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Abstract: As an emerging network architecture and technology, mobile edge computing (MEC) can
alleviate the tension between the computation-intensive applications and the resource-constrained
mobile devices. However, most available studies on computation offloading in MEC assume that
the edge severs host various applications and can cope with all kinds of computation tasks, ignoring
limited computing resources and storage capacities of the MEC architecture. To make full use of the
available resources deployed on the edge servers, in this paper, we study the cross-server computation
offloading problem to realize the collaboration among multiple edge servers for multi-task mobile
edge computing, and propose a greedy approximation algorithm as our solution to minimize the
overall consumed energy. Numerical results validate that our proposed method can not only give
near-optimal solutions with much higher computational efficiency, but also scale well with the
growing number of mobile devices and tasks.

Keywords: mobile edge computing; cross-server computation offloading; energy consumption
minimization; greedy algorithm

1. Introduction

The past decade has witnessed wireless communications experiencing an explosive growth
in terms of both the number of mobile devices (MDs) and services to be supported [1]. Lots of
new mobile applications (APPs) like interactive gaming, natural language processing, and face
identification have emerged and attracted great attention [2]. These kinds of APPs usually require
rich computation resource to process their large amount of data. However, due to the limited
physical size, the battery-powered and resource-constrained MDs cannot meet their Quality of
Service (QoS) requirements of low computing latency and energy consumption. The conflict between
resource-hungry APPs and resource-constrained MDs poses an unexampled challenge to deploy the
coming new generation mobile networks and Internet of Things (IoT).

As a promising technology to cope with the ever-rising computation demands, mobile edge
computing (MEC) [3,4] can alleviate the tension between the computation-intensive APPs and the
resource-constrained MDs. MEC integrates cloud computing functionalities into mobile systems
efficiently by deploying MEC servers (MECSs) at the edge of pervasive wireless access networks.
Unlike conventional cloud computing systems which needs long propagation delay for data
transmission, MEC can offer powerful computation capability in close proximity to MDs. Offloading
the MD’s computation tasks to the MECS can significantly improve the computation efficiency
including processing latency and energy consumption [5].

Recently, plenty of ink has been poured on the problem of mobile edge computation offloading
(MECO) [6,7], and many novel offloading schemes have been proposed to optimize either computing
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overhead [8,9] or communication resources [10,11]. From the aspects of mobile user number, type of
computation tasks, and the involved MEC servers, these research work mainly considered the network
scenarios of multi-user single server [12], multi-user multi-server [13], multi-task multi-server [14],
and multi-user multi-task multi-server [15,16]. There is no doubt that the related literature provides
precious viewpoints for the performance optimization and resource allocation of MEC. However,
most existing MECO studies usually assume the MEC severs host various applications and can handle
all the MDs’ computation tasks. In fact, constrained by the high cost of infrastructure deployment
and maintenance, the computing and storage capacities of a MECS cannot be as large as unbounded.
Therefore, it is impractical for one MECS to be deployed all types of applications to provide computing
services for multitudinous tasks. How to use the limited number of APP types hosted on MECSs to
devise effective multi-server collaborative task offloading strategies, is deserving further investigation.

Toward this end, we present this paper to discuss the cross-server computation offloading
problem for multiple tasks with multi-server in MEC networks, where multiple MDs request various
types of computation tasks, and the MECSs are deployed limited computing capabilities. A greedy
cross-server offloading solution is proposed to optimize the energy consumption with the constraints
of accomplishing latency and computing resources. In particular, the main contributions of this paper
are summarized as follows.

• Given the multi-user multi-server multi-task mobile edge computing network architecture,
we mainly study the problem of cross-server computation offloading, which considers how
to improve the utility of the limited computation resources deployed on edge servers in MEC.

• We first formally formulate the cross-server multiple task computation offloading problem to
optimize the total energy consumption given the constraints of task accomplishing time and
the computing resources hosted on the MECSs. Then a greedy energy-aware task offloading
algorithm, i.e., GAA, is presented to solve this problem. Compared to the basic exhaustive
algorithm (BEA), GAA can obtain the approximate optimal consumed energy with computational
complexity of O(n ·m2), which is much more efficient than BEA with running time of O(3n). Here,
n and m denote the number of tasks and MECSs, respectively.

