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Abstract: Predicting the categories of actions in partially observed videos is a challenging task in the
computer vision field. The temporal progress of an ongoing action is of great importance for action
prediction, since actions can present different characteristics at different temporal stages. To this end,
we propose a novel multi-task deep forest framework, which treats temporal progress analysis as
a relevant task to action prediction and takes advantage of observation ratio labels of incomplete
videos during training. The proposed multi-task deep forest is a cascade structure of random forests
and multi-task random forests. Unlike the traditional single-task random forests, multi-task random
forests are built upon incomplete training videos annotated with action labels as well as temporal
progress labels. Meanwhile, incorporating both random forests and multi-task random forests can
increase the diversity of classifiers and improve the discriminative power of the multi-task deep forest.
Experiments on the UT-Interaction and the BIT-Interaction datasets demonstrate the effectiveness of
the proposed multi-task deep forest.
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1. Introduction

During the past decade, activity prediction has been attracting increasing interest [1–4], motivated
by many potential applications in video surveillance, auto driving, and elderly care. Action prediction
takes partially observed videos as input and makes a decision before an action is fully executed. Similar
to the human cognitive processes, action prediction methods establish the relationship between the
partial observations and action categories by taking advantage of the prior knowledge. For example, it
is difficult for a man who has never watched a fencing competition to infer the activity of a fencing
athlete. Nevertheless, after watching several competitions, he can tell that the athlete is about to do
fencing when the athlete is unsheathing the sword.

Action prediction is an important task related to action recognition [5–7] that classifies an action
into a certain category after capturing the complete observations. It is evident that predicting
actions with incomplete videos is more challenging compared with recognizing actions with full
videos. Particularly, an ongoing action can present different motion patterns with sequentially arrived
observations, thus the temporal progress of ongoing actions is of great importance for action prediction.
However, temporal progress of actions in an input incomplete video is not available during testing.

To overcome the above problem, this paper treats action prediction and temporal progress analysis
as two relevant tasks and incorporates them in a multi-task learning framework. Although temporal
progress of actions in testing videos cannot be directly observed, we can benefit from the observation
ratios of incomplete training videos. The observation ratio represents the proportion of frames that
have been observed currently, and can be calculated through dividing the number of frames in an
incomplete video by the total number of frames in the corresponding complete videos. It indicates the
temporal progress of a training video and can offer important clues for action prediction.
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We present a novel Multi-Task Deep Forest (MTDF) framework inspired by the success of
gcForest [8]. As shown in Figure 1, the proposed MTDF is a cascade structure of single-task Random
Forests (RF) [9] and Multi-Task Random Forests (MTRF). Each level of the cascade exploits two RFs
and two MTRFs to learn mid-level features of an input incomplete video. The mid-level features and
the original video feature are concatenated to obtain an augmented representation, which is the input
of the next level. The final decision of the action category is made upon the mid-level features of the
last level. In the proposed MTDF, two kinds of forests (i.e., RF and MTRF) are employed to enhance
the diversity so that the ensemble of multiple forests can learn discriminative mid-level features better.
Unlike the traditional single-task RF, our MTRF consists of multiple multi-task decision trees that
are built upon samples annotated with both action labels and observation ratio labels indicating the
temporal progress of actions. A multi-task decision tree jointly deals with the action prediction task
and the temporal progress recognition task. Specifically, in the construction of a multi-task decision
tree, one type of labels is randomly selected for node split.
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Figure 1. Overview of the proposed multi-task deep forest.

The structure of the paper is as follows. A brief summary of the relevant literature is presented in
Section 2. Section 3 gives a fine description of the proposed multi-task deep forest framework and
explains how to construct a multi-task random forest in detail. Experimental study of the proposed
method is shown in Section 4, and Section 5 summarizes the conclusions and future work.

