
Ct (11)

ot = σ(Wo[ht−1, xt] + bo) (12)

ht = ot ∗ tanh(Ct) (13)

Equation (8) is a forget gate expression, which takes the weighted sum of cell state at time t, the cell
output at time t − 1, and the input at time t as the input of activation function to get the output of the
forget gate. The activation function is generally a logistic sigmoid function. Equation (9) is an input gate
expression, where the parameters and principles are the same as those of Equation (8). Equation (10)
calculates the candidate value of memory unit at the time t, where the activation function can be
a tanh function or a logistic sigmoid function. Equation (11) combines past and present memories.
Equation (12) is an output gate expression, where the parameters and principles are identical with
those of Equation (8). Equation (13) is an expression for cell output, where the activation function is
generally a tanh function. W is a weight vector matrix, and b is a bias vector.

3.2.2. Activation Layer

The Activation layer is mainly used to improve the fitting ability of the model. In Figure 1,
each combination layer contains an Activation layer. The activation layer of the output combination
layer can use specific activation functions, such as logistic sigmoid function for binary classification
and SoftMax function for multiple classification [41]. There are many activation functions that can
be used to the Activation layers of the LSTM and Dense combination layers, such as tanh function,
sigmoid function, Rectified Linear Unit (ReLU) function, linear function, hard-sigmoid function,
softsign function, and softplus function [41–43].

The tanh function is completely differentiable [41]. Its function image is anti-symmetric and its
symmetric center is at the origin, so its output is a zero center. The mathematical expression of the tanh
function [41] is as follows:

f (x) =
sinhx
cosh x

=
ex
− e−x

ex + e−x (14)

However, like many traditional activation functions of neural networks, the tanh function
has the vanishing gradient problem. Once the value of the tanh function reaches saturation area,
the gradient begins to vanish, and the learning speed becomes slower. To alleviate these problems,
researchers proposed a variant of the tanh function, called softsign function [42]. The softsign function
is anti-symmetric, decentralized and fully differentiable, and returns a value between −1 and 1.
The difference is that the slope of the softsign function is smaller than that of the tanh function in
the activation area, and the softsign function enters the saturation area later than the tanh function.
The mathematical expression of the softsign function [42] is as follows:

f (x) =
x

1+|x|
(15)

The linear function is a simple and typical activation function for regression [43], and the
mathematical expression of the linear function [43] is as follows:

f (x) = x (16)

3.2.3. Dense Layer

The Dense layer mainly classifies feature vectors and maps the samples from the feature space to
the labels [44]. It consists of two parts: the linear part and the nonlinear part. The linear part mainly
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performs linear transformation and analyzes the input data. The calculation method of this part is
linear weighted sum, whose mathematical expression [44] is as follows:

Z = W ∗X + b (17)

where Z is the output vector of the linear part. It can be expressed as Z = [Z1, Z2, · · · , Zm]
T.

X represents the input vector of the linear part, which is expressed as X = [X1, X2, · · · , Xn]
T. W is a

weight vector matrix of m× n. b is a bias vector, which is expressed as b = [b1, b2, · · · , bm]
T.

The nonlinear part performs nonlinear transformation, namely corresponding function
transformation. This operation has two functions as follows. (1) Data normalization. That is
to say, no matter what the previous linear part does, all the values of the nonlinear part will be limited
to a certain range. (2) Breaking the linear mapping relation before. In other words, if the Dense layer
has no non-linear part, it is meaningless to add multiple neural networks in the model.

4. Experiments and Results Analysis

4.1. Experimental Environment and Dataset

The experimental environment in this paper is as follows: Intel (R) Core (TM) i7-4790 3.6 GHz
dual-core processor with 8 GB memory. The operating system is 64 bit Windows 10, the programming
language is Python, and the deep learning framework is Keras. The experimental dataset is the taxi
trajectory data from August 3rd to 30th in Chengdu City, Sichuan Province, China. The dataset contains
more than 1.4 billion trajectories of 14,000 taxis. Each taxi trajectory is from 06:00:00 to 23:59:59 every
day and has five fields, which are respectively Taxi ID, Latitude, Longitude, Passenger Carrying Status
(1 for carrying passengers, 0 for no passengers), and Time. The taxi trajectory of Taxi ID 4 on 8 August
2014 is shown in Table 1.

