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Abstract: Research on the role of non-driving related tasks (NDRT) in the area of automated driving is
indispensable. At the same time, the construct mode awareness has received considerable interest in
regard to human–machine interface (HMI) evaluation. Based on the expectation that HMI design and
practice with different levels of driving automation influence NDRT engagement, a driving simulator
study was conducted. In a 2 × 5 (automation level x block) design, N = 49 participants completed
several transitions of control. They were told that they could engage in an NDRT if they felt safe and
comfortable to do so. The NDRT was the Surrogate Reference Task (SuRT) as a representative of a
wide range of visual–manual NDRTs. Engagement (i.e., number of inputs on the NDRT interface) was
assessed at the onset of a respective episode of automated driving (i.e., after transition) and during
ongoing automation (i.e., before subsequent transition). Results revealed that over time, NDRT
engagement increased during both L2 and L3 automation until stable engagement at the third block.
This trend was observed for both onset and ongoing NDRT engagement. The overall engagement
level and the increase in engagement are significantly stronger for L3 automation compared to L2
automation. These results outline the potential of NDRT engagement as an online non-intrusive
measure for mode awareness. Moreover, repeated interaction is necessary until users are familiar
with the automated system and its HMI to engage in NDRTs. These results provide researchers and
practitioners with indications about users’ minimum degree of familiarity with driving automation
and HMIs for mode awareness testing.
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1. Introduction

The market introduction of vehicles equipped with SAE Level 3 (L3) automated driving systems
(ADS) is only a matter of time. Automated driving promises numerous benefits: among others,
it is expected to foster efficiency in terms of time usage. The driver may divert his/her attention to
non-driving related activities while the ADS is executing vehicle guidance. SAE Level 2 (L2) driving
automation—which is already commercially available—is also capable of controlling vehicle guidance
while the driver still has to constantly monitor the system functioning [1]. L3 automated driving
systems differ from L2 automation in such a manner that the driver has to be readily available as a
fallback performer in case the system requests a transition to manual control. Thus, with the transition
from L2 to L3 automation, the human driver’s role shifts from that of an active system supervisor to a
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fallback-ready user who may engage in non-driving related tasks (NDRT). The availability of different
driving modes (i.e., L1, L2, and L3) in one vehicle poses additional challenges to the driver to understand
his/her role accordingly and not to confuse different automation modes and levels. Mode awareness as
a critical issue in driving automation requires further research efforts for ensuring safe operation of
different automated driving functions. Knowledge on the assessment of mode awareness, however, is
scarce. Addressing this issue, the present study examines engagement in a representative visual–manual
NDRT during different levels of automated driving as a non-intrusive measure for mode awareness.
In the following, we first outline theoretical backgrounds on mode awareness and methodology to
assess this construct. Subsequently, the research question and hypotheses are derived based on the
preceding considerations.

2. Background

In the automotive context, the evaluation of HMIs has a long history. The distraction potential
of in-vehicle information systems (IVIS) is the main focus for manual driving (SAE L0). Here, test
procedures to assess visual workload associated with the IVIS have already been established [2,3].
However, the change of the driver’s role from manual driver to supervisor in L2 and fallback performer
in L3 automation renders the application of these methods unfeasible. For example, NHTSA distraction
guidelines only permit 2 s per glance and 12 s total glance duration on IVIS. It might be questionable
whether these numbers as they were proposed for manual driving are also suitable for L2 automation.
In addition, with the driving automation executing longitudinal and lateral vehicle control, distance
and lane keeping are not applicable measures for indicating the suitability of an HMI in this particular
context. In contrast, a variety of constructs related to the safe driver–automation interaction such as
trust [4–7] controllability [8–10], understanding in form of mental models [11–13], or usability [14]
could be used as criteria. Research has shown that these pose challenges to the design and evaluation
of automated vehicle HMIs. For an outline of evaluation methods for automated vehicle HMIs see [15].
One further step towards an ADS method validation concerns the investigation of mode awareness.
This term was proposed by Sarter and Woods [16]. The authors report that even pilots who can be
considered highly skilled and trained operators of flight automation can face situations where they
are not certain of roles and responsibilities for the aircraft operation task. Such situations can lead to
dangerous outcomes and consequently a safety-related assessment is indispensable.