2. Related Work

In recent years, human action prediction has become a hot topic in computer vision, and the main
task is to recognize the action category before it is fully executed. Ryoo [1] proposed the definition
of action prediction in 2011. He presented integral bag-of-words (IBOW) and dynamic bag-of-words
(DBOW) to deal with the action prediction problem. IBOW analyzes the status of ongoing actions
from video streams, while DBOW considers the sequential structures of human action. Cao et al. [2]
formulated action prediction task as a posterior-maximization problem by using spatiotemporal
features of segments. They applied sparse coding on calculating the likelihood of each temporal stage.
Lan et al. [3] proposed a hierarchical representation that describes human movements at different
levels and developed a max-margin framework for prediction. Kong et al. [4] proposed a multi-scale
discriminative model incorporating local and global temporal dynamics of actions. Wang et al. [10]
achieved action prediction by matching a test incomplete video with training complete action videos.
Considering the characteristics of action prediction, they improved generalized time warping [11] and
presented temporally-weighted generalized time warping method that aims to align an incomplete
action sequence at an early stage.
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Meanwhile, deep learning methods are widely used to tackle complicated learning tasks in
recent years. Ma et al. [12] employed LSTM for action prediction and added ranking losses in LSTM
training procedure. Kong et al. [13] proposed deep sequential context networks, which learns from
fully-executed actions to supplement the missing effective features of partial videos. Singh et al. [14]
presented an integrated detection network to process optical flow images for early action prediction
and localization. Wang et al. [15] and Kong et al. [16] predicted actions by using different types of
adversarial networks, the former put both partial videos and complete videos into the Generative
Adversarial Network (GAN) to get the simulative enhanced features, and the latter used a feature
generator to generate representative and discriminative features. Based on 3D skeleton sequences, Liu
et al. [17] proposed a scale selection network composed of a dilated convolutional network and an
activation sharing scheme. Schydlo et al. [18] applied an encoder–decoder recurrent neural network
for predicting multiple and variable-length sequences, and introduced simultaneous prediction for
this problem.

Recently, Zhou et al. [8] proposed the multi-Grained Cascade Forest (gcForest), which utilized
two random forests [9] and two complete random forests [19] in each level of cascade. In addition, the
gcForest has much fewer hyper-parameters than classical deep neural networks. The model complexity
benefits from the performance evaluation mechanism, which means it can perform well even when
the input data are on a small-scale. Inspired by the gcForest, we design a novel multi-task deep forest
framework for action prediction. Due to the observation that actions present different characteristics at
different stages, we believe that the observation ratio of videos can provide important cues for action
prediction. Accordingly, our multi-task deep forest framework treats action prediction and temporal
progress analysis as two relevant tasks, and is trained on incomplete videos annotated with both the
action label and the observation ratio label.

3. Materials and Methods

Constructions of Multi-Task Deep Forest and Multi-task Random Forest are detailed in this
section. The random forest is introduced in Section 3.2. Moreover, details of generating a class vector
is presented in Section 3.3.2.

3.1. Multi-Task Deep Forest

In this section, we introduce the proposed Multi-Task Deep Forest (MTDF), which is a cascade
structure extended from gcForest. The general structure of MTDF is illustrated in Figure 1. As shown
in Figure 1, MTDF is composed of multiple levels, each of which is an ensemble of four forests, i.e.,
two multi-task random forests and two random forests [9].

Concretely, we extract dense trajectories from an incomplete video and utilize bag-of-words
model to build the original video feature vector, which is then input into the first level of the MTDF.
At each level, one forest generates one class vector indicating the probability that this video belongs
to each category. Then, as shown in Figure 2, four class vectors constructed by forests of a level are
concatenated with the original feature vector as a new feature, which is input into the next level of the
MTDF. Finally, the four generated class vectors of the last level are averaged into one class vector, and
the action category corresponding to the largest element is treated as the predicted result.