Table 1. The taxi trajectory of Taxi ID 4.

Taxi ID Latitude Longitude Passenger Carrying Status Time

4 30.642221 103.985691 1 2014/8/8 6:00:06
4 30.642635 103.986682 1 2014/8/8 6:00:15
. . . . . . . . . . . . . . .
4 30.656147 104.060689 1 2014/8/8 23:59:49
4 30.655033 104.060724 1 2014/8/8 23:59:59

In this paper, we selected the taxi trajectory of Taxi ID 4 on 8 August 2014 to train and test the
above vehicle location predication algorithm.

4.2. Experimental Performance Evaluation

The goal of this paper is to predict the next trajectory point of a taxi, i.e., the specific location
of the taxi at the next time. Therefore, the most effective evaluation method for the above vehicle
location predication algorithm is to calculate the relative distance between the shadowed trajectory
point and the predicted trajectory point of the taxi. The relative distance between two trajectory points
is calculated by using the Haversine method [45], and the Haversine formula is as follows:

D = 2R ∗ arcsin(

√
sin2(

φ2 −φ1

2
) + cos(φ1) cos(φ2) sin2(

λ2 − λ1

2
)) (18)

where D denotes the relative distance between two trajectory points, R denotes the earth radius, φ1 and
φ2 denote the latitudes of the two trajectory points respectively, and λ1 and λ2 denote the longitudes
of the two trajectory points, respectively.
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For the i-th predicted trajectory point, if Di denotes the relative distance between the i-th shadowed
trajectory point and the i-th predicted trajectory point, then the average distance for all predicted
trajectory points is as follows.

Daver =
1
n

n∑
i = 1

Di (19)

where Daver denotes the average distance for all predicted trajectory points, n denotes the number of
all predicted trajectory points. The average distance for all predicted trajectory points can be used to
evaluate the above vehicle location predication algorithm.

Additionally, a distance percentage for all predicted trajectory points was proposed to evaluate
the above vehicle location predication algorithm, its expression is as follows:

P =
1
n

n∑
i = 1

ai (20)

where P denotes the distance percentage for all predicted trajectory points, ai = 1 if Di ≤ d, ai = 0 if
Di > d, and d denotes a specified relative distance. For all predicted trajectory points, the smaller the
average distance and the higher the distance percentage, the better the prediction performance of the
above vehicle location predication algorithm.

According to the taxi trajectory of Taxi ID 4 on 8 August 2014, for most ∆lon′k and ∆lat′k, it is not
a non-zero value until the fourth decimal place. The relative distance is 11m for each unit of the fourth
decimal place in longitude or latitude, therefore d is set to 11m when training the model.

4.3. Experimental Process

4.3.1. Spatiotemporal Feature Transformation Process

For the taxi trajectory of Taxi ID 4 on 8 August 2014, the sampling frequency distribution of
different sampling intervals is shown in Figure 4.
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According to Figure 4, the sampling frequency of 10 seconds is the highest. Considering that the
speed of the taxi is fast, and in order to minimize the trajectory information loss of the taxi, we set
the time interval ∆t to 10 seconds in this paper. As a result, the number of trajectory points of the
shadowed taxi trajectory is 6479 according to Equation (1). The longitudes and latitudes of trajectory
points of the shadowed taxi trajectory are calculated by Equations (2) and (3), respectively. It makes
that the original taxi trajectory is transformed into the shadowed taxi trajectory.
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For the longitudes and latitudes of trajectory points of the shadowed taxi trajectory, their time
series graphs are shown in Figures 5 and 6.
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From Figures 5 and 6, the longitudes and latitudes of trajectory points of the shadowed taxi
trajectory are non-stationary, and we used the ADF test method to further test them. The ADF test
results of them are shown in Table 2.