Mode awareness is a central aspect for appropriate and safe human–automation interaction in
general and in the context of driving automation in particular. For example, Gopinath and Johansen [17]
outline that mode awareness of operators is of crucial importance for safety when interacting with
production robots. By appropriate design of the automation and according HMIs, safety risks can be
mitigated (e.g., [18]). In the driving automation context, Feldhuetter, Segler and Bengler [19] provide
evidence that drivers’ mode awareness is reduced when the vehicle is equipped with additional
driving automation functions (see also [20]). Similar to the proposal by Gopinath and Johansen [17],
they investigated whether an adaptive HMI design could support mode awareness, but could not
find an effect. Other research supports their hypothesis that HMI design can affects drivers’ visual
behavior. For example, Kraft, Naujoks, Woerle and Neukum [21] report the impact of the HMI
design on glance distributions during active L2 automation. In this study, a reduced and simple
display produced positive effects in terms of distraction on both a self-reported and behavioral
level. In addition, familiarity-dependent practice effects occurred for glance patterns. In general,
behavioral adaptation to automated driving can be expected as outlined in [22]. An appropriate
design of L3 automated vehicle HMIs can support self-reported usability and trust in automation
(Hergeth, 2016). Since trust is expected to determine reliance behavior [6,23], we assume that such
HMI variations can also affect behavioral parameters concerning NDRT engagement. This influence
of HMI design on user behavior is of high importance since it must convey information about the
driver’s role during active L2 and L3 functioning. Investigating mode awareness between driving
episodes, Feldhuetter and colleagues [24] tested whether manual driving episodes as intermittent
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features between transitions of L2 and L3 automation can help to promote mode awareness. In this
experiment, they operationalized mode awareness via the visual attention towards driving-relevant
areas and engagement in NDRTs. The study shows that there is a difference of visual attention
allocation and NDRT engagement. However, it remains unknown whether this observation is stable
or prone to changes over time. As there is research indicating behavioral changes in interaction with
driving automation when interacting repeatedly [14,21], NDRT-related behavior might also change.
Especially findings of more accurate mental models over time [11–13] lead to the question whether
mode awareness is also dependent on the familiarity with the driving automation.

As indicated above, reliance behavior is suggested to be closely tied to NDRT engagement during
automated driving [7]. The difference between L2 and L3 is that the driver is responsible for supervising
the automation in L2 whereas he/she has to be readily available to perform driving task fallback in L3.
For the HMI design, this indicates that L2 automation systems require a feature ensuring that drivers
are attentive to the supervising task either by steering wheel input or gaze tracking to the forward
roadway (see e.g., [25]). By issuing a so called “hands-on request” or “attention request”, the system
draws the driver’s attention back towards the supervising task. In comparison, such interface features
are not part of a L3 system as it allows NDRT engagement. L3 systems only request driver input at
operational design domain (ODD) limits or system malfunctions [26]. Thus, NDRT-related behavior
should differ depending on the understanding of the current level of automation (i.e., mode awareness)
given an interface is designed in accordance with the prior considerations. The design of automated
vehicle HMIs is therefore a crucial aspect for the facilitation of visual attention towards relevant events
inside or outside the vehicle [27,28]. A study by Llaneras and colleagues [29] found that drivers
tend to engage in NDRTs during reliable L2 automation that does not monitor or restrict behavior.
This leads to risky driving and diverts attention away from the roadway and supervision of the system.
Therefore, investigation and comparison of NDRT engagement during L2 and L3 automation is of
high importance. It is expected that HMI features such as hands-on or attention requests during L2
automation should consequently lead to improved mode awareness with better understanding of
his/her roles and responsibilities (i.e., supervising during L2). This understanding eventually translates
in observable behavior of less NDRT engagement during L2 as compared to L3 automation.