In order to reduce the risk of over-fitting, k-fold cross validation is employed to build each forest.
Particularly, we divide the training set into k groups and utilize k− 1 groups for constructing a forest
in each turn. An average of k class vectors is adopted as the ultimate class vector. Different from
traditional random forest, a multi-task random forest is trained on incomplete videos annotated with
both action category label and observation ratio label. As shown in Figure 1, during training, features
annotated with both action category label and observation ratio label are sent to multi-task random
forests in the first level, while the same features annotated with action category label are input into
traditional random forests. In the following section, we will describe the construction of multi-task
random forest in our framework in detail.
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Figure 2. Details of how to concatenate feature vectors at the first level. In this figure, we suppose that
there are eight action categories.

3.2. Random Forest

In our multi-task deep forest framework, two random forests [9] are utilized in each level of
cascade. A random forest is an ensemble of decision trees and its principle is to let the trees vote for the
most popular class. Suppose that a training set D = {(xm, ym)}m=1:M containing M samples is input
into a random forest. Each sample (xm, ym) includes a feature vector xm and an action category label
ym. In the construction of a decision tree, randomness is introduced by randomly generating several
splitting schemes for a node. When a group of samples arrives at a node, the information gain of each
split scheme will be calculated by the action labels. Then, the scheme with the largest information
gain is selected as a best scheme and is utilized for splitting the node into a left child node and a right
child node. The node will continue to split until the samples that reach the node are of the same class
or the node reaches its maximum depth. For a test sample input into a random forest, the sample
will traverse from the root node of each tree until it reaches a leaf node. The proportion of samples of
each action category in the leaf node will be defined as a class vector υ, and the class vector υ will be
regarded as the output of the decision tree. The average of the class vectors generated by all decision
trees in the random forest is the final output of the random forest.

3.3. Multi-Task Random Forest

A multi-task random forest is an ensemble classifier composed of multiple multi-task decision
trees. Suppose that the training set D = {(xm, yA

m, yO
m)}m=1:M contains M segmented videos with

known observation ratios. Each sample in D contains a feature vector xm ∈ RF×1, an action category
label yA

m ∈ {1, 2, ..., K}, and an observation ratio label yO
m ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1},

where F is the number of features in a feature vector and K is the number of action categories. In
order to reduce the association among different multi-task decision trees and enhance the overall
performance of multi-task random forest, we employ the Bootstrap [20] method to generate a subset
D′ from the original training set D for each multi-task decision tree.

3.3.1. Construction of a Multi-task Decision Tree

In the construction of a multi-task decision tree, we keep a node sequence S and a pending node
sequence Q. The element in the node sequence S is (node,l, f ,c1,c2,α,β,υ), where node is the node ID, l
represents the depth, f indicates the parent node, c1, cr are the left child node and the right child node,
α represents the split feature, β is the split value, and υ is the action category vector. In particular, if the
node is an intermediate node, υ is null, and, if the node is a leaf node, c1,c2,α,β are null. The element
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in the pending node sequence Q is (node,l, f ,D∗), where node is the node ID, l represents the depth, f
indicates its parent node, and D∗ is a dataset including all samples arriving at this node.

At first, a root node (1,1,0,D′) is crested and is put into Q, then a variable counter is initialized
as 1. Then, we take the first node (node,l, f ,D∗) in Q, and remove it from Q. If l is equal to the preset
maximum depth Lmax of multi-task decision tree or samples in D∗ belong to the same categories on
both action category label and observation ratio label, the node is regarded as a lead node; otherwise,
the node is an intermediate node.

For an intermediate node (node,l, f ,D∗) taken from sequence Q, procedures of node split are
illustrated in Figure 3. A group of split schemes {(αg, βg)}g=1:G are generated, where αg is a randomly
selected feature candidate and βg represents the split value generated according to values of samples
in D∗ on feature αg. Each scheme (αg, βg) divides the dataset D∗ into two subsets DL

g and DR
g . The

former contains samples whose value on feature αg is smaller than βg, and the latter is composed of
samples whose value on feature αg is bigger than βg. Then, the best scheme (α∗, β∗) is chosen from
{(αg, βg)}g=1:G for node split based on information gain maximization. Since each sample in D∗ has
two labels, namely action category and observation ratio, we need to choose one type of label for
calculating information gain.