Table 2. The Augment Dickey-Fuller (ADF) test results of the longitudes and latitudes of trajectory
points of the shadowed taxi trajectory.

Model Variable t-Statistic p-Value 1% Level 5% Level 10% Level

The first model
Longitude 0.133675 0.7247 −2.565319 −1.940873 −1.616667
Latitude 0.120147 0.7206 −2.565320 −1.940873 −1.616667

The second model
Longitude −2.575786 0.0981 −3.431182 −2.861792 −2.566946
Latitude −2.144854 0.2271 −3.431183 −2.861793 −2.566947

The third model
Longitude −2.810999 0.1932 −3.959455 −3.410498 −3.127016
Latitude −2.357264 0.4022 −3.959456 −3.410499 −3.127016

According to Table 2, the longitudes and latitudes of trajectory points of the shadowed taxi
trajectory are non-stationary because their t-Statistic values are greater than the threshold at all levels
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and their p-values are not very close to 0. To make the shadowed taxi trajectory stationary, we applied
one-order difference to it, generating a one-order difference taxi trajectory.

For the one-order difference taxi trajectory, the time series graph of the one-order longitude
difference is shown in Figure 7, and the time series graph of the one-order latitude difference is shown
in Figure 8.
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Figure 7. The time series graph of the one-order longitude difference. 
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From Figures 7 and 8, for the one-order difference taxi trajectory, the one-order longitude difference
and the one-order latitude difference are stationary, and we use the ADF test method to further test
them. The ADF test results of them are shown in Table 3.

Table 3. The ADF test results of the one-order longitude and latitude differences of the one-order
difference taxi trajectory.

Model Variable t-Statistic p-Value 1% Level 5% Level 10% Level

The first model
Longitude −8.562614 0.0000 −2.565319 −1.940873 −1.616667
Latitude −8.739988 0.0000 −2.565320 −1.940873 −1.616667

The second model
Longitude −8.563044 0.0000 −3.431182 −2.861792 −2.566946
Latitude −8.740014 0.0000 −3.431183 −2.861793 −2.566947

The third model
Longitude −8.565636 0.0000 −3.959455 −3.410498 −3.127016
Latitude −8.749874 0.0000 −3.959456 −3.410499 −3.127016
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According to Table 3, for the one-order difference taxi trajectory, the one-order longitude and
latitude differences are stationary because their t-Statistic values are less than the threshold at all levels
and their p-values are 0.

Finally, to predict the taxi location of the next time, the semantic feature mapping process of the
one-order difference taxi trajectory was performed according to Figure 2.

4.3.2. Hybrid LSTM Neural Network Modeling Process

To transform the one-order difference taxi trajectory into supervised learning problems and
evaluate the prediction accuracy of the model, we divided the trajectory points of the one-order
difference taxi trajectory into a training set and a testing set, where the first 80% (i.e., 5182 trajectory
points) of the one-order difference taxi trajectory is the training set and the last 20% (i.e., 1296 trajectory
points) of the one-order difference taxi trajectory is the testing set. The hybrid LSTM neural network
modeling process is as follows:

(1) Network Structure Tuning

When tuning the network structure in Keras, the hybrid LSTM neural network structure shown
in Figure 1 selects one or more LSTM combination layers, zero or more Dense combination layers,
and one output combination layer, where each LSTM combination layer only includes an LSTM layer,
each Dense combination layer only includes a Dense layer, and the output layer only includes a Dense
layer. The parameters of the LSTM layer are set to the default values of Keras [46], and the parameters
of the Dense layer are set to the default values of Keras [46]. Additionally, the batch_size is set to 1,
the number of neurons is set to 5, the time of epoch is set to 300, the optimizer is set to Adam and its
learning rate is set to 0.0008. The number of neurons, the time of epoch, the optimizer and its learning
rate are further tuned in the subsequent experiments. Figure 9 is the distance percentage of different
LSTM layer number, and Figure 10 is the distance percentage of different Dense layer number.Information 2019, 10, x FOR PEER REVIEW 14 of 23 
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From Figures 9 and 10, we can see that the distance percentage is the maximum (i.e., 0.6203) when
the number of LSTM layers is 2, and we can see that the distance percentage is the maximum (i.e.,
0.6211) when the number of Dense layers is 5. Therefore, the hybrid LSTM neural network structure
shown in Figure 1 only selects two LSTM combination layers, four Dense combination layers and one
output combination layer in the subsequent experiments.