The study outlined above shows that there is a growing body of research on mode awareness in
the driving automation domain. Additionally, HMI considerations outlined above suggest that NDRT
engagement can serve as an indicator of mode awareness. However, commonly agreed methodological
approaches are still missing. In relation to the theoretical and conceptual developments, the present
study’s aim was to investigate how mode awareness can be assessed in a non-intrusive way. It seeks to
extend the findings on understanding as reported in [13]. Results of this publication showed that the
general understanding of roles and responsibilities (i.e., mode awareness) was high for both L2 and L3
automation. However, the question remained whether this understanding also translates in observable
behavior. Non-intrusive measurements of mode awareness bear both advantages for researchers and
practitioners as well as for the real-world application of driver-monitoring systems. On the one hand,
during the development and evaluation of automated vehicle HMIs, mode awareness represents a
critical issue that needs to be assessed. With the availability of a non-intrusive measure, research
methodology benefits from the present research. On the other hand, real-world application could
use driver monitoring technology to detect potential losses of mode awareness based on the driver’s
current behavior. Thus, an ADS might undertake necessary precautions such as displaying warning
messages which are already in effect today for fatigue detection.

Research Question and Hypotheses

From theoretical considerations outlined above, the following research question is derived:
How does NDRT engagement calibrate for different levels of automation (i.e., for different graphical
HMI designs) and with rising system experience? The following two hypotheses are formulated for
this research question:
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Hypothesis 1 (H1). Drivers change their engagement in NDRTs over time;

Hypothesis 2 (H2). There is more NDRT engagement during an active L3 ADS compared to an active L2
driving automation.

3. Method

3.1. Sample

A total of N = 59 participants took part in the driving simulation experiment. N = 10 drop-outs
occurred because four participants did not complete the experimental procedure and six incomplete
datasets were collected. This left N = 49 (13 female, 36 male) participants for data analysis. Mean age
of the final sample was 30.96 years (SD = 9.08, MAX = 62, MIN = 21). All participants were BMW
Group employees, held a German driver’s license, and had normal or were corrected to normal vision.

3.2. Driving Simulation and Non-Driving Related Task

The study was conducted in a moving-base driving simulator (see Figure 1, left). The integrated
vehicle’s console contained all necessary instrumentation and was identical to a BMW 5 series with
automatic transmission. Seven 1080p projectors provided a 240◦ horizontal × 45◦ vertical frontal
field of view. One LCD screen positioned behind the back inside the vehicle mockup seats and two
outside projections with the same specifications served as rear view. The motion system consisted of a
hydraulic hexapod with six degrees of freedom, capable of up to 7 m/s2 transitional acceleration and
4.9 m/s2 continuous acceleration. The Surrogate Reference Task [30] was displayed on a 12.3” tablet
mounted on the center stack console and was active during the entire experimental drive (see Figure 1,
right). NDRT engagement is measured using a task that is representative for many NDRTs in terms
of demands and distraction potential to obtain high external validity. The Surrogate Reference Task
(SuRT, [31]) is such a representative task since it is used as a generic visual–manual secondary task
in distraction studies. In addition to these, it has also been used for an NDRT in automated driving
studies [7,9,32]. The SuRT requires participants to identify a target stimulus (i.e., large circle) within
an array of distractors (i.e., small circles). By varying the amount of distractors and size difference
between target and distractors, the NDRT demand and resulting workload can be adjusted specifically.
An advantage of the SuRT is its potential to support high experimental control while on the downside,
it is not a naturalistic NDRT and thus motivation to extensively engage in the SuRT could be limited.
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Figure 1. Dynamic driving simulator from the outside (left) and mockup interior with the Surrogate
Reference Task (SuRT) tablet used in the current study (right).

The interface on which the SuRT was presented did not display a score to the drivers to make
NDRT engagement completely voluntary and free of a potential competitive character. The circles
could be selected by touching the surface with a finger. When the participant selected the correct circle,
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it turned green before the subsequent pattern emerged. In case the wrong target was selected, it turned
red and the pattern stayed until it was solved correctly.

