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Abstract: The growing interest in wearable robots opens the challenge for developing intuitive
and natural control strategies. Among several human–machine interaction approaches, myoelectric
control consists of decoding the motor intention from muscular activity (or EMG signals) with
the aim of driving prosthetic or assistive robotic devices accordingly, thus establishing an intimate
human–machine connection. In this scenario, bio-inspired approaches, e.g., synergy-based controllers,
are revealed to be the most robust. However, synergy-based myo-controllers already proposed
in the literature consider muscle patterns that are computed considering only the total variance
reconstruction rate of the EMG signals, without taking into account the performance of the controller
in the task (or application) space. In this work, extending a previous study, the authors presented an
autoencoder-based neural model able to extract muscles synergies for motion intention detection
while optimizing the task performance in terms of force/moment reconstruction. The proposed neural
topology has been validated with EMG signals acquired from the main upper limb muscles during
planar isometric reaching tasks performed in a virtual environment while wearing an exoskeleton.
The presented model has been compared with the non-negative matrix factorization algorithm
(i.e., the most used approach in the literature) in terms of muscle synergy extraction quality, and with
three techniques already presented in the literature in terms of goodness of shoulder and elbow
predicted moments. The results of the experimental comparisons have showed that the proposed
model outperforms the state-of-art synergy-based joint moment estimators at the expense of the
quality of the EMG signals reconstruction. These findings demonstrate that a trade-off, between the
capability of the extracted muscle synergies to better describe the EMG signals variability and the
task performance in terms of force reconstruction, can be achieved. The results of this study might
open new horizons on synergies extraction methodologies, optimized synergy-based myo-controllers
and, perhaps, reveals useful hints about their origin.

Keywords: autoencoder; EMG signals; muscle synergies; robotics; exoskeleton; motor intention
detection; movement classification

1. Introduction

The discovery of human brain capabilities has always gained high interest and expectation among
all the disciplines that study and do research on the human body. This trend is closely linked to three
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important objectives: enlarging the comprehension of the underlying neural control mechanisms,
developing more effective therapies in the event of either cognitive or physical impairments and
augmenting human abilities. In this context, myocontrol grabbed the attention of many researchers,
for its potential utility in the motion intention detection and prostheses control domains [1–3] as well
as teleoperation systems [4,5], without invasive signal acquisitions. Although many different strategies
have been developed in the last decades, such as direct control models [6], neuromusculoskeletal
models [7–12] and multiple linear regression models [13,14], some obstacles still represent a gap
between prototypes and commercial devices. The lack of simultaneous control and the high
computational cost of some complex models [15] do head off a truly natural human–machine
interaction. Pursuing this purpose, bio-inspired models suggested a way to preserve a simple and
intuitive interface, as done in many other fields, through the exploitation of complex muscle activation
patterns called muscle synergies. This biological model comes from the hypothesis that the central
nervous system decodes high level user’s intent and drives, concurrently, a subset of motor primitives
instead of independently activating muscles. Although the neurological origin of synergies has been
supposed [16–18], this theory still remains unproven and many issues are still unresolved [19].

