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Abstract: With the advance of many image manipulation tools, carrying out image forgery and
concealing the forgery is becoming easier. In this paper, the convolution neural network (CNN)
innovation for image forgery detection and localization is discussed. A novel image forgery detection
model using AlexNet framework is introduced. We proposed a modified model to optimize the
AlexNet model by using batch normalization instead of local Response normalization, a maxout
activation function instead of a rectified linear unit, and a softmax activation function in the last layer
to act as a classifier. As a consequence, the AlexNet proposed model can carry out feature extraction
and as well as detection of forgeries without the need for further manipulations. Throughout a
number of experiments, we examine and differentiate the impacts of several important AlexNet
design choices. The proposed networks model is applied on CASIA v2.0, CASIA v1.0, DVMM,
and NIST Nimble Challenge 2017 datasets. We also apply k-fold cross-validation on datasets to divide
them into training and test data samples. The experimental results achieved prove that the proposed
model can accomplish a great performance for detecting different sorts of forgeries. Quantitative
performance analysis of the proposed model can detect image forgeries with 98.176% accuracy.

Keywords: convolutional neural networks; AlexNet; activation function; forgery detection; batch
normalization

1. Introduction

Motivated by the massive use of social media e.g., Facebook, Instagram, and Twitter, etc. and
enhancements in image processing software applications, image forgery has become very popular and
hence the need for image forgery detection has also increased.

Image manipulations that are done by the procedure of clipping and pasting areas, are one of the
most well-known forms of digital image editing. This manipulation is distinguished as a copy–move
image forgery. Image splicing is the most well-known type of image faking. It cuts and pastes areas
from one or more different images cautiously to produce new synthesized digital images as shown
in Figure 1. Therefore, detection and localization of these forgeries to reliably and automatically
determine the authenticity of images have become an important and popular issue.
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Recently, deep learning interest has grown and various noteworthy results are becoming visible. 
By this motivate, tampering detection researchers have attempted the use of deep learning to detect 
the images’ changes without human intervention. Deep learning has been convenient in the field of 
image processing science. Two crucial areas are driving the success of deep learning use in image 
processing: 

1. First, convolution neural network (CNN) architecture takes the fact that pixels and their 
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all pixels (as in major neural networks).  

2. Second, CNN architecture counts on feature sharing, and so each channel or feature map is 
formed from a convolution operation using the same kernel at all positions [2].  

The manipulation and editing of digital images has become a significant issue nowadays. There 
are various applications such as digital forensics, scientific publications, medical imaging, 
journalism, insurance claims, political campaigns, where image manipulation can be easily made. To 
specify whether an image is genuine or forged is a major challenge to researchers. 
The detection models proposed are beneficial to many applications in which the authenticity of a 
digital image has an influential impact.  

Additionally to this, there are numerous editing processes executed on the forged areas to 
appear similar to the genuine areas. This demands the development of a universal forgery detection 
model that not only detects various image editing manipulations present in the forged image, but 
also can be capable of being generalized to editing manipulations not present in the forged image. 
This will let the model be more generalized to detect any type of editing or manipulations even if the 
model is not trained on it. The majority of the existing forgery detection models focalize on 
identifying a particular forgery editing (e.g., copy–move or splicing). Therefore, these models cannot 
perform better for other kinds of forgery. Additionally, it is impracticable and unrealistic to suppose 
that manipulation editing will be known in advance. In real-life, an image forgery detection model 
should be able to detect all types of manipulation editing rather than focalizing on a certain type.  

Therefore, some questions exist with the account to CNNs design and training for image forgery 
detection:  

• Do design parameters like the pooling mechanism or activation function choice have 
considerable effects on the accuracy?  

• What effect do various normalization techniques like batch normalization and local contrast 
normalization have on CNN’s accuracy? 

To lead the research for using CNN models in image security, it is remarkable to address these 
issues. In this paper, we consistently analyze CNN design choices for image forgeries detection. 
Specifically, we investigate: 

1. The effect of activation functions selection on the performance. 

Figure 1. A fake image is created by splicing together content from two different images [1].