3.3. Study Design and Procedure

The study employed a 2 × 5 mixed within–between subjects design. The within-subject factor
“block” had five levels from the first to the fifth block of use cases. The between-subjects factor
“feedback” had two levels where participants either received feedback on their interaction success after
each use case or not. Because the between-subjects factor was out of scope for the present research
question, this research reports results of the within-subject factor “block”.

Upon arrival, participants were welcomed and gave informed consent. After a brief explanation
of the study purpose, the experimenter led them to the vehicle mockup. To accustom themselves
with the simulator setup, participants had to complete at least two correct trials with the SuRT at
standstill. Subsequently, they completed a five-minute manual familiarization drive without NDRT
engagement. Prior to the experimental drive, the experimenter outlined the procedure and explained
that participants would encounter two automated systems that are a L2 driving automation and a
L3 ADS. They also received information stating that they would not have to constantly monitor the
correct functioning of the L3 ADS. Concerning NDRT engagement, participants were instructed before
each block that they could freely decide whether to engage in the NDRT when the automation was
active. In doing so, the experimenter did not specify the level of automation or explicitly named
any of the two functions. Furthermore, there was no additional incentive for executing the NDRT.
The subsequent experimental drive included five blocks, each consisting of six driver initiated control
transitions. After the successful completion of each interaction, there was a 20-s time window where
users’ NDRT-related behavior was observed. Table 2 additionally provides an overview of the windows
of observation for NDRT-related behavior. Subsequently, there was a brief inquiry during the drive
that occurred six times for each block [33]. Having finished use case specific questions, there was
another time window of at least 20 s up to one minute where users could freely engage in the NDRT
before the upcoming instruction of the next use case. After each block, participants were told to pull
over to the right shoulder, stop there, and complete the block inquiry. Participants completed the drive
on a three-lane highway with low to medium traffic density. Surrounding vehicles drove with an
average of 150 km/h on the center lane and an average of 180 km/h on the left lane. Vehicles on the right
lane drove with an average of 130 km/h. The conditions were good with clear visibility at daytime
and a dry road. The highway itself was in good condition without potholes or construction areas.
The experimental drive lasted approximately 60 min. Figure 2 schematically depicts the procedure.
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3.4. Use Cases

The present experiment included driver initiated transitions between manual, L2, and L3
automated driving [34] as use cases (UCs). Considering both upward and downward transitions, one
experimental block consisted of six use cases. For the present analysis, only transitions to an automated
driving mode are of interest. Consequently, transitions to manual are not considered here. The use
cases with transition type, automation level at use case initiation, target automation level, and use
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case numbering are shown in Table 1. To counteract sequential effects, participants were randomly
assigned to one of six possible block sequences that were created using a Latin square. Each block
consisted of six trials. In total, each participant completed 30 use cases. To standardize instructions,
we recorded samples for each use case that were triggered by the experimenter.

Table 1. Overview of use cases for one experimental block.

Transition Type Scenario Automation Level
at UC Initiation

Automation
Target Level

Use Case
Number

Upward transition

Activation L3 L0 L3 1

Activation L3 L2 L3 3

Activation L2 L0 L2 2

Downward
transition Deactivation L3 L3 L2 4

3.5. Automated Driving System

As soon as the driver activated the respective function, it carried out longitudinal and lateral
vehicle guidance. The longitudinal and lateral vehicle guidance of the L2 and L3 automation was
identical. The L3 ADS was capable of executing independent lane change maneuvers (e.g., overtaking
slower vehicles ahead, pulling back to the right lane). The L2 driving automation set speed was the
current velocity and could be adjusted without restrictions. The L3 ADS set speed was 130 km/h and
could be adjusted to slower speeds. If adjusted to a faster speed than 130 km/h, it deactivated the L3
ADS and activated the L2 driving automation. Vehicle following distance (time headway) to a lead
vehicle was 2 s.