However, several works assessed how muscle synergies could be useful to detect abnormal
co-contraction patterns, e.g., due to stroke [20,21] or spinal cord injury [22] or case history evolution
throughout limbs rehabilitation [23,24]. Such evidence suggests that therapies could be improved
gathering information from muscle activation patterns. Moreover, the acquisition of new motor
skills leads to either the development of new activation patterns or changes in the components of
existing ones [25,26]. From the application point of view, by combining those patterns, it would be
possible to achieve different, even complex, motor tasks [27] also granting more robustness than
other control strategies. Previous studies showed how synergistic models are useful for achieving
either multi-DoF planar movements with the upper-limb [28] and wrist [29] or upper-limb force
prediction during isometric contractions [14]. In the current state-of-art, many algorithms have
been used for time-invariant synergies extraction [30], starting from surface EMG (sEMG) data,
such as principal component analysis, independent component analysis, linear discriminant analysis,
clustering (e.g., k-means) and non-negative matrix factorization (NNMF). The latter gained particular
attention because of its intrinsic capabilities of extracting non-negative features that match a physical
constraint of muscles activations [31] (i.e., positive activations of muscles). Nevertheless some of the
limitations that traditional approaches face when dealing with sEMG, such as cross-talk, electrodes
positioning, fatigue and many others, are magnified whenever synergies perform dimensionality
reduction [32,33]. In this scenario, undercomplete autoencoders (AE) have been investigated as
a new computationally efficient method for bio-signal processing and, consequently, synergies
extraction. Previous studies aimed at developing autoencoder-based architectures for muscle synergies
extraction [34], EMG signals mapping in the kinematic space [35] and gestures recognition [36,37].
Synergies analysis was accomplished comparing the input compressed representation (i.e., code) to the
outcomes of the most used algorithms, mentioned before, and evaluating both the signal total variance
reconstruction rate and the prediction/classification performance.

Even though a certain number of procedures for muscles synergy extraction has been proposed in
the literature [19,30,34], the main drawback of the existing approaches concerns the fact that muscle
synergies are estimated by analyzing recorded muscle activities without having any information about
neither the underlying task nor the final application. This means that the synergy extraction procedure
considers the total variance reconstruction rate of the EMG signals as the only performance index to
be optimized. The authors completely agree with Cristiano et al. [19] who reported “We suggest that
synergy extraction methods should explicitly take into account task execution variables, thus moving from a
perspective purely based on input-space to one grounded on task-space as well . . . In conclusion, we believe that
the evidence reviewed here provides support for the existence of muscle synergies. However, many issues are
still unresolved. A deeper investigation of the relationship between synergies and task variables might help to
address some of the open questions”. Few works have investigated the concept of functional synergies
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that are an initial attempt to link muscle synergies with task variables [19,38–40]. However, as deeply
discussed by Barradas et al. [41] and Cristiano et al. [19], functional synergies present some issues and
limitations. After an extensive argumentation, Cristiano and his colleagues state that a novel required
technique for muscle synergy extraction “. . . should optimize the reconstruction error of the EMG signals,
and constrain a good fit of the task-variables”.

In this work, as an extension of a previous study [34], the authors proposed a novel
autoencoder-based neural model able to extract the muscle synergy patterns simultaneously
considering the performance in the task space, i.e., estimation of moments/forces exerted by the human
upper limb. Specifically, the novel autoencoder-based model builds its synergy code considering both
the EMG signals reconstruction performance and the estimation quality of the upper limb moments
computed as a linear combination of the synergy activation signals thus allowing for a task-oriented
synergy extraction. The authors believe that directly integrating task-space constraints in the algorithm
used to extract the synergies could produce a better task-space variable estimation, thus leading to
a new class of optimized myo-controllers and, perhaps, providing a deeper understanding of the
hypothetical modularity of the central nervous system and its relationship with the motor learning.

2. Materials and Methods

2.1. Participants

Nine right-handed healthy subjects (seven males, aged 27.7± 4.9 years, weight 74.1± 9.1 kg) were
involved in the study. All the subjects signed a written consent form before joining the experiments.
The experimental procedures were conducted in accordance with the World Medical Association
Declaration of Helsinki and approved by the Ethical Review Board of Scuola Superiore Sant’Anna
(Approval Number: 1292).