• Extensive experiments have been performed to verify the efficiencies of our proposed algorithms.
Performance evaluation shows that for both different number of MDs and various computing
models, GAA can always give the optimal consumed energy very close to BEA, while taking
much short running time.

The remainder of this paper is structured as follows: Section 2 introduces the related work in recent
years. Section 3 presents the system model. In Section 4 we first define the problem of cross-server
multi-task computation offloading, then propose two detailed algorithms, BEA and GAA. Section 5
presents the extensive performance evaluation, and finally Section 6 concludes the whole paper.

2. Related Work

Over recent years, the computation offloading for MEC has attracted much attention from
academia to industry, and plenty of research has been carried out on such a challenging issue [17,18].
Among them, most research studied the problem of offloading multi-user’s tasks to one single MECS.
For instance, Qin et al. introduced a distributed non-cooperative game model for multiple users
media MECO in MEC to achieve the maximum benefits in terms of transmission time, energy cost,
and computation cost [19]. Zheng et al. [20] presented a distributed multi-agent stochastic learning
algorithm to reduce computation cost for the multi-user MECO problem. In [21], to jointly optimize
the overall completing delay and the users’ offloaded computation workloads, Wu et al. designed a
non-orthogonal multiple access (NOMA) enabled MECO scheme, in which a group of users partially
offload their computation tasks to a MECS via the NOMA-based transmission.

In multi-task single server offloading scenario, the authors in [22,23] proposed a three-step
algorithm for jointly optimizing the resources allocation of both computation and communication in the
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case with and without computing access point, respectively. Considering multiple users may usually
offload their tasks to one MECS simultaneously, Chen et al. [24] used Lyaponuv Optimization Approach
to determine the energy harvesting policy, and presented greedy maximal scheduling algorithms
to solve the multi-task offloading problem for multiple users. In [25], the authors investigated the
multi-task offloading in NOMA-based MEC, and adopted a two-step energy-efficient approach to
obtain the total minimum energy consumption by optimizing computing resource allocation and the
NOMA-transmission duration.

In addition, multi-user multi-task offloading in the case of multiple MECSs has been also attracted
much attention. In this case, a critical issue is how to allocate edge computing resource to minimize
the service cost and maximize the service capacity. To the end, Tran et al. [26] discussed the task
offloading and resource allocation in such an environment and defined this problem as a mixed
non-linear program to optimize MDs’ transmission power, and computing resource allocation at the
MECSs. The authors used quasi-convex and convex optimization schemes, and presented a heuristic
algorithm as the solution. Dai et al. [15] proposed a two-tier computation offloading framework for
multi-task in heterogeneous networks with multiple MECSs to minimize overall energy consumption.
They jointly optimized user association and computation offloading while considering the computing
resource allocation. Synthetically using local, edge and remote cloud computing models, the authors
in [16] proposed a linear programing relaxation-based algorithm and a distributed deep learning-based
offloading algorithm to guarantee QoS of the MEC network and to minimize MDs’ energy consumption
in the multi-user multi-task and multi-server MEC networks. Li et al. in [27] studied the MECO
management problem in heterogenous network to minimize the network-level energy consumption
and developed an iterative solution framework to obtain transmission power allocation strategy and
computation offloading scheme.

The existing research work, although providing insights into diverse perspectives about
computation offloading in MEC, has one common limitation: all of them assumed that the MECS could
host all kinds of applications to compute various kinds of computation tasks. However, constrained by
the MEC architecture, it is unrealistic to deploy as much computing resource as in cloud center on
the MECSs, and each MECS can be only deployed limited types of applications. MECO problem
in multi-task multi-server scenarios should take into account the collaboration of MECSs, and it is
necessary to leverage the available resource on MECSs to design task offloading strategy. Therefore,
the solutions proposed in previous works cannot be directly applicable to the problem in our work.
In light of this, we elaborate in this paper a cross-sever multi-task offloading problem and design an
efficient greedy algorithm to optimize the computing overhead in terms of accomplishing time and
energy consumption.