3.6. Human–Machine Interface

The visual HMI was shown on the instrument cluster. It showed the vehicle and its surroundings
in both L2 and L3 automated driving. The HMI for automated driving resembled a combination
of adaptive cruise control and additional steering assistance [35]. The present HMI constitutes a
representative solution for an automated system due to the conceptual similarity to solutions in
prior research [4,36]. The L2 vehicle surroundings and L3 vehicle surroundings differed in (1) their
informational content (i.e., higher level of detail in L3: visibility of adjacent lanes and vehicles) and
(2) their perspective (i.e., larger field of view in L3). Thus, specifically the distance between the eye
point and the vehicle, the angle between the direct line of sight and the road, and the opening angle of
the field of view were manipulated. Figure 3 schematically depicts the configurations for L2 and L3
automation of the vehicle surround views from a profile perspective. An activated L2 automation was
colored in green while an activated L3 ADS was colored in blue. In addition, during activated L3 ADS,
the steering wheel was illuminated in blue color. The L2 driving automation displayed a hands-on
request (HOR) after 15 s of hands-free driving. The HOR was displayed as hands grabbing a steering
wheel [37,38] and yellow pulses on the illuminated steering wheel. The system functions could be
activated with a button on the left side of the steering wheel for both levels of automation. For a more
comprehensive description of the operating elements, see [14].
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3.7. Dependent Variables

The present study operationalized NDRT engagement as input with the finger on the NDRT
surface. Table 2 visualizes the windows of observation for the dependent variables. To find out about
the onset of engagement, we counted the total number of inputs on the surface for a time interval of 20 s
after successful completion of each use case (NDRT observation window 1). Since it can be assumed
that it takes some time for the NDRT engagement to set in and then to stabilize, we also investigated
NDRT-related behavior at the end of an automated driving episode where the onset had most likely
occurred and NDRT engagement was on a stable level. For that purpose, there was another window
of observation covering the 20 s just before the onset of the subsequent use case (NDRT observation
window 2).

Table 2. Schematic outline of experimental procedure for each use case. The two observation windows
are colored in blue.

Step
Standardized
Experimenter

Instruction

Task
Completion

Time

NDRT
Observation
Window 1

UC Specific
Inquiry

NDRT
Engagement

NDRT
Observation
Window 2

Duration 5 s 0–60 s 20 s 10–30 s 0–20 s 20 s

3.8. Statistical Procedure and Data Analysis

NDRT data were pre-processed and visualized using Matlab Version 2015 (Mathworks Inc.,
Natis, MA, USA). Statistical tests were calculated using IBM SPSS Statistics Version 23 (IBM, Armonk,
NY, USA). For observation window 1, means and standard deviations (SD) were computed for onset
NDRT input frequency by use case and block. In contrast, when observation window 2 started, the
transition of control already dated back too far so that a comparison of NDRT-related behavior on use
case level (i.e., considering the respective previous level of automation) would not be useful for that
period of time. Therefore, we compared NDRT engagement during observation window 2 only in
regard to the level of automation that was active at that time. For that purpose, the sum of NDRT inputs
during active L2 automation (after UC2 and UC4) and active L3 ADS (after UC1 and UC3), respectively,
was calculated for each participant and block. Means and standard deviations (SD) were computed for
these ongoing input sums. A significance level of α = 0.05 was applied for inferential testing unless
stated otherwise. To control for alpha inflation due to multiple testing, correction after [39] was applied
if necessary.

4. Results

4.1. Onset Input Frequency

Table 3 shows descriptive statistics (i.e., M, SD) of NDRT input frequency within the 20 s after UC
completion by use case and block. Means and standard errors of onset input frequency by use case and
block are depicted in Figure 4. Descriptive values revealed that the overall number of NDRT inputs
during the 20 s after task completion was on a low level with mean input frequency not exceeding a
number of two. Furthermore, there was a tendency towards more NDRT engagement with increasing
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system experience in all four use cases. However, the observed increase was stronger for transitions to
L3 automation (UC1 and UC3) than for transitions to L2 automation (UC2 and UC4). Independent
from the block, descriptive data showed considerably more NDRT engagement after transitions to L3
than after transitions to L2.