2.2. Experimental Setup

The setup was designed for measuring the subject upper-limb muscle EMG signals and forces
exerted at the hand level during a set of isometric contractions (see Figure 1). An electromechanical
upper-limb exoskeleton, designed for upper-limb rehabilitation, namely L-Exos, was used for acquiring
the interaction force between the subject’s hand and the exoskeleton’s cylindrical handle featuring
a triaxial force sensor. The L-Exos has been designed as a wearable haptic interface, capable of
providing a controllable force at the center of user’s righthand palm, oriented along any direction of
the space [42]. The L-Exos has four actuated DOFs for supporting elbow and shoulder movements:
shoulder adduction/abduction; shoulder flexion/extension; shoulder internal/external rotation;
elbow flexion/extension, and one passive DOF used for measuring the wrist pronosupination angle.
All the motors of the exoskeleton have been located on the fixed frame. For each actuated DOF,
the torque is delivered from the motor to the corresponding joint by means of steel cables and a
reduction gear integrated at the joint axis. All actuated joints are driven with a proportional-derivative
control strategy with gravity compensation. The force sensor readings have been then used to
estimate the articulation moments. Concerning the EMG acquisition system, two bio-signals amplifiers
(g.USBamp, gTec, Austria) were included in the setup to record the activity of 13 muscle heads:
biceps short head, biceps long head, brachioradial, triceps long head, triceps lateral head, deltoid
anterior head, deltoid posterior head, trapezius, pectoralis major, teres major, infraspinatus, latissimus
dorsi and rhomboid. Disposable Ag/AgCl surface electrodes were placed by following the SENIAM
recommendations, after a skin cleaning process, and the ground electrode attached to the right elbow.
All the surface EMG signals were acquired at 1200 Hz sampling frequency and filtered by the amplifier
with a 5–500 Hz band-pass filter and a 50 Hz notch filter. In order to make a more intuitive and
easy experimental session, the subject was immersed in a virtual environment (VE) by wearing a
head mounted display (Oculus Rift HMD, Oculus) to receive visual feedback. The force sensor
measurements, VE signals and EMG data were synchronized on a single PC (Master PC), featuring
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Microsoft Windows 10 (64 bit), Intel i7 1.6 GHz, 8 Gb RAM and Matlab [43] (Release 2018b). The Master
PC has been also used to generate commands for driving the exoskeleton and the VE, according to the
acquisition routine.

    VIRTUAL ENVIRONMENT

ELECTRODES PLACEMENT

TARGET

CURSOR

20 N

Figure 1. The experimental setup. (A) The subject that is wearing the upper limb L-Exos exoskeleton.
(B) The virtual environment showing the cursor and the target sphere. (C) The surface EMG (sEMG)
electrode placement.

2.3. Data Acquisition Protocol

Before starting the acquisition routine, subjects were invited to sit on a chair and wear the
exoskeleton using the flip-off arm bands. By using stacked hard plastic layers under the chair, the height
of the seat was adjusted in order to align the centers of rotation of the subject’s and exoskeleton shoulder
joint. At the beginning of the experiment the exoskeleton joint angles were automatically fixed to a
pre-defined angles set: shoulder abduction/abduction angle equal to 0 degrees, shoulder internal
rotation angle equal to 0 degrees, shoulder elevation angle equal to 10 degrees and elbow angle
equal to 90 degrees. After the surface EMG electrodes were placed on the targeted muscles, elastic
bands were used to keep electrodes and wires firmly attached to the body in such a way that the
exoskeleton handle was easily reachable. Then, subjects were asked to perform 16 isometric virtual
reaching tasks along 8 directions (two trials per direction) on the sagittal plane, equally spaced at
45 degrees and randomly sorted. Isometric contractions were achieved through the exoskeleton end
effector position control, keeping the subjects upper-limb pose fixed. In the virtual environment,
the subjects hand position corresponds to a red sphere (cursor) and the task target is represented
as a green sphere. The distance between the two spheres is covered applying the target force of
20 kg ·m/s2 on the sensor and the radius difference allowed a maximum positioning error equal
to 3 kg ·m/s2 (1 N = 1 kg ·m/s2). Each virtual reaching task consists of (1) positioning the cursor
inside the target, (2) holding it in place for 2 s and then (3) relaxing to move the cursor back to the
rest position. The cursor position is driven by a spring model Pc = K ∗ FEE where Pc is the 3D cursor
position, FEE is the applied isometric force vector and K is the elastic constant of the virtual spring.
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2.4. Autoencoder-Based Neural Model for Muscle Synergy Extraction and Task Optimization