3. System Model

In this paper, we mainly consider multi-task computation offloading scenario in multi-server MEC.
As shown in Figure 1, N access points (APs) S = {1, 2, ..., N} are located in a certain region, and each
AP is installed with a MECS to provide enhanced computing service to the MDs. Please note that one
AP may be a micro base station, or a small cell, or a WiFi access point. To easy present, in the following,
the notation ’AP’ refers to both AP and MECS. There are M MDs, denoted as U = {1, 2, ..., M},
randomly distributed in the coverage area of the N APs. Suppose that there are B orthogonal frequency
channels denoted asW = {1, 2, ..., B} for each AP, and there exits an AP through which MD i (i ∈ U )
can offload its computation tasks to the edge servers or to the remote cloud center (RCC). There are K
types computation tasks requested by all MDs, defined as T = {t1, t2, ..., tK}. Let Ti = {ti1, ti2, ..., tiL}
denote the set of tasks requested by MD i, where Ti ⊂ T , L ≤ K. For MD i’s type-j computation
task, i.e., tij, it can generally be defined as tij = (αij, βij, τmax

ij ), where αij denotes the input data size
of tij, βij is the requisite CPU cycles for computing tij, and τmax

ij is the maximum tolerated latency to
accomplish tij. In particular, the information of βij can be obtained by applying the methods proposed
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in [28]. For convenience, the detailed notations and definitions used in this paper are summarized in
Table 1.

To handle the computation tasks requested by MDs, corresponding applications must be deployed
on the APs. The application hosting in the AP that can process type-j task is called the APP-j. It is
assumed that there exist K types applications provided by the APs, denoted by A = {a1, a2, ..., aK}.
Each AP v, with the maximum computing capacity Fv, can only host at most Q types applications
Av = {av1, av2, ..., avQ}, where Av ⊂ A, Q ≤ K. It is to say, one AP cannot handle all types of
computation tasks, if AP v does not host the corresponding APP-j, it must forward the task to other
APs for processing, thus cross-server offloading is caused. As depicted in Figure 1, AP2 can directly
compute task1 and task2 of MD1, while it must forward the tasks of MD2 to AP5, or to AP3 and
AP4, respectively.

APP2

APP4
APP2

APP3

APP3

APP4

APP1

APP2

APP1

APP3

TASK1

TASK2

TASK2

TASK4

MD1

MD2

MD3

MD5
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AP2

AP3

AP4
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Access Point MEC Server Mobile Device

Fiber Link Wireless Link

Remote 

Cloud
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Figure 1. A multi-task multi-server MEC architecture: MEC servers deploying at the access points can
process various types of tasks simultaneously. MDs can offload the tasks to MECSs or RCC.

Table 1. Notations and definitions

Notation Definition Notation Definition

S set of APs and MECSs W set of wireless channels of each AP
A APP types provided by all APs Av APP types hosted on the AP v
U set of MDs T task types requested by all MDs
Ti task types of MD i tij type-j task of MD i
αij input data size of tij βij required CPU cycles to compute tij

τmax
ij maximum latency to accomplish tij µb

i,v selection of channel b for MD i
µi,v channel selection of AP v for MD i wb bandwidth of channel b
σ background noise power gb

i,v channel gain between MD i and AP v
pi transmission power of MD i Ib

i,v interference of channel b in AP v
rb

i,v data rate of MD i accessing AP v ρij task tij’s computing decision
τlc

ij completing time in local computing elc
ij consumed energy in local computing

f lc
i computation capability of MD i ηlc

i consumed energy coefficient of MD i
τec

ij completing time in edge computing eec
ij consumed energy in edge computing

τec
ij,tr transmission delay of tij τec

ij, f w forwarding delay of tij among APs
τec

ij,co computing delay of tij on MECS γij,v AP v hosting type-j APP or not
Fv maximum computing capacity of AP v f ec

ij,v computing ability allocated to tij

τrc
ij completing time in RCC erc

ij consumed energy in RCC
τrc

ij,pr propagation delay over fiber link λij, f w number of forwarding hops
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3.1. Communication Model