Randomly selected G split 
schemes{(α𝒈,β𝒈)}𝒈=𝟏:𝑮

Choose one 
type of labels

Action 
category

Observation
ratio

Calculate the 
information gain of 
each split scheme 

{(α𝒈, β𝒈)}𝒈=𝟏:𝑮 by this 
type of label

Select (α∗, β∗) with the 
largest information gain

Divide 𝑫∗ into 𝑫∗
𝑳 and 𝑫∗

𝑹

by split scheme (α∗,β∗)

Parent node

Left 
child node

Right 
child node

1   2   3   4   5   6   7   8 

0.3 0.8 0.5
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Feature vector
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{(2, 0.3), (5, 0.8), (7, 0.5)}
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“value on feature 7 > 0.5”
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𝑹 Put into 𝑫∗

𝑳

Figure 3. Details of node split for an intermediate node in a multi-task decision tree.

Particularly, if the observation ratio labels of all the samples in D∗ are consistent, the information
gain is calculated according to the action category label. Assuming that the proportion of samples in
D∗ belonging to the k-th action is pk, the information entropy of D∗ can be defined as

EntAction(D∗) = −
K

∑
k=1

pk log2 pk, (1)

where K is the number of action categories. For split scheme (αg, βg), the information entropy
EntAction(DL

g ) of DL
g and the information entropy EntAction(DR

g ) of DR
g can be calculated in terms of

Equation (1) as well. Accordingly, the information gain of utilizing split scheme (αg, βg) is computed as

GainAction(D∗, αg, βg) = EntAction(D∗)−
|DL

g |
|D∗| EntAction(DL

g )−
|DR

g |
|D∗| EntAction(DR

g ), (2)
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where |D| indicates the number of samples in dataset D. Split scheme (α∗, β∗) with the largest
information gain is selected for node split according to Equation (3), and it divides the dataset D∗ into
DL
∗ and DR

∗ .
(α∗, β∗) = arg max

(αg ,βg)

GainAction(D∗, αg, βg). (3)

Similarly, if all the samples in D∗ belong to the same action, the information gain is calculated
according to the observation ratio label. Supposing that the proportion of the samples in D∗ with the
j-th observation ratio label is qj, the information entropy is defined as

EntRatio(D∗) = −
10

∑
j=1

qj log2 qj, (4)

where the number of discrete observation ratios is 10. For split scheme (αg, βg), the information
entropy EntRatio(DL

g ) of DL
g and the information entropy EntRatio(DR

g ) of DR
g can be calculated in

terms of Equation (4). Next, the information gain split scheme (αg, βg) is calculated as

GainRatio(D∗, αg, βg) = EntRatio(D∗)−
|DL

g |
|D∗| EntRatio(DL

g )−
|DR

g |
|D∗| EntRatio(DR

g ). (5)

The split scheme (α∗, β∗) with the largest information gain is regarded as the best split scheme
and is adopted for node split:

(α∗, β∗) = arg max
(αg ,βg)

GainRatio(D∗, αg, βg). (6)

More frequently, samples in D∗ belong to different categories in terms of action label or observation
ratio label. In this case, one type of label is randomly selected for calculation of information gain.
Specifically, a predefined parameter γ ∈ [0,1] and a random variable µ ∈ [0, 1] are employed to control
the selection. If µ < γ, an action label is chosen to calculate the information gain GainAction(D∗, αg, βg)

for each scheme (αg, βg), and the best scheme is determined according to Equation (3). Otherwise,
an observation ratio label is utilized to compute the information gain GainRatio(D∗, αg, βg), and
Equation (6) is employed to choose the split scheme.