In this work the authors propose a novel neural architecture that is able to learn the optimized
muscles synergies patterns that lead to the optimized muscle synergy-based movement intention
detection. The structure of the presented model (see Figure 2) is a feed-forward neural network
composed of two main blocks that will be discussed later: an undercomplete autoencoder for
muscle synergies extraction and a feed-forward layer for movement estimation based on muscle
synergy activations.
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Figure 2. The proposed Autoencoder-based neural model.

2.4.1. Undercomplete Autoencoder for Muscle Synergies Extractions

The first block of the proposed model considers an undercomplete autoencoder that has been
previously proposed by the authors for muscle synergies extraction [34]. Autoencoders belong to the
family of unsupervised learning techniques and represent models that are able to leverage the neural
networks for the representation learning task, e.g., denoising, feature reduction, clustering, image
processing [44–49]. Specifically, an autoencoder is a feedforward neural network that is trained to copy
the input data to the output layer. Internally, an autoencoder is based on a symmetric topology that
is composed of an encoder and a decoder. The encoder is composed of one of more layers aiming at
codifying the input into a code h that is representative of the input x, i.e., h = e(x). The decoder has a
symmetric structure respect to the encoder and produces a reconstruction r = d(h). A good autoencoder
does not have the ability to perfectly copy the input, but to generate an output that resembles the
training data.

Among the several kinds of AE families [50], in this work the authors considered a particular type
of autoencoder that is call undercomplete AE. An undercomplete AE has a specific structure that is
able to extract the most representative features contained in the input data. Such property is achieved
by imposing the size of code h to a value that is smaller than the dimension of input x. By introducing
such a bottleneck the AE should be forced to learn an internal structure that exists in the input data,
e.g., correlation among input signals.

Referring to the Figure 2, given the input feature vector I(t) = [m1(t)m2(t) . . . mN(t)], where mi(t)
indicates the pre-processed activation of the i-th muscle and N is the number of considered muscles,
the AE has the objective to extract muscle synergy activations si. A three step pre-processing routine
is also executed on each raw electromyographic signal: (1) high-pass filtering (20 Hz second-order
Butterworth); (2) rectification and low-pass filtering (5 Hz second-order Butterworth); (3) per-channel
normalization over the maximum value computed at the step 2.
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The proposed topology has one hidden layer with four positive linear neurons that encode the
muscle activations into synergy activations named s1(t), s2(t), s3(t) and s4(t). Such configuration has
been chosen with aim to replicate the physiological model of the spatial muscles synergies reported
and deeply discussed in the work of Berger and D’Avella [13].

In this work, the authors did not investigated the best number of the hidden neurons, i.e., the
number of muscles synergies. A code dimension equal to four has been used since some studies
in the literature have reported that upper limb muscle activations during planar isometric reaching
tasks can be accurately described by four muscle synergies [13,51]. As suggested by Goodfellow et al.,
the authors have used a simple linear decoder with biases avoiding the copying task without extracting
useful information caused by excessive learning capacity [50].

2.4.2. Feed-Forward Layer for Synergy-Based Movement Intention Detection

Differently from the previous authors’ work [34], in this paper the synergy-based movement
intention detection has been achieved by adding a feed-forward block on top of the encoding hidden
layer of the AE. By adding such block, the proposed neural model is able to compute the best
muscle-synergy patterns that leads to the best trade-off between muscle activation reconstruction and
the movement intention estimation, i.e., hand forces or articulation moment predictions. To the author’s
best knowledge this is the first attempt in the literature to build model that is able to extract muscles
synergies considering the performance into the task space, i.e., movement. Regarding the activation
function, the layer considers a linear function and no bias have been added. Such configuration
allows for the computation of the forces/moments as a linear combination of the synergy activations.
In detail, the output vector T(t) = [T1(t)T2(t)] represents the estimated moments. It is important
mentioning that the moment components T1(t) and T2(t) have been normalized to range within the
interval [−0.5, 0.5].