Recently, deep learning interest has grown and various noteworthy results are becoming visible.
By this motivate, tampering detection researchers have attempted the use of deep learning to detect the
images’ changes without human intervention. Deep learning has been convenient in the field of image
processing science. Two crucial areas are driving the success of deep learning use in image processing:

1. First, convolution neural network (CNN) architecture takes the fact that pixels and their
neighborhood are highly correlated. Therefore, a CNN does not use one-to-one links among all
pixels (as in major neural networks).

2. Second, CNN architecture counts on feature sharing, and so each channel or feature map is
formed from a convolution operation using the same kernel at all positions [2].

The manipulation and editing of digital images has become a significant issue nowadays. There are
various applications such as digital forensics, scientific publications, medical imaging, journalism,
insurance claims, political campaigns, where image manipulation can be easily made. To specify
whether an image is genuine or forged is a major challenge to researchers. The detection models
proposed are beneficial to many applications in which the authenticity of a digital image has an
influential impact.

Additionally to this, there are numerous editing processes executed on the forged areas to appear
similar to the genuine areas. This demands the development of a universal forgery detection model
that not only detects various image editing manipulations present in the forged image, but also can be
capable of being generalized to editing manipulations not present in the forged image. This will let the
model be more generalized to detect any type of editing or manipulations even if the model is not
trained on it. The majority of the existing forgery detection models focalize on identifying a particular
forgery editing (e.g., copy–move or splicing). Therefore, these models cannot perform better for other
kinds of forgery. Additionally, it is impracticable and unrealistic to suppose that manipulation editing
will be known in advance. In real-life, an image forgery detection model should be able to detect all
types of manipulation editing rather than focalizing on a certain type.

Therefore, some questions exist with the account to CNNs design and training for image forgery
detection:

• Do design parameters like the pooling mechanism or activation function choice have considerable
effects on the accuracy?

• What effect do various normalization techniques like batch normalization and local contrast
normalization have on CNN’s accuracy?

To lead the research for using CNN models in image security, it is remarkable to address these
issues. In this paper, we consistently analyze CNN design choices for image forgeries detection.
Specifically, we investigate:

1. The effect of activation functions selection on the performance.
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2. The effect of different normalization approaches such as batch normalization and local
contrast normalization.

3. The variation between softmax classifier and SVM classifier.

Besides that, we prove that CNN can be designed to carry out several diverse forensic issues.
The investigation done reveals that both general CNN design principles that are important regardless of
the forensic assignment, along with other design choices that must be appropriately selected depending
on the chosen forensic assignment. To ensure that the proposed model is robust, k-fold cross-validation
is implemented, which means that the training process and testing process are executed on varieties of
datasets that have been collected separately. The major contributions of the work done in this paper
are as indicated in the following:

1. We propose an AlexNet model that is capable of detecting various image tampering and
manipulations.

2. We introduce the proposed modified AlexNet model architecture, provide a detailed discussion
of how it is constructed, as well as provide intuition into why it works.

3. We conduct a large scale experimental evaluation of the proposed architecture and show that
it can outperform existing image manipulation detection techniques, can differentiate between
multiple editing operations even when their parameters change, can localize fake detection
results, and can provide excessively accurate forgery detection results when trained using a huge
training dataset.

The motivation and reason behind choosing AlexNet as a core of the proposed model are that
the ability of fast network training and its capability of reducing overfitting. The reasons why the
AlexNet model is suitable for the analysis of forged images are its deep structure, its simple structure,
fast training time, and less memory occupation. Provided that, the improvements we have made to
the model (using max-out and batch normalization). All of these reasons lead the AlexNet to be one
of the best choices in the forgery detection process. Through experiments sequence, the proposed
AlexNet model can be learned automatically to discover and detect multiple types of image editing.
This eliminates the need for time-consuming human intervention to outline forensic detection features.
AlexNet is used to make the training faster and reducing overfitting. The remainder of this paper is
organized as follows: Section 2 discusses the related works and gives an overview of how to use CNN
in image forgery detection. Section 3 presents our study to obtain robust image manipulation and our
framework to detect image forgeries. Section 4 shows our experimental results; and we conclude this
paper in Section 5.