Table 3. Descriptive statistics (i.e., M, SD) of onset input frequency for the four use cases (UCs) by block.

UC Block 1 Block 2 Block 3 Block 4 Block 5

UC1 0.39 (0.73) 1.16 (1.18) 1.53 (1.21) 1.41 (1.19) 1.57 (1.26)

UC2 0.06 (0.32) 0.31 (0.68) 0.35 (0.81) 0.55 (0.94) 0.47 (0.96)

UC3 0.67 (1.01) 0.98 (1.09) 1.35 (1.13) 1.51 (1.10) 1.27 (0.93)

UC4 0.06 (0.32) 0.31 (0.77) 0.33 (0.77) 0.53 (0.98) 0.51 (0.89)
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Figure 4. Means and SE of onset input frequency by UC and block (blue: transitions to L3 automation,
red: transitions to L2 automation).

A 4 × 5 (UC × block) repeated measures analysis of variance (ANOVA) was conducted for onset
input frequency. Results revealed significant main effects for both use case and block as well as a
significant interaction effect (see Table 4). These inferential results indicate that mean input frequency
differed significantly over time and for the different use cases, but the effect of the block depended on
the respective use case. The effect sizes showed large effects ([40]; see Table 4). To examine these effects
in detail, planned contrast analyses were performed to compare onset input frequency for the two
different levels of automation (L2: after UC2 and UC4; L3: after UC1 and UC3) and for consecutive
blocks. Results are displayed in Table 5. Regarding the two levels of automation, results revealed that
there was significantly more NDRT engagement during active L3 than during active L2 automation;
the effect size (see Table 5) indicated a strong effect [40]. Comparisons between consecutive blocks
showed a mixed picture: Mean NDRT input frequency was significantly higher in block 2 than in
block 1. There were also significantly more NDRT inputs in block 3 as compared to block 2; medium
to large effect sizes were obtained [40] (Cohen, 1988). The remaining contrasts between successive
blocks did not reach significance (see Table 5). The results of the planned contrast analyses indicate
that NDRT engagement increased within the first three system encounters and stabilized in subsequent
system encounters.
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Table 4. Inferential statistics (i.e., F, df1, df2, p, ηp
2-value) of main and interaction effects for onset

input frequency. Statistically significant effects are colored in gray.

Effect F df1 df2 p ηp
2

Use Case 37.378 3 46 <0.001 0.709
Block 12.885 4 45 <0.001 0.534

Use Case * Block 2.609 12 37 <0.05 0.458

Table 5. Inferential statistics (i.e., F, df1, df2, p, ηp
2-value, and 95% CI limits) of planned contrast

analyses for L2 (after UC2 and UC4) vs. L3 automation (after UC1 and UC3) and successive blocks for
onset input frequency. Statistically significant effects are colored in gray.

Contrast F df1 df2 p ηp
2 95% CI

L2 vs. L3 112.989 1 48 <0.001 0.702 [6.785; 9.950]
Block 1 vs. Block 2 19.755 1 48 <0.001 0.292 [0.861; 2.282]
Block 2 vs. Block 3 5.399 1 48 <0.05 0.101 [0.107; 1.485]
Block 3 vs. Block 4 1.039 1 48 0.313 0.021 [−0.436; 1.334]

Block 4 vs. Block 5 0.297 1 48 0.588 0.006 [−0.862; 0.494]

4.2. Ongoing Input Frequency

Descriptive statistics (i.e., M, SD) of ongoing NDRT input sums within the 20 s before the onset
of the upcoming use case by level of automation (L2: after UC2 and UC4; L3: after UC1 and UC3)
and block can be found in Table 6. Figure 5 depicts means and standard errors of ongoing NDRT
inputs by level of automation and block. The descriptive values showed similar tendencies as for
onset NDRT engagement: The overall number of inputs during the 20 s before onset of the upcoming
use case summed for active L2 and L3 automation, respectively, was relatively small with means not
exceeding a number of four. Furthermore, a trend towards more NDRT engagement with rising system
experience could be observed for both levels of automation with a seemingly weaker upward trend for
L2 automation. However, descriptive NDRT engagement tended to stabilize after the first three system
encounters. Descriptive data also indicated notably more ongoing NDRT engagement during active
L3 automation than during active L2 automation in all five blocks.