2.4.3. Network Training

The proposed network has been implemented using the Neural Network toolbox of Matlab
(Release 2018b), and trained using a gradient descent with momentum and adaptive learning
rate algorithm for 1000 epochs. Given a single training set, the training of the neural model has
been repeated 10 times considering different initial weights [35], then the model featuring the best
performance has been considered for the next analysis. Considering a training set composed of about
1000 time points, the training process of the model lasts about 4.5 s. All the training sequences have
been run on a PC featuring two Intel XEON E5 2630 v3 CPUs and 64 GB of RAM.

2.5. Muscle Synergy Extraction: Ae Vs Nnmf

The AE block of the proposed model has been compared with the most used technique in the
literature for muscle synergies extraction, i.e., Non-Negative Matrix Factorization. Given a matrix M,
the NNMF is a factorization algorithm able to compute the two matrices W and C such that:

M ≈W · C, (1)

with the property that all three matrices have no negative elements. When the NNMF algorithm is
applied to pre-processed muscles activation signals, the matrix M (size: N × P) contains the muscles
activation observations during a task, where N is the number of recorded muscles and P is the
number time samples, W (size: N × Q) is the synergy matrix, where Q is the number of extracted
synergies, and C is the matrix (size: S× P) that contains the synergy activation signals. Given such
nomenclature, m(t) and c(t) indicate a single column (that corresponds to a single sample time) of M
and C, respectively. After the synergy model has been defined by running the NNMF on a training set,
i.e., the synergy matrix W has been computed, the synergy activation vector c(t) related to s test EMG
signals vector m(t) can be computed as follows [13]:
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c(t) = W+ ·m(t), (2)

where W+ is the pseudo-inverse matrix of W.

2.6. Joint Moment Estimation Based on Muscle Synergies: Comparison with the State-Of-The-Art

Muscle synergies have been previously used to detect the motor intention and continuously drive
robotic devices as prosthetic hands and assistive interfaces. A good myoelectric controller should be
able to process the activations of the involved muscles and compute an estimation of the intended
movement in terms of both the direction and amplitude. Considering a robotic interface controlled by
an admittance control, such estimation has to be a force/torque vector. As an example, an upper limb
exoskeleton could assist the arm movement if it moves accordingly to the patient movement intention.

It is well known that, under certain conditions [7], the EMG-based force/moment estimation can
be based on a linear combination of the processed EMG signals as follows:

T = H · fEMG (3)

where T represents the vector of the force/moment components, fEMG is the vector of the instantaneous
EMG-based features and H is the matrix relating EMG features to force/moment estimated using
multiple linear regressions of each applied force/moment component. If the movement is constrained
on a plane, T is 2X1 vector, fEMG is a Mx1 vector, and H is a 2xM matrix, where M is the number of
considered EMG-based features.

In this study, the performance of a bi-dimensional motion intention estimator based on the model
presented in Figure 2 has been compared with other methods already proposed in the literature
that are based on the same model described by Equation (3). In detail, the authors have considered
four models:

• Model Hm: T = H ·m, where m is the muscle activation signal vector processed as the input data
of the AE (see Figure 2) [13];

• Model HWW+m: T = H ·W ·W+ · m, where H is exactly the same EMG-to-moment matrix
extracted for the Model Hm [13] and W is the synergy matrix extracted with the NNMF by using
the Matlab function nnm f (. . . ) (Release 2018b);

• Model Ĥc: T = Ĥ · c, where c is extracted with the NNMF for the model calibration and computed
as reported in Equation (2) for the model evaluation [51];

• AE-based model: T = Hmodel · S, where S is the synergy activation vector extracted by the
autoencoder and Hmodel are the weights of the model block devoted to the Synergy-based
movement intention detection.