After dividing D∗ into DL
∗ and DR

∗ , the ID of the left child node is counter + 1 and the ID of the
right child node is counter + 2. Then, the current intermediate node is expressed as (node,l, f ,counter +
1,counter + 2,α∗,β∗,null) and is further put into the node sequence S. Meanwhile, the left child node
(counter+ 1,l + 1,node,DL

∗ ) and the right child node (counter+ 2,l + 1,node,DR
∗ ) are put into the pending

node sequence Q. Then, the node counter is updated as counter = counter + 2.
For a leaf node (node,l, f ,D∗) taken from sequence Q, we need to calculate the action category

vector υ indicating the possibility that samples arriving at the leaf node belonging to each action
category. To this end, we calculate the proportion pk of samples in D∗ belonging to the k-th action
and create a class vector υ = [p1, p2, ..., pK] for this leaf node. Then, the leaf node is expressed as
(node,l, f ,null,null,null,null,υ) and put it into the node sequence S.

Finally, if the pending node sequence Q is not empty, we will take the first node in Q again, or
the construction of this multi-task decision tree is completed. The main steps of how to construct a
multi-task decision tree are summarized in Algorithm 1.

3.3.2. Class Vector of a Multi-Task Random Forest

For a test sample input into a multi-task random forest, the sample will traverse from the root
node of each tree until it reaches a leaf node. The class vector υ of the arrived leaf node is regarded as
the output of the multi-task decision tree. An average of class vectors output from all the multi-task
decision trees forms the final class vector of the multi-task random forest.
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Algorithm 1 Construction of a multi-task decision tree

Input: a training set D′ = {(xm, yA
m, yO

m)}m=1:M //xm is f eature vector, yA
m and yO

m are labels
Output: a node sequence S

1: create a node sequence S storing settled nodes and a pending node sequence Q containing unsettled
nodes;

2: create the root node as (1,1,0,D’) and put it into Q;
3: counter ← 1 // the total number of generated nodes
4: while Q is not NULL do
5: take out the first node (node,l, f ,D∗) of Q;
6: if l is equal to the preset maximum depth or samples in D∗ belong to the same categories on

both action category label and observation ratio label then
7: // the current node is a leaf node
8: put the current node (node, l, f , null, null, null, null, υ) into S;
9: else

10: // the current node is an intermediate node need to be split
11: randomly select G split schemes {(αg, βg)}g=1:G, and each scheme (αg, βg) splits samples in

D∗ into two subsets DL
g and DR

g ;
12: generate a random value µ ∈ [0, 1] and compare it with a predefined parameter γ;
13: if µ < γ or samples in D∗ belong to the same categories on observation ratio label then
14: //evaluate each split scheme in terms of action labels of samples in D∗

15: for g is 1 to G do
16: calculate the information gain GainAction(D∗, αg, βg) according to Equation2
17: end for
18: choose the best split scheme (α∗, β∗) according to Equation 3, and the dataset D∗ is divided

into subsets DL
∗ and DR

∗ ;
19: else
20: //evaluate each split scheme in terms of observation ratio labels of samples in D∗

21: for g is 1 to G do
22: calculate the information gain GainRatio(D∗, αg, βg) according to Equation5
23: end for
24: choose the best split scheme (α∗, β∗) according to Equation 6, and the dataset D∗ is divided

into subsets DL
∗ and DR

∗ ;
25: end if
26: S← (node, l, f , counter + 1, counter + 2, α∗, β∗, null) //put the current node into S
27: Q← (counter + 1, l + 1, node, DL

∗ ) //put the left child node into Q
28: Q← (counter + 2, l + 1, node, DR

∗ ) //put the right child node into Q
29: end if
30: counter ← counter + 2
31: end while
32: return S

4. Experiments

We evaluate our method on two datasets, and compare it with other methods. Section 4.1
shows the details of these two datasets and the experimental setup. The results of our MTDF and
comparisons are shown in Section 4.2. Additionally, we analyze the influence of several key parameters
in Section 4.3.