Table 6. Descriptive statistics (i.e., M, SD) of ongoing input frequency summed for L2 (after UC2 and
UC4) and L3 automation (after UC1 and UC3) by block.

Block 1 Block 2 Block 3 Block 4 Block 5

L2 0.12 (0.49) 0.59 (1.22) 0.78 (1.87) 1.29 (2.03) 1.25 (2.21)

L3 0.84 (1.07) 1.80 (1.95) 2.74 (2.74) 3.31 (2.36) 3.25 (2.43)
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A 2 × 5 (level of automation × block) repeated measures ANOVA was performed for ongoing
NDRT engagement to examine main and interaction effects of the level of automation. Results are
displayed in Table 7. There was a significant main effect of level of automation as well as of block.
This means that ongoing NDRT engagement was significantly higher during L3 automation than
during L2 automation and differed over time. Furthermore, there was a significant interaction effect
indicating that the effect of block on NDRT engagement depended on the level of automation that was
active. The effect sizes (see Table 7) showed large effects [40].

Table 7. Inferential statistics (i.e., F, df1, df2, p, ηp
2-value) of main and interaction effects for ongoing

input frequency summed for L2 and L3 automation. Statistically significant effects are colored in gray.

Effect F df1 df2 p ηp
2

Level of Automation 54.652 1 48 <0.001 0.532
Block 15.105 4 45 <0.001 0.573

Level of Automation * Block 5.085 4 45 <0.05 0.311

5. Discussion and Conclusions

This research investigated the analysis of NDRT engagement at different levels of automated
driving. The results of N = 49 participants showed that the levels of driving automation and accordingly
designed HMIs lead to differences in NDRT engagement. An increase of NDRT engagement over time
was observed for both automation levels whereas this increase was stronger in L3 as compared to
L2 automation. These results indicate that users’ behavioral adaptation occurs during initial system
encounters. It also shows that the HMI design that follows considerations for L2 and L3 driving
automation leads to specific behavioral patterns. The following section discusses the obtained results
and relates them to prior considerations about NDRT engagement and mode awareness.

Overall, there were differences in NDRT engagement between the L3 and the L2 automation
with significantly more engagement in L3 as compared to L2 automation as indicated by statistically
significant main effects in Tables 4 and 7. Thus, these differences can be traced back to two sources.
First, the L3 HMI permitted hands-free driving while the L2 HMI included hands-on requests. Second,
the HMI designs differed in adaptations of informational content and perspective. Eventually, there is
no final statement possible which HMI variation led to the differences in the observed behavior between
the automation levels. Referring back to initial considerations of the HMI design for automated
vehicles, it is important to include a form of feedback for L2 automation that prompts the drivers
to supervise the driving automation. If these are not present (as in the present L3 case), there is
high NDRT engagement. This observation supports the results by Llaneras and colleagues [29] The
difference between NDRT engagement during L2 and L3 automation was observed for both the onset
(see Figure 4) and ongoing (see Figure 5) NDRT engagement. These observations are in accordance
with the findings reported in [19]. The results reported herein extend their findings by repeatedly
observing the engagement in an NDRT. Here, similar results were obtained for L2 and L3 automation.
Namely, engagement in NDRTs at initial contacts with driving automation—independent of the level of
automation—is on a low level. The engagement rises in both instances as indicated by significant main
effects for the block factor in both Tables 4 and 7. However, the rise in NDRT engagement was much
stronger for L3 automation as compared to L2 automation as indicated by the significant interaction
effects in the same tables. These results show that mode awareness might not only be captured by users’
NDRT engagement in one block but also over the time course (e.g., five repetitions). The behavioral
adaptation of NDRT engagement corresponds to related research that investigated human–automation
interaction across repeated interactions [13,14,21]. A closer investigation of differences between the
blocks by means of planned contrast analysis (see Table 5) showed that a change over time is present
from the first up to the third encounter. From then on, stable engagement in NDRTs can be assumed.
This has implications for study designs concerning automated driving and engagements in NDRTs.
When setting up a study, researchers should be aware that behavioral adaptation requires a certain
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number of repeated trials until reliable user behavior is present. One example is the study by Hergeth
and colleagues [7], where the authors investigated whether NDRT engagement and according glance
behavior could be an indicator of reliance behavior and marker for trust in automation. Indeed,
they considered familiarization with NDRT and automated driving system including N = 8 repeated
NDRT engagements.