It is worth noting that the matrix H has dimension equal to 2× N (two is the number of moment
components: shoulder and elbow joint moments), whereas the matrices Ĥ and Hmodel have size 2× 4
(four is the number of considered muscle synergies). All methods have been tested using the same set
of muscle activation recordings.

2.7. Model Calibration and Performance Metrics

Each subject-specific model has been independently trained on different 256 (28) training sets,
where 2 is the number of isometric reaching trials executed for each of the 8 directions (see Section 2.3
for details). Hence, a single training set contains the sEMG and moment data acquired in one trial out
of two for each of the eight direction. Given a single training set, then all models have been evaluated
on the complementary test set.

The multivariate R2 index has been computed for each test set in order to evaluate the synergy
extraction performance of both the NNMF and AE. The multivariate R2 index represents the fraction of
total variation accounted by the synergy reconstruction and then is a global indicator of the goodness
of reconstruction. The R2 has been computed as follows [27]:
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R2 = 1− SSE
SST

= 1− ∑s ∑ks
k=1 ‖ms(tk)−mr

s(tk)‖2

∑s ∑ks
k=1 ‖ms(tk)− m̄‖2 (4)

where SSE is the sum of the squared errors, and SST is the sum of the squared residuals from the
mean activation vector m̄, i.e., the total variation multiplied by the total number of samples K = ∑s ks.

The shoulder and elbow articulation moment reconstruction has been evaluated computing both
the root mean square error (ERMS) and the multivariate R2 index between the measured and estimated
moments using Equation (4).

2.8. Statistics

In order to compare the proposed methods, the average values of the R2 and ERMS among the
256 test sets for each subject have been computed. The two synergy extraction methods, i.e., AE-based
and NNMF, have been compared with the Wilcoxon test. The four moment estimator models,
i.e., Hm, HWW+m, Ĥc and AE-based Model, have been compared running the Friedman test and
the Dunn’s pairwise post-hoc tests with Bonferroni correction. The significance level has been set to
0.05. Non-parametric tests were adopted since the assumptions underlying parametric tests resulted
to be violated for all sets of data. All the analyses have been performed using the SPSS software [52]
(Version 21).

3. Results

The proposed neural model has been evaluated both in terms of joint moment estimation
and sEMG signal reconstruction. Figure 3 (top-left and bottom-left) and Figure 3 (top-right)
report the mean value of the ERMS and the mean R2 values among all test sets for each subject,
respectively. Table 1 reports the ERMS and multivariate R2 values averaged among all subjects for each
compared methodology.

Table 1. Means and standard deviations of the shoulder/elbow moment RMS errors and Multivariate
R2 index values among all subjects.

Model
Shoulder Moment Elbow Moment Shoulder and Elbow Moment
RMS Error [Nm] RMS Error [Nm] Multivariate R2

(M ± SD) (M ± SD) (M ± SD)

Hm 1.15± 0.24 0.72± 0.17 0.75± 0.09
HWW+m 1.42± 0.31 0.90± 0.16 0.62± 0.09
Ĥc 1.40± 0.30 0.90± 0.16 0.63± 0.08
AE model 1.06± 0.26 0.62± 0.14 0.80± 0.07