(2) Neurons Number Tuning

The number of neurons in the neural network has a certain impact on the output of the model,
and an appropriate number of neurons can improve the prediction accuracy of the model. When tuning
the number of neurons in Keras, the hybrid LSTM neural network structure shown in Figure 1 only
selects two LSTM combination layers, four Dense combination layers, and one output combination
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layer, where each LSTM combination layer only includes an LSTM layer, each Dense combination layer
only includes a Dense layer, and the output layer only includes a Dense layer. The above parameter
values except the number of neurons are applied here. Figure 11 is the distance percentage of different
neurons number.
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From Figure 11, when the number of neurons is 6, the distance percentage is the maximum (i.e.,
0.6312). Therefore, the number of neurons is set to 6 in the subsequent experiments.

(3) Optimizer Tuning

In deep learning, in order to minimize the given objective function, the descending gradient can
be optimized. Different optimizers can be used to further optimize the target problem. The commonly
used optimizers include Adam, RMSProp, Adagrad, Adamax, Nadam, Adadelta, Stochastic Gradient
Descent (SGD), etc. [46]. When tuning the optimizers in Keras, the hybrid LSTM neural network
structure shown in Figure 1 only selects two LSTM combination layers, four Dense combination layers,
and one output combination layer, where each LSTM combination layer only includes an LSTM layer,
each Dense combination layer only includes a Dense layer, and the output layer only includes a Dense
layer. The above parameter values except the optimizers and their learning rates are applied here.
Figure 12 is the distance percentage of different optimizers and learning rates.



Information 2020, 11, 84 15 of 23

Information 2019, 10, x FOR PEER REVIEW 15 of 23 

 

 

Figure 11. The distance percentage of different neurons number. 

From Figure 11, when the number of neurons is 6, the distance percentage is the maximum (i.e., 
0.6312). Therefore, the number of neurons is set to 6 in the subsequent experiments. 

(3) Optimizer Tuning 

In deep learning, in order to minimize the given objective function, the descending gradient 
can be optimized. Different optimizers can be used to further optimize the target problem. The 
commonly used optimizers include Adam, RMSProp, Adagrad, Adamax, Nadam, Adadelta, 
Stochastic Gradient Descent (SGD), etc. [46]. When tuning the optimizers in Keras, the hybrid LSTM 
neural network structure shown in Figure 1 only selects two LSTM combination layers, four Dense 
combination layers, and one output combination layer, where each LSTM combination layer only 
includes an LSTM layer, each Dense combination layer only includes a Dense layer, and the output 
layer only includes a Dense layer. The above parameter values except the optimizers and their 
learning rates are applied here. Figure 12 is the distance percentage of different optimizers and 
learning rates. 

 

Figure 12. The distance percentage of different optimizers and learning rates. 

According to Figure 12, when the optimizer is Adamax and its learning rate is 0.000032, the 
distance percentage is the maximum (i.e., 0.6636). Therefore, the optimizer is set to Adamax and its 
learning rate is set to 0.000032 in the subsequent experiments. 

(4) Activation Function Tuning 

Figure 12. The distance percentage of different optimizers and learning rates.

According to Figure 12, when the optimizer is Adamax and its learning rate is 0.000032, the distance
percentage is the maximum (i.e., 0.6636). Therefore, the optimizer is set to Adamax and its learning
rate is set to 0.000032 in the subsequent experiments.