4.1. Datasets and Experimental Setup

The proposed MTDF approach is evaluated on two datasets: the UT-Interaction dataset including
Set 1 (UT-I #1) and Set 2 (UT-I #2) [21], and the BIT-Interaction dataset [22]. UT-I #1 contains six types
of human interactions, i.e., shaking hands, hugging, kicking, pointing, punching, and pushing, which
were collected on a parking area from real surveillance videos. Each human interaction has 10 videos
performed by 10 groups of participants. UT-I #2 shares the same classes of interactions with UT-I #1,
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but the background movements and camera jitters are larger over UT-I #1. On both UT-I #1 and UT-I
#2 datasets, we utilize a 10-fold leave-one-out evaluation strategy.

The BIT-Interaction dataset consists of eight types of human interactions, each of which contains
50 videos. Complex background in this dataset poses great challenges for action prediction. In order to
evaluate the proposed method, we take the first 34 videos in each class for training and utilize the last
16 videos in each class for testing.

The dense trajectory features [6] are extracted from videos in both UT dataset and BIT dataset,
and the bag-of-words model is employed to encode these dense trajectory features, following the
experiment settings in [1,4]. Crucially, in the following experiments, we set γ = 0.5 for all multi-task
decision trees, which means there is equal probability of using action category label or observation
ratio label to calculate the information gain for splitting.

4.2. Experimental Results

For more visible comparisons, we divide the experimental results into three parts. Comparison
between MTDF and gcForest is shown in Section 4.2.1. Meanwhile, comparisons with other methods
on UT-dataset and BIT-dataset are presented in Sections 4.2.2 and 4.2.3, respectively. Due to the
randomness of random forest and multi-task random forest, our method is run for 5 times and the
average results are reported in this section.

4.2.1. Comparison between MTDF and gcForest

In order to evaluate the effectiveness of the proposed multi-task deep forest, we compare it with
the original gcForest [8] on the UT-I #1, UT-I #2, and BIT datasets. The comparison experiments are
summarized in Table 1.

Table 1. Prediction results on UT-I #1, UT-I #2, and BIT dataset, using gcForest [8] and our multi-task
deep forest

Observation ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

UT-I #1 gcForest 19.33% 33.67% 60.00% 78.00% 86.33% 91.67% 92.00% 91.67% 91.00% 90.67%
MTDF 20.00% 33.67% 60.33% 81.33% 86.67% 92.33% 93.00% 92.33% 91.67% 91.67%

UT-I #2 gcForest 16.67% 32.33% 51.33% 68.00% 83.33% 90.67% 93.67% 93.33% 92.00% 92.00%
MTDF 16.67% 36.33% 52.67% 69.67% 83.00% 91.67% 95.33% 94.67% 91.67% 91.67%

BIT gcForest 36.72% 60.94% 77.50% 83.44% 85.63% 85.00% 84.69% 84.38% 84.06% 84.06%
MTDF 35.47% 63.13% 79.22% 84.38% 85.78% 85.94% 86.09% 85.63% 85.31% 85.31%

On the UT-I #1 dataset, the proposed MTDF has achieved better or equal performance over the
original gcForest at all observation ratios. Particularly, the MTDF achieves an improvement of 3.33%
when the observation ratio is 0.4. On the UT-I #2 dataset, the proposed MTDF performs better than
gcForest in most cases, and makes an improvement of about 4% at observation ratio 0.2. On the BIT
dataset, our MTDF has achieved 0.15%-2.19% improvements over gcForest when more than 10% of
videos are observed. In summary, it is effective to introduce an observation ratio label as an extra
task during training, and our MTDF has shown improvement towards gcForest for action prediction.
In particular, utilizing the observation ratio labels in the node splitting enhances the randomness of
decision trees, which improves the discriminative power of MTDF.

4.2.2. Results on the UT-I #1 and UT-I #2 Datasets

Our MTDF is compared with DBoW [1], MSSC [2], MTSSVM [4], and MMAPM [23] on the UT-I
#1 and UT-I #2 datasets. In addition, KNN-Dynamic and the baseline method adopted in [2] are also
employed in comparison. Our experiments utilize the same evaluation strategy as that in [2].