The Friedman test revealed that there is a significant difference among the four investigated
techniques in terms of ERMS relative to both shoulder moment prediction (χ2 = 18.733, p < 0.001)
and elbow moment prediction (χ2 = 15.000, p = 0.002). Dunn test with Bonferroni correction
was then used to perform the post-hoc tests (see Table 2). The results of the post-hoc analysis
showed that the shoulder moment ERMS error observed with AE-based model is significantly lower
than both the errors obtained by the HWW+m model (Z = 2.556, p < 0.001) and Ĥc model
(Z = 1.778, p = 0.021). No significant differences were found between the AE-based model and
Hm model (Z = 1.222, p = 0.268). Similar results were found analyzing the moment elbow ERMS

errors. In detail, the elbow moment ERMS error observed with AE-based model is significantly
lower than both the errors obtained by the HWW+m model (Z = 2.111, p = 0.003) and Ĥc model
(Z = 1.778, p = 0.021). No significant differences were found between the AE-based model and Hm
model (Z = 0.778, p = 1.000).
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Table 2. Results of the post-hoc analysis about the joint moments. p-values lower than 0.05 are in bold text.

Shoulder Moment Elbow Moment Moment
RMS Error RMS Error Multivariate R2

Pairwise Z p-Value Z p-Value Z p-ValueComparison

Hm− HWW+m −1.333 0.171 −1.333 0.171 1.667 0.037
Hm− Ĥc −0.556 1.000 −1.000 0.602 0.889 0.865
Hm− AE model 1.222 0.268 0.778 1.000 −1.000 0.602
HWW+m− Ĥc 0.778 1.000 0.333 1.000 −0.778 1.000
HWW+m− AE model 2.556 <0.001 2.111 0.003 −2.667 <0.001
Ĥc− AE model 1.778 0.021 1.778 0.021 −1.889 0.011

Figure 3. Results averaged among the test sets for each subject and each compared technique/model.
Top-left. Shoulder moment ERMS errors. Bottom-left. Elbow moment ERMS errors. Top-right. Moment
Multivariate R2 index values. Bottom-right. sEMG Multivariate R2 index values.

The Friedman test also revealed that there is a significant difference among the four investigated
techniques in terms of multivariate R2 index between the measured and predicted joint moments,
χ2 = 21.400, p < 0.001. The post-hoc analysis has reported that there is a significant difference between
three pairs of models (see Table 2): the R2 index of the AE-based model is higher than both the R2 index
of the HWW+m model (Z = −2.667, p < 0.001) and Ĥc model (Z = −1.889, p = 0.011), respectively;
the Hm model outperforms the HWW+m model (Z = 1.667, p = 0.037); then no significant difference
was found between the AE-based model and the Hm model (Z = −1.000, p = 0.602).

The difference between the autoencoder and the NNMF algorithm were also assessed in terms of
sEMG signals reconstruction quality by comparing the multivariate R2 index between the acquired and
reconstructed EMG signals (see Figure 3 (bottom-right) and Table 3). The Wilcoxon test results showed
that the NNMF achieved a significant higher R2 index value than the autoencoder (Z = −2.666,
p = 0.008).
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Table 3. Means and standard deviations of the sEMG Multivariate R2 index values among all subjects.
Results of the Wilcoxon Test about the comparison between the non-negative matrix factorization
(NNMF) and Autoencoder.

Model sEMG Multivariate R2

M ± SD Wilcoxon Test

NNMF 0.89± 0.02 Z = −2.666, p = 0.008AE 0.86± 0.02

4. Discussion and Conclusions

In this study the authors presented a novel neural model that is able to estimate the movement
intention, in terms of upper limb joint moments, exploiting the muscle synergy concept. In detail,
the architecture of the proposed model is composed of an undercomplete autoencoder that performs
the muscle synergies extraction and a feed-forward layer employed to estimate articulation moments
as a linear combination of the synergies activations. Such topology is derived from the physiological
model of the spatial muscle synergies [13]. The rationale under the proposed model is based on
the possibility to extract muscle synergies considering not only the performance on the EMG signal
reconstruction, but also the estimation performance in the task space. Hence, the main goal of the
proposed method is to find the best muscle synergy patterns that optimize the performance both in the
EMG and task space.