It is assumed that the MDs do not change their positions during the process of data transmission,
and that each MD can only directly connect to one AP. Let the decision variable µb

i,v ∈ {0, 1} denote
channel selection of MD i. If MD i chooses channel b of AP v to transmit the tasks, µb

i,v = 1, otherwise,
µb

i,v = 0. Furthermore, we have µi,v = ∑
b

µb
i,v = 1, if MD i select AP v to upload its tasks, and otherwise

µi,v = ∑
b

µb
i,v = 0. When MD i access its closest AP v via channel b, the data rate can be given as

rb
i,v = wblog2(1 +

pigb
i,v

σ + Ib
i,v
), (1)

where wb and σ are separately the channel bandwidth and the background noise power, pi and gb
i,v are

the transmission power of MD i and the wireless channel gain, respectively. Ib
i,v is the interference of

channel b suffered from other MDs using the same channel, which is calculated as

Ib
i,v =

N

∑
l=1,l 6=v

M

∑
k=1,k 6=i

pk · gb
k,v · µ

b
k,l . (2)

3.2. Task Computing Model

Generally speaking, each computation task has totally three computing models to select, i.e.,
computing locally at its MD’s CPU, processing on the edge servers, and offloading to the RCC. To
optimize its computing overhead in terms of processing delay and energy consumption, MD i can
optimally select one from the three computing models for the type-j task. In particular, we use
ρij ∈ {−1, 0, 1} to denote task tij’s computing decision, where ρij = −1 represents that MD i decides
to compute type-j task locally, ρij = 0 means that task tij will be uploaded to the APs and be executed
there, and ρij = 1 is that MD i chooses to compute its task tij on the RCC.

(1) Local Computing:
When MD i select local computing to accomplish type-j task, i.e., ρij = −1, the accomplishing

time τlc
ij and the consumed energy elc

ij of task tij are calculated as

τlc
ij =

βij

f lc
i

, (3)

elc
ij = βij · ηlc

i . (4)

In above equations, f lc
i and ηlc

i denote the computation capability (i.e., CPU cycles per second) and the
energy consumption coefficient for per CPU cycle of MD i, respectively.

(2) Edge Computing:
For the computing decision ρij = 0, task tij is chosen to be offloaded to the edge servers, and then

will be computed on the servers. In this case, tasks requested by MDs will first be transmitted to
their closest AP via the wireless link. Then the AP will compute the task if it has the corresponding
applications. Otherwise, the tasks will be forwarded to other APs who host such applications through
the fiber links among them, and at last be process there. Thus, the accomplishing time of task tij, τec

ij ,

consists of three parts: (i) τec
ij,tr =

βij

rb
i,v

, the time cost for transmitting tij via wireless channel between MD i

and the AP in close proximity, (ii) τec
ij, f w, the forwarding delay among APs, and (iii) τec

ij,co, the computing
delay in corresponding AP. Here, we neglect delay for transmitting computed results from APs to
MDs, since for most mobile applications, the data size of computed results is much smaller than that
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of original input data. Let γj,v = 1 denote that AP v hosts type-j APP, and γj,v = 0 otherwise, then τec
ij

can be calculated as
τec

ij = τec
ij,tr + γj,v · τec

j,co + (1− γj,v) · τec
ij, f w. (5)

And the consumed energy can be given as

eec
ij = pi · τec

ij . (6)

After transmitted to the AP v, task tij will be processed if there exists the corresponding application.
Let f ec

ij,v denote the computing ability of the AP v allocated to task tij, the time for AP to process tij

is τec
ij,co =

βij
f ec
ij,v

. If task tij cannot find its corresponding application on the AP v, it must be routed

to a target AP d which hosts the required application. If we neglect the queueing time in each AP,
the forwarding delay τec

ij, f w can be given as

τec
ij, f w = λij, f w ·

mij

c
, (7)

where λij, f w is the number of routing hops between AP v and d, and c is the data transmission rate
over fiber link.

(3) Remote Computing:
For the offloading decision ρij = 1, MD i will upload its computation task tij to the RCC via

the fiber backbone networks, and then the RCC server will compute the task. Notice that there are
always rich computation resources deployed on the RCC, thus the computing time of tij in this model
can be neglected, and only the delay for tij uploading via radio access and the propagation delay for
transmitting the task through fiber link from the AP to the RCC are taken into account, i.e.,

τrc
ij =

βij

rb
i,v

+ τrc
ij,pr, (8)

where τrc
ij,pr is the propagation delay. The consumed energy in this case is then given as

erc
ij = pi · τrc

ij . (9)

4. Cross-Server Multi-Task Computation Offloading

In this section, we first elaborate the problem formulation of cross-server multi-task computation
offloading, and then propose our solutions to the problem.