The comparison results on UT-I #1 dataset are shown in Figure 4a. Compared with the other
methods, MTDF achieves better performance at r ∈ {0.4, 0.5, 0.6, 0.7}. When only the first 40% frames
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of the testing videos are observed, recognition accuracy of our method is 81.33%. Then, the recognition
accuracy of our method reaches 93% when the testing videos have been observed 70% frames. These
results are much better than others at the same observation ratios. Our method does not perform
well at observation ratio 0.1 because the video is so short that we cannot extract enough effective
trajectories.
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Figure 4. Prediction results on the UT-Interaction dataset.

Figure 4b summarizes the comparison results on UT-I #2 dataset. When more than 40% frames
of the testing videos are observed, MTDF is able to achieve higher recognition accuracy than all the
compared methods. When only the first 50% frames of the testing videos are observed, our MTDF
achieves 83% recognition accuracy, which is much higher than other comparison approaches at the
same observation ratio and even higher than MSSC, DBoW, and KNN-Dynamic with full observations.

4.2.3. Results on the BIT Dataset

We also conduct experiments on the BIT-interaction dataset and compare the proposed MTDF
with Dynamic BoW [1], MSSC [2], MTSSVM [4], MMAPM [23], DeepSCN [13], and AAPNet [16]. The
comparison results on BIT dataset are shown in Figure 5.
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Figure 5. Prediction results on the BIT dataset.
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Overall, the proposed MTDF outperforms MMAPM [23], MTSSVM [4], MSSC [2], and Dynamic
BoW [1] at all observation ratios, and achieves comparable performance with DeepSCN [13] and
AAPNet [16]. Different from UT-I #1 and UT-I #2, effective trajectory information can be extracted
at the first 10% frames of the videos on the BIT-interaction dataset. Therefore, the proposed MTDF
achieves 35.47% prediction accuracy at observation ratio 0.1. For observation ratios 0.2, 0.3,0.4, and 0.5,
the prediction performance of MTDF is much better than the other comparison approaches. Particularly,
MTDF achieves 63.13% prediction accuracy at observation ratio 0.2, which is 17.96% over AAPNet [16]
and 18.3% over DeepSCN [13]. The prediction performance of MTDF does not increase significantly
when the observation ratio is more than 0.6. One possible reason is that the key information for action
prediction has been captured using the first 60% frames.

4.3. Effects of Parameters

In this section, we talk about several key parameters in the construction of MTDF. To this end, we
conduct experiments on the UT-I #1 dataset and analyze the influence of parameters.

In considering the computational complexity of forest construction, we set the number of trees
in a forest and limit the maximum depth of each decision tree. Figure 6a demonstrates the accuracy
trend with different numbers of decision trees at observation ratios 0.6, 0.7, and 0.8. When the number
of trees is less than 100, building more trees makes the accuracy improve continuously. Then, the
recognition accuracy tends to be stable when there are more than 100 trees in each forest. In general,
the prediction accuracy increases as the number of trees increases, and convergence is at a certain
value. Figure 6b shows how the maximum depth of each decision tree affects the action prediction
performance. Generally, with the increase of depth, the curves of different observation ratios rise first
and then decline slightly and stabilize gradually. One reasonable explanation is that very deep decision
trees may overfit the training data and reduce the action prediction performance on testing data.
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Figure 6. Recognition accuracy on the UT-I #1 dataset using different training parameters.

5. Conclusions

In this paper, we have presented a novel Multi-Task Deep Forest framework for predicting actions
from partially observed videos. In the construction of Multi-Task Deep Forest, we have utilized the
observation ratio to evaluate the temporal progress of training incomplete videos and treated video
temporal progress analysis as another task relevant to action prediction tasks. Experimental results on
the UT-Interaction and the BIT-Interaction datasets show the superior performance of Multi-Task Deep
Forest over the original single-task gcForest, which demonstrates that incorporating video observation
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labels during training can improve the action prediction performance. Moreover, the Multi-Task Deep
Forest achieved better or comparable performance over the existing action prediction methods on both
datasets, which has verified the effectiveness and reasonability of the Multi-Task Deep Forest.
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