Considering the success that synergy-based myo-controllers are achieving in the wearable robotic
field, the authors have investigated whether the synergy activations extracted with the AE could be
used in motion intention detection. In detail, the proposed AE-based estimator has been compared
with three other methods already proposed in the literature for their capabilities of estimating shoulder
and elbow joint moments generated while performing planar isometric reaching tasks. The comparison
has been conducted analysing the ERMS and R2 between the estimated and measured moment of both
the shoulder and the elbow articulations. The clear messages that arise from the statistical analysis and
the Figure 3 are: (1) the proposed method outperforms the two synergy-based approaches HWW+m
and Ĥc and such difference is statistically significant; (2) no statistical difference has been found
between the proposed method and the Hm model that considers a direct mapping between the EMG
signals and the joint moments. Such findings seem promising since the proposed method is able to
achieve the comparable performance of the Hm model even if introduces some loss in the EMG signal
information due to the AE bottleneck.

The autoencoder part of the model has then been directly compared with the non-negative matrix
factorization algorithm, i.e., the most used method in the literature, in muscle synergy extraction.
Since the experiment consisted in exerting planar isometric forces with upper limb, the authors have
chosen to consider a predefined number of synergies equal to four. The AE and the NNMF have
been compared in terms of a multivariate R2 index that measures the quality of the muscle activity
reconstruction given the synergy structures (or patterns) and synergy activations. As reported in
Figure 3, it turned out that the proposed AE-based model has shown slightly lower performance
than the NNMF (Wilcoxon test, z = −2.666, p = 0.008). This means that the NNMF generates synergy
activations that better reconstruct the original muscle activation signals. Sincerely, this finding is not a
big surprise since, differently from the NNMF, the proposed neural model has simultaneously focused
on the reconstruction of both the EMG signals and joint moment. It is also worth noting that the AE
and the NNMF have not been tested on the reconstruction of the same EMG signals used to calibrate
the synergy model, but on different muscle activations acquired in the same condition, i.e., the same
upper limb pose.

This work does not address the study of the relationship between the model accuracy and the
number of considered muscles [11]. The authors have considered all the main superficial upper limb
muscles that contribute to the shoulder and elbow moment generation [13]. Clearly, a reduction in the
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number of considered muscles would lead to a loss of model accuracy, and such loss would be related
to the functional contribution of the specific excluded set of muscles. A further study could investigate
the role of the considered muscles in moment estimation when using the proposed approach. However,
it is important to remark that the authors just want to propose a general methodology. The specific
setup, i.e., considered muscles, task-space variables and acquisition procedure, needs to be customized
case by case.

In the author’s opinion, this work represents a first attempt to develop a muscle synergy-based
myo-controller that is tailored to the specific subject by simultaneously considering the synergy
extraction and the mapping between the synergy activations and the variables used in the task space,
i.e., forces or moments. Concerning the specific experimental setup used in this study, the obtained
results have clearly showed that the proposed model has lead to a better moment estimation when
compared with other synergy-based models. However, at the same time, the quality of the EMG
signals reconstruction was slightly degraded. This finding demonstrated that a trade-off between the
capability of the extracted muscle synergies to better describe the EMG signals variability and the
task performance in terms of force reconstruction might exist and can be exploited to develop more
intuitive myo-controllers that are mainly evaluated in the task space [19,41].

The proposed strategy might open new perspectives for muscle synergy extraction techniques
and, perhaps, encourages new studies related to the fundamentals of muscle synergies and human
motor learning and control. In fact, as it has been done so far, the findings of such basic research
might moreover be useful for implementing more intuitive simultaneous and proportional myoelectric
controls of prostheses [35,53], and robotic devices [12,33] and for the development of innovative
diagnostic tools and rehabilitation approaches [25]. Even VE-based rehabilitation exercises based on
synergy-control might promote recovery of movement skills in stroke patients [13]. In conclusion,
the study of task-oriented synergies and the relative comparison with the standard muscles synergies,
i.e., the one extracted with standard approaches, could reveal interesting information about whether
and how those patterns might be used to improve the myo-controllers and rehabilitative therapies.
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