(4) Activation Function Tuning

When tuning the activation functions in Keras, the hybrid LSTM neural network structure shown
in Figure 1 only selects two LSTM combination layers, four Dense combination layers, and one output
combination layer. In order to further improve the prediction accuracy of the model, we added an
Activation layer to each of the above combination layers, i.e., each LSTM combination layer includes
an LSTM layer and an Activation layer, each Dense combination layer includes a Dense layer and an
Activation layer, and the output layer includes a Dense layer and an Activation layer. The activation
function of the Activation layer of each LSTM combination layer is the same as that of the Activation
layer of each Dense combination layer, called intermediate activation function. The activation function
of the Activation layer of the output combination layer is called output activation function. When tuning
the intermediate activation function in Keras, the output activation function is set to the linear function
shown as Equation (16), and the above parameter values are applied here. Table 4 is the distance
percentage of different intermediate activation functions.

Table 4. The distance percentage of different intermediate activation functions.

Intermediate Activation Function Distance Percentage

Relu 0.6636
Sigmoid 0.6512

Tanh 0.6597
Softplus 0.6597
Softsign 0.6644

Hard_sigmoid 0.6497

From Table 4, when the intermediate activation function is Softsign, the distance percentage is the
maximum (i.e., 0.6644). Therefore, when tuning the output activation function in Keras, the intermediate
activation function is set to Softsign, and the above parameter values are applied here. Table 5 is the
distance percentage of different output activation functions.
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Table 5. The distance percentage of different output activation functions.

Output Activation Function Distance Percentage

Sigmoid 0.00001
Tanh 0.6528

Softplus 0.00001
Linear 0.6651

Hard_sigmoid 0.00001

From Table 5, when the output activation function is the linear function shown as Equation (16),
the distance percentage is the maximum (i.e., 0.6651). Therefore, the output activation function is set to
the linear function shown as Equation (16) in the subsequent experiments.

(5) Dropout Tuning

When tuning the dropout rate in Keras, the hybrid LSTM neural network structure shown in
Figure 1 only selects two LSTM combination layers, four Dense combination layers and one output
combination layer. An appropriate dropout rate can sometimes improve the predication accuracy of
the model, therefore we added a Dropout layer to each of the combination layers, i.e., each LSTM
combination layer includes an LSTM layer, an Activation layer, and a Dropout layer, each Dense
combination layer includes a Dense layer, an Activation layer, and a Dropout layer, and the output
layer includes a Dense layer and an Activation layer. The intermediate activation function is set to
Softsign, the output activation function is set to the linear function shown as Equation (16), and the
above parameter values are applied here. Figure 13 is the distance percentage of different dropout rates.Information 2019, 10, x FOR PEER REVIEW 17 of 23 
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According to Figure 13, when the dropout rate is 0.1, the distance percentage is the maximum (i.e.,
0.6358), less than 0.6651 as shown in Figure 14. Hence, the dropout rate in each Dropout layer should
be set 0, i.e., no neural units need to be discarded for the one-order difference taxi trajectory.

(6) Epoch Time Tuning

In Figure 12, when the optimizer is Adam and its learning rate is 0.0000064, the distance percentage
is raised to 0.6551. When the optimizer is RMSprop and its learning rate is 0.0000064, the distance
percentage is raised to 0.6543. When the optimizer is Adagrad and its learning rate is 0.004, the distance
percentage is raised to 0.6551. When the optimizer is Adamax and its learning rate is 0.000032,
the distance percentage is raised to 0.6636. When the optimizer is Nadam and its learning rate is
0.000032, the distance percentage is raised to 0.6481. When the optimizer is Adadelta and its learning
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rate is 0.02, the distance percentage is raised to 0.6543. When the optimizer is SGD and its learning rate
is 0.0008, the distance percentage is raised to 0.6049.
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Generally, when the learning rate is low, the learning speed will be slow. Therefore, for the
Adagrad with a learning rate of 0.004, the Adamax with a learning rate of 0.000032, and the Adadelta
with a learning rate of 0.02, their distance percentages are raised to a higher value more quickly. In order
to improve the training performance of the model, we further tuned the epoch time for them. When
tuning the epoch time in Keras, the hybrid LSTM neural network structure shown in Figure 1 only
selects two LSTM combination layers, four Dense combination layers, and one output combination
layer, where each LSTM combination layer includes an LSTM layer, an Activation layer and a Dropout
layer, each Dense combination layer includes a Dense layer, an Activation layer, and a Dropout layer,
and the output layer includes a Dense layer and an Activation layer. The intermediate activation
function is set to Softsign, the output activation function is set to the linear function shown as Equation
(16), and the above parameter values except the epoch time are applied here. Figure 14 is the distance
percentage of different epoch times.