4.1. Problem Formulation

From the analysis in Section 3, we can see that each task tij can be either computed locally by
using MD i’s CPU, or be processed on the APs, or be uploaded to the RCC for processing. According to
different computing and offloading models, the accomplish time τij and the consumed energy eij of tij
may be diverse. Please note that most MDs are capacity-limited and battery-powered, our target is to
make full use of computation resource provided by distributed APs and centralized RCC, and to devise
an optimal computation offloading strategy so as to optimize the energy consumption, under the
constraint of maximum tolerated latency for all MDs’ computation tasks. Specifically, the problem of
cross-server multi-task computation offloading can be formulated as follows.
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Definition 1. Cross-server Multi-task Computation Offloading (CMCO): Given the initial network
information, including computation tasks requested by MDs, applications deployment on APs, the computing
capability and the energy consumption per CPU cycle of MDs and APs, the transmit power of each MD, etc.,
the CMCO problem is to find an optimal computation offloading strategy for all MDs that minimizes the overall
energy consumption with the constrained maximum tolerated accomplish delay of each task, while collaboratively
using the computation resources of the MDs, the edge servers and the RCC.

Based on the system model described in Section 3, the CMCO problem can be formulated as

min
{ρij}

M

∑
i=1

L

∑
j=1

ρij · eij

s.t. C1 : ρij · τij ≤ τmax
ij , 1 ≤ i ≤ M, 1 ≤ j ≤ L,

C2 :
M

∑
i=1
|µi,v| ≤ B, ∀s ∈ S ,

C3 :
M

∑
i=1

N

∑
j=1

γj,v · f ec
ij,v ≤ Fv, ∀v ∈ S ,

C4 : ρij ∈ {0,−1, 1}, 1 ≤ i ≤ M, 1 ≤ j ≤ L,

C5 : µi,v ∈ {0, 1}, 1 ≤ i ≤ M, ∀v ∈ S ,

C6 : γj,v ∈ {0, 1}, 1 ≤ j ≤ L, ∀v ∈ S (10)

where eij (i.e., the consumed energy of task tij ) can be represented as

eij =


elc

ij , i f ρij = −1,
eec

ij , i f ρij = 0,
erc

ij , i f ρij = 1.
(11)

In (10), the constraints C1 guarantee the accomplishing time of tij must be less than the maximum
permissible latency, and C2 ensure that the totally used wireless channels of each AP by MDs cannot
be exceed B. The constraints C3 guarantee that all computation resource allocated to tasks processed
on each AP should not surpass its maximum computing capacity. The constraints C4 mean that each
task tij can choose only one offloading decision, C5 state that each MD can only directly communicate
with one AP, and C6 declare whether the tasks can be processed on the given AP. Furthermore, it is
easy to prove that the CMCO problem is NP-hard [29].

4.2. Solutions

(1) An Basic Exhaustive Algorithm: To solve the problem of CMCO, the most intuitive solution is to
list all possible computation offloading decisions of all tasks, and then select the optimal one which can
give the minimum overall consumed energy and meet the requirement of given permissible latency.
Algorithm 1 describes the details of BEA.
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Algorithm 1 a basic exhaustive algorithm (BEA).

Input: U , S ,W , Ti, Av, pi, f lc
i , f ec

v , ηlc
i , c, σ, ∀i ∈ U , ∀v ∈ S .

Output: D-the set of optimal offloading decision set, Emin-the minimum overall energy consumption.
1: Initialize D = φ, Emin = +∞;
2: list all offloading decision combinations for each task, and compute their corresponding overall

consumed energy;
3: desert those decision combinations which cannot satisfy the accomplishing time constraints of all

tasks;
4: find the minimal overall energy consumption Emin of the remained combinations, and record the

corresponding combination into D;
5: return D, Emin.