NDRT engagement was also present at L2 driving automation. By definition, users of L2 driving
automation are responsible for supervising the driving task at all times and may not leave the control
loop [1]. Even though NDRT engagement during L2 automation was on a descriptively low level,
there were participants that diverted their attention away from supervising the driving automation.
This observation has implications for the design of L2 automation. It has to be noted, that secondary
task activities occur even in manual driving [41]. Such distraction during manual driving (i.e., engaging
in NDRTs) is considered a safety risk and should be minimized [1]. In contrast, there is first evidence
that this tendency can be used in a beneficial way during automated driving as it might be turned into
controlled engagement. For example, Paetzold and colleagues [42] did not find differences in reaction
time to automation errors between participants that were either engaged or not engaged in an NDRT.
In the same vein, Hensch and colleagues [43] found effects of display position and secondary task on
the driver’s glance behavior in both automated and manual driving. They especially report longer
eyes-on display time for NDRTs in head-up display configurations. However, due to its proximity to
the driving environment it might enable a faster identification of and reaction to critical situations such
as system failures. Thus, there are still challenges for conceptual developments of a HMI design for L2
automated vehicle HMIs.

Eventually, this study supports that NDRT-related behavior can be used to distinguish between
levels of automation and their HMI conceptualization. Indeed, drivers’ differences in behavior in
NDRTs support the conclusion that mode awareness for the HMIs in L2 and L3 automation was on a
high level. This difference is not only apparent overall, but also by differences in changes over time.
Moreover, the study showed a methodological aspect on how to evaluate NDRT behavior during an
episode (i.e., onset vs. ongoing) which led to similar results. Especially the fact that NDRT engagement
changes over time implies that research needs to focus on prolonged periods and that drivers need to
adapt to this technology first before it can be used appropriately.

Limitations and Future Research

This study comes with a number of limitations. First, there were no incentives for engaging in
the NDRT. In real-road driving, drivers might disengage only if the NDRT has a rewarding character.
It remains therefore unknown whether the NDRT engagement in especially L2 automation would
remain at such a low level if rewards would have been applied in this study. Second, the NDRT
consisted of the SuRT alone, which is a standardized method for visual–manual distraction. This NDRT
does, on the one hand, only cover two modalities of distraction (i.e., visual and manual) and, on the
other hand, it might not be a very motivating NDRT. For example, Purucker and colleagues [44] have
used a more naturalistic set of NDRTs for their study that increases external validity of the findings.
Third, the NDRT was mounted in a fixed way in the center console. It might be that engagement is
increased if the NDRT is located closer to the line of sight [43]. Thus, future research has to determine
how the NDRT-related behavior in a different level of automation evolves for differing activities,
modalities, and locations in the vehicle interior. Moreover, the present research only supports insights
on the group level that support the predictive character of the SuRT as a measure for mode awareness.
However, this does not permit inferences on the individual level. There is still room for future research
to determine whether and how predictive the engagement in the SuRT is for mode awareness on an
individual level.
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