According to Figure 14, when the epoch time is 120, the distance percentage for the Adadelta
with a learning rate of 0.02 is higher than that for the Adagrad with a learning rate of 0.004 and
that for the Adamax with a learning rate of 0.000032, and is raised to 0.6505. This is very close to
the maximum distance percentage 0.6636 above, while the epoch time is reduced from 300 to 120.
Therefore, the optimizer is set to Adadelta and its learning rate is set to 0.02, and the epoch time is set
to 120 finally.

4.4. Experimental Results and Analysis

According to the above experimental process, for the one-order difference taxi trajectory, the optimal
hybrid LSTM neural network structure is composed of two LSTM combination layers, four Dense
combination layers and an output combination layer, where each LSTM combination layer includes an
LSTM layer, an Activation layer, and a Dropout layer, each Dense combination layer includes a Dense
layer, an Activation layer, and a Dropout layer, and the output layer includes a Dense layer and an
Activation layer, the batch_size value is 1, the epoch time is 120, the neurons number is 6, the optimizer
is Adadelta and its learning rate is 0.02, the intermediate activation function is Softsign, the output
activation function is linear, the dropout rate in each Dropout layer is 0, and the other parameters are
the default values in Keras.

Our experimental environment is based on a common CPU computer, and the CPU time for the
above model is 480 seconds. Generally, a high-performance GPU computer runs tens to hundreds
of times faster than a common CPU computer. Hence, the above model can be executed on a
high-performance GPU computer or a GPU cluster to meet the actual application requirements of
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the model. Through the above experimental process, the final distance percentage is raised to 0.6505.
The original, shadowed, and predicted trajectories of the taxi for the testing set are shown in Figure 15.
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From Figure 15, the original, shadowed, and predicted trajectories of the taxi for the testing set
are very similar, where five-minute taxi trajectories without a turning part are marked by (a) and
five-minute taxi trajectories with a sharp turning part are marked by (b). Figure 16 is the original,
shadowed, and predicted trajectories of the taxi for the marked (a), and Figure 17 is the original,
shadowed, and predicted trajectories of the taxi for the marked (b).
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According to Figures 16 and 17, the original and shadowed trajectories of the taxi are very close,
regardless of a non-turning part or a turning part. It means that the trajectory information of the
original taxi trajectory is basically reserved by the shadowed taxi trajectory. For the non-turning part,
the trajectory points of the predicted taxi trajectory are close to those of the shadowed taxi trajectory.
The trajectory points of the predicted taxi trajectory are more off those of the shadowed taxi trajectory
after the turning part. The reason is that the driving direction of the taxi needs to be corrected by
several time steps during location predication process.
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Additionally, for the testing set, the distance percentage and average distance of the random
forest (RF) regression, the K nearest neighbor (KNN) regression, the multi-layer perceptron (MLP), the
RNN, and our proposed algorithm were further compared, as shown in Table 6. When training the RF
regression, n_estimators = 100, bootstrap = true, and the other parameters are the default values. When
training the KNN regression, n_neighbors = 5, weights = uniform, algorithm = auto, leaf_size = 30,
and the other parameters are the default values. When training the MLP, the network structure
includes five Dense layers and one output layer, where the batch_size value is 1, the epoch time is 120,
the number of neurons is 6, the optimizer is Adadelta and its learning rate is 0.02, the activation function
is Softsign, and the other parameters are the default values. When training the RNN, the network
structure includes two SimpleRNN layers, five Dense layers, and one output layer, where the batch_size
value is 1, the epoch time is 120, the number of neurons is 6, the optimizer is Adadelta and its learning
rate is 0.02, the activation function is Softsign, and the other parameters are the default values.