Obviously, BEA described in Algorithm 1 is very effective, and it can surely find an optimal
offloading decision to the CMCO problem. However, it must take an extremely long time to run,
since BEA must list all optional combinations of offloading decision for all tasks. Because each task
has three offloading decisions to select, it is easy to prove that the running time of BEA is O(3n),
where n is the total number of all tasks. Due to the long running time, BEA can only run in the MEC
network where the number of tasks is very small, and it is unworkable in practice when the task
number is very large. Here, BEA is presented just as a benchmark for the performance comparison of
our GAA solution.

(2) A Greedy Approximation Algorithm: As BEA is impracticable for many computation tasks,
we further design a greedy algorithm (GAA) to the CMCO problem. In GAA, we first call Procedure 1
to compute the accomplishing time (τij) and energy consumption (eij) of each task, and use set Ct to
record the tasks whose τij can meet their maximum tolerated latency. Then, we divide the tasks in
Ct into three different sets Clc, Cec and Crc, according to their τij and eij separately by adopting three
different computing models. Next, the number of occupied wireless channels of the corresponding AP
s, i.e., ch_nums, is iteratively updated. Finally, the total energy consumption and the corresponding
optimal offloading decisions are obtained. The details of GAA are given in Algorithm 2.

Algorithm 2 a greedy approximation algorithm (GAA).

Input: U , S ,W , Ti, Av, pi, f lc
i , f ec

v , ηlc
i , c, σ, ∀i ∈ U , ∀v ∈ S .

Output: D-the set of optimal offloading decision set, Emin-the minimum overall energy consumption.
1: Initialize ch_num = {0}, γij = {0}, Ct = Clc = Cec = Clc = φ;
2: for each task tij do
3: call Procedure 1 to compute τec

ij , eec
ij , τlc

ij , elc
ij , τrc

ij , and erc
ij ;

4: record tij into Ct if max{τlc
ij , τec

ij , τrc
ij } ≤ τmax

ij ;
5: end for
6: for all tij ∈ Ct do
7: if (τlc

ij > τmax
ij OR min{eec

ij , erc
ij } ≤ elc

ij ) AND ch_numv ≤ B then
8: record tij into Cec if eec

ij < erc
ij , otherwise, record tij into Crc;

9: ch_numv = ch_numv + 1;
10: else record tij into Clc;
11: end if
12: end for
13: compute the overall energy consumption, Emin, D = {Clc, Cec, Crc} ;
14: return D, Emin.

In Procedure 1, we mainly use open shortest path first (OSPF) routing strategy [30] to find the AP
who hosts the corresponding APP-j. When the target AP is found and its maximum computing capacity
is satisfied, the task tij will be computed on this AP, then the corresponding τec

ij and eec
ij can be calculated.
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Procedure 1 a cross-server offloading procedure

1: λmin = +∞, Sid = s;
2: for all d ∈ S do
3: search APP-j on AP d;
4: if MECS d hosting APP-j then
5: calculate λv−>d, the routing hops from AP v to d using OSPF routing strategy;
6: γij,d = γij,d + 1;
7: end if
8: if λmin > λv−>d AND γij,d · f ec

ij,d ≤ Fd then
9: λmin = λv−>d, Sid = d;

10: end if
11: end for
12: compute τec

ij and eec
ij ;

13: compute τlc
ij , elc

ij , τrc
ij , and erc

ij ;

As described in Algorithm 2, GAA uses a greedy method to select task tij’s computing model
according the minimum consumed energy. Compared to BEA in Algorithm 1, although GAA can
only achieve an approximation optimal result in the CMCO problem, it has a bigger advantage on
computational efficiency, and can be applied in the MEC network with large number of tasks in
practice. In particular, we have the following demonstration on the computational complexity of GAA.

Proposition 1. GAA described in Algorithm 2 has the computational complexity of O(n ·m2), where m and n
denote the MECS number and the total computation task number, respectively.

Proof of Proposition 1. As described in Algorithm 2, GAA mainly includes three parts, i.e., recording the
tasks satisfying their tolerated latency into Ct, dividing these tasks into three different sets according
to their accomplishing time and energy consumption, and computing the Emin. In particular, steps 2-5,
i.e., the for loop, run n times, and the running time of step 3, which calls Procedure 1 to compute τij,
is O(m2) [30], where m and n are separately the number of APs and total computation tasks. Thus,
the running time of steps 2–5 is O(n ·m2). From step 6 to 12, the for loop runs at most n times, so steps
6-12 also need to run O(n) time. Moreover, step 13 needs to run n times to compute Emin. At last,
the overall computational complexity of GAA in Algorithm 2 can be calculated as the sum of them, i.e.,
O(n ·m2).

5. Numerical Results

In this section, we presented some performance evaluation to evaluate our proposed cross-server
computation offloading schemes for multi-task mobile edge computing.

5.1. Experimental Settings

Without loss of generality, we took a MEC network with coexistence of RCC and MEC servers.
There are 50 MDs distributed randomly in the coverage area of 10 APs, each of which has 50 orthogonal
channels with the bandwidth 40 MHz. The neighboring APs are set 1 km apart from each other, and the
distance from RCC to the APs is 1000 km. The data rate of the fiber link is assumed to be 1 Gbps. Each AP
has the same computation capacity of 4 GHz, and the CPU frequency of a MD is 0.8∼1 GHz. There are
total 10 types of computation tasks and corresponding applications in the network, each MD has two
types of tasks and each AP can host two types of APPs. Furthermore, each MD has the transmit power of
100 mW and the background noise is set as -100 dBm. The input data size of a task varies from 0.5∼1 MB,
and the CPU cycles to process a computation task tij is assumed to be 0.1∼1 Gigacycles. The maximum
tolerated processing time for tij is set as 0.1∼2 s. All evaluations were performed on a PC with Intel
i5-8265U CPU and 8.00GB RAM, using MATLAB R2016a in Windows 10 OS.
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5.2. Performance Evaluation

The computation effectiveness of our proposed GAA algorithm are shown in Figures 2 and 3.
To compare the performance between our solutions and existing algorithms, besides GAA and BEA,
a well-known heuristics solution, simulated annealing algorithm (SAA) is also presented in our
experiments, since SAA is widely adopted to solve NP-hard problem [31]. In addition, we use a
randomized algorithm (RANA), which is repeated the random selection process 1000 times and taken
the average value, to introduce statistical tests into our experiments.

Figure 2 presents the evaluation results among the three algorithms, in which x-axis is the number
of MDs and y-axis denotes the computed minimum energy consumption. Considering the extremely
high computational complexity, the number of MDs varies from 2 to 7 in the duration of this experiment.
From Figure 2, we can see that GAA can obtain a near-optimal result in terms of minimum consumed
energy compared to BEA and its performance outperform SAA when the number of MDS increasing,
while RANA has a bad performance. It is confirmed by experimental results that GAA can achieve a
near-optimal energy consumption to the CMCO problem. Figure 2 also presents that the consumed
energy shows monotonic growth with the number of MDs increasing. Obviously, more MDs will
provide more computation tasks to be processed, and more tasks will inevitably consume more energy.
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Figure 2. Performance comparison of the overall minimum energy consumption among BEA, GAA,
SAA, and RANA with different numbers of MDs.

Figure 3 illustrates the computational complexity comparison among GAA, BEA, SAA, and RANA.
From this figure, what can be clearly seen is that BEA has very high computational complexity
than GAA and SAA, the running time of GAA is shorter than that of SAA. With the number of
MDs increasing, the running time of BEA gets excessively larger while that of GAA remains almost
unchangeable. Moreover, RANA has the lowest computational complexity. From above experimental
evaluation, we can have the knowledge that although BEA gives the best solution to CMCO problem,
it is not acceptable in practical applications due to its exceedingly high computational complexity.
On the contrary, although GAA can only achieve near-optimal solutions, it has the advantage of
very higher computing efficiency than BEA, and thus it could provide practicable solutions to the
cross-server computation offloading in MEC.



Information 2020, 11, 96 11 of 15

2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7
0

50

100

150

200

250

300

350

R
un

ni
ng

 ti
m

e (
´1

06  m
s)

Number of MDs (M)

 BEA
 GAA
 SAA
 RANA

R
un

ni
ng

 ti
m

e 
(m

s)

Number of MDs (M)

Figure 3. Illustration of the running time comparison among BEA, GAA, SAA, and RANA with
different numbers of MDs.