Table 6. The distance percentage and average distance of different predication algorithms for the
testing set.

Algorithm Distance Percentage Average
Distance (m)d = 11 m d = 20 m d = 30 m d = 40 m

RF Regression 0.6065 0.6968 0.7662 0.8465 17.48
KNN regression 0.5949 0.7045 0.7940 0.8565 16.87

MLP 0.6219 0.7068 0.7878 0.8603 20.30
RNN 0.5918 0.6906 0.7785 0.8488 18.50

Our proposed algorithm 0.6505 0.7392 0.8164 0.8843 14.96

From Table 6, we can see that our proposed algorithm is obviously better than the other prediction
algorithms in the accuracy of location predication.

In Table 6, feature staticizing was used in these prediction algorithms. If feature staticizing was
not used in our proposed algorithm, then the distance percentage and the average distance of the
algorithm for the testing set is shown in Table 7.
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Table 7. The distance percentage and average distance of our proposed algorithm with no feature
staticizing for the testing set.

Algorithm Distance Percentage Average
Distance (m)d = 11 m d = 20 m d = 30 m d = 40 m

Our proposed algorithm
with no feature staticizing 0.0278 0.1019 0.7330 0.8040 32.02

From Tables 6 and 7, we can see that our proposed algorithm with feature staticizing is obviously
better than our proposed algorithm with no feature staticizing in the accuracy of location predication.
Hence, feature staticizing is effective in our proposed algorithm.

5. Conclusions

The existing location predication methods have large trajectory information loss and low prediction
accuracy, so they are unsuitable for vehicle location predication of an intelligent transportation
system. To solve the problem, we proposed a vehicle location prediction algorithm based on
spatiotemporal feature transformation and hybrid LSTM neural network in this paper. In this
algorithm, a spatiotemporal feature transformation method is used to convert a vehicle trajectory into
an appropriate input of a hybrid LSTM neural network model, and then the vehicle location at the
next time is predicted by the model. The spatiotemporal feature transformation method includes
a spatiotemporal feature shadowing process, a feature staticizing process, and a semantic feature
mapping process. The spatiotemporal feature shadowing process makes the trajectory points of the
vehicle trajectory even on the time dimension, increasing the certainty of the model and reducing
the information loss of the vehicle trajectory. The feature staticizing process is used to test whether
the vehicle trajectory is stationary, and then makes the vehicle trajectory stationary. The semantic
feature mapping process is used to reconstruct the vehicle trajectory semantically to meet the location
prediction of the model. Therefore, the spatiotemporal feature transformation method can reduce
the information loss of the vehicle trajectory and improve the predication accuracy of the model.
The hybrid LSTM neural network model consists of one or more LSTM combination layers, zero or
more Dense combination layers, and one output combination layer. The LSTM combination layer
includes an LSTM layer, an Activation layer, and a Dropout layer. The Dense combination layer
includes a Dense layer, and an Activation layer and a Dropout layer. The output combination layer
includes a Dense layer and an Activation layer. The hybrid LSTM neural network structure and its
parameters can be optimized for the vehicle trajectory, further improving the prediction accuracy of
the model.

After the experiments of our proposed algorithm and the other prediction models for a taxi
trajectory, the experimental results show that the trajectory information of the original taxi trajectory
is basically reserved by the shadowed taxi trajectory, and the trajectory points of the predicted taxi
trajectory are close to those of the shadowed taxi trajectory. Hence, our proposed algorithm effectively
reduces the information loss of vehicle trajectory and improves the accuracy of vehicle location
prediction. Additionally, the experimental results also show that our proposed algorithm has a higher
distance percentage and a shorter average distance than the other predication models. Therefore,
our proposed algorithm is better than the other prediction models in the accuracy of vehicle location
predication. In this study, the influence of the actual road network on the algorithm is not considered.
We will further validate and improve our proposed algorithm to meet the demand for vehicle location
prediction in the actual road network.
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