To further confirm the advantages of our proposed GAA, we run experiments on GAA and SAA
with more MDs, i.e., M varies from 10 to 100 with the increment of 10, and compare their obtained
minimum energy consumption with those by adopting other computing models, i.e., computing locally
by MDs’ CPU, processing all the tasks on the MESs, and using GAA without RCC, respectively. Figure 4
presents the comparison results concerning these strategies. We can see from this figure, both GAA
and SAA can obtain lower overall consumed energy than both local and edge computing models,
which validate the necessity of task offloading. Moreover, one can also find that GAA always has better
performance than SAA. Another aspect shown in Figure 4 is that the performance of GAA adopting
all three computing models can achieve a little improvement over that of GAA without remote cloud
offloading, which corroborates the superiority of collaborative computation offloading among the
RCC, edge servers, and the MDs.
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Figure 4. Illustration of the calculated minimum consumed energy results by adopting five different
computing and offloading schemes, i.e., local computing, edge computing, GAA without remote
offloading, and GAA as well as SAA methods.
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From Figure 4, we can also know that when the number of MDS M < 80, the overall consumed
energy of local computing is less than that of edge computing, while with the MDs number growing,
the latter increases sharply and even exceeds the former. The reason is that with more and more tasks
being uploaded to the APs via the wireless channels, the interference suffered from other MDs in
the same channel increases, which decreases the uplink data rate, resulting in a greater computation
overhead in terms of accomplishing time and energy consumption.

To identify how the computation resource of APs affects the total accomplishing time as well
as the energy consumption, we deploy different number of APP types on each AP and compare the
performances. This group of experiments is performed using GAA to get the near-optimal consumed
energy. Here the number of MDs is set as 50 and that of APP types hosted on each MECS varies from
1 to 10. Figure 5 illustrates the comparisons of the obtained total energy consumption. From this
figure, one can easily know that when the number of APP types, i.e., Q, increases, the total energy
consumption decreases. When Q ≤ 9, the obtained results reduces slowly, while when Q = 10,
the total energy consumption shows a significant decline. This is due to the fact that if one AP hosts all
types of APPs, it can process all types of computation tasks and need not forward them to other MECs,
thus the total accomplishing time is reduced, and the energy consumption decreases.
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Figure 5. Comparisons illustration of the energy consumption with different number of APP types
hosted on each AP.

5.3. Discussions

From above numerical results, we can observe that given the system model described in Section 3
and the corresponding parameter settings, GAA can efficiently solve the CMCO problem. However,
the proposed system model and the formulated problem are all based on theoretical analysis, and the
performance evaluation is performed using computer simulation, without experimental examination in
real-world systems. Theoretical method can quickly construct system model and define the optimizing
objective, but it usually needs some assumptions to neglect several network factors. While experimental
techniques can precisely measure the actual system performance, this way may have strong pertinence
and is lack of generality. Moreover, our system model mainly discusses the problem of cross-server
task offloading and forwarding, which does not consider how to dispense one computational task to
different edge servers in MEC, especially in heterogeneous distributed system [32].
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6. Conclusions

In this paper, we have elaborated the problem of cross-server multi-task computation task
offloading for energy consumption minimization in MEC networks. We first formulated this issue as a
constrained optimization problem and then proposed a greedy approximation algorithm, i.e., GAA,
as its solution. Different numbers of MDs and APP types, as well as various computing models were
adopted in our performance evaluation. Experimental results validated that for the cross-server task
offloading problem, GAA could achieve near-optimal performance compared to exhaustive algorithms
with much shorter running time.
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AP access point
APP application
BEA basic exhaustive algorithm
CMBP classical maximum cardinality bin packing
CMCO cross-server multi-task computation offloading
GAA greedy approximation algorithm
IoT Internet of Things
MD Mobile device
MEC mobile edge computing
MECO MEC offloading
MECS MEC server
NOMA non-orthogonal multiple access
OSPF open shortest path first
QoS quality of service
RCC remote cloud center
SAA simulated annealing algorithm
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