2. Related Work

In the latest years, techniques based on deep learning have become assertive. Some early work
proposed CNN architectures with the first layer of high-pass filters, either fixed [3], [4] or trainable [5],
meant to extract feature maps. It has been shown in [6] that successful methods based on handcrafted
features can be recast as CNN and fine-tuned for improved performance. In Ref. [7] these low-level
features are augmented with high-level ones in two-stream CNN architecture. In both [8,9], it was
clarified that the constrained first layer used is better only for small networks and datasets. Given
a reasonable large training dataset, deep models provide the identical results in favorable cases,
but ensure higher robustness to compression and misalignments of training/test.

Several papers, beginning with paper [4] and followed by more recent papers [10] and [11],
train the network to distinguish between homogeneous and heterogeneous patches which are known
by the presence of both genuine and forged spaces. The case is to catch the features that describe
transition regions, which are abnormal with respect to the background, to localize forgeries. This idea
is followed also in [12], where the hybrid CNN-LSTM (long short term memory) model is trained to
generate a binary mask for forgery localization. These methods, although, require ground truth maps
to train the network, which may not be available.
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For architectonic constraints, most of the methods perform a patch-based analysis, functioning on
reasonably small patches, with additional steps needed to calculate a global outcome at the image-level.
In Ref. [3], for example, CNN extracted features patch-wise and later aggregates them in a global
feature vector used to feed an SVM (support vector machines) classifier. A major limitation is the need
for large training and test datasets. Some methods, for example [5,11], use only one database and are
split into groups of training and test; others [5] require fine-tuning on the target data. Such models and
its procedures prove that the supervised learning generalization ability is shortened and limited.

Bayer and Stamm studied image manipulation detection by adding a new convolution layer [5].
Accordingly, CNN used a convolutional layer to identify the structural relationships among pixels
anyhow of the image content. This model learned automatically how to detect image editing without
relying on preprocessing or specific features. The model gave a high detection rate when only one of
these specific attacks were implemented: median filtering, Gaussian blurring, additive white Gaussian
noise, or resampling. If any other manipulations editing was applied to the forged image, this model
failed and gave a bad detection rate.

Choi et al. studied CNN-based multi-operation detection to detect multiple attacks, not just only
one attack [12]. Their technique proposed three types of processing, that have occurred repeatedly
during image manipulation and were identified when they are applied to images. The model was
convenient enough to detect these three manipulations. It can only solve three types of editing (GB:
Gaussian blurring, MF: median filtering, GC: gamma correction). If this model applied on any different
manipulations, it would give a low detection rate.

Salloum et al. [10] used a fully convolutional network (FCN) instead of CNN to locate the
spliced regions. It classified each pixel in a spliced image as spliced or authentic. Two output
branches of multi-task FCN are used to learn the labels and the spliced regions’ edges respectively,
and the two branches intersection output is considered to be the localization result. The model was
evaluated on images from the Carvalho, CASIA v1.0, Columbia, and the NIST Nimble Challenge 2016
datasets. This model can solve splicing problem only with maximum F1 score 0.6117 on the Columbia
dataset, and maximum MCC score 0.5703 on NIST 2016 dataset, which are very low to be used in the
real-life problems.

In Ref. [3], the model applied max-pooling technique to the feature maps. The model consisted of
8 convolutional layers, three pooling layers and one fully-connected layer with a softmax classifier.
They applied the framework on the public CASIA v1.0, CASIA v2.0 and DVMM datasets. The model
used the SRM (spatial rich model) as a weight initialization instead of a random generation. SRM helps
to improve the generalization ability and accelerate the convergence of the network. Major SRM
problems can be listed as: it arises overfitting in some cases, increasing the processing time, and may
other problems that lead the framework to unwanted results. This framework has another disadvantage
is the rectified linear unit (ReLU) implementation as an activation function in the network. ReLU units
can be fragile during training and can “die” which of course gives disappointing results.

Jaiswal, A. et al. [13] proposed a framework based on a combination of pre-trained model resnet-50
and three discriminators (SVM, KNN, and Naïve Bayes). The model is applied and tested on CASIA
V2.0 dataset [14]. The result of this algorithm was not promising as the choice of resnet-50 was not
good enough for the forgery problem. Resnet-50 construction is very complex and it needs a massive
processing time for performing the process of both training and testing, and a big memory allocation
which it is not accepted and valid in the actual forgery real problem-solving.

Qi, G. et al. [15] proposed a framework structure consisting of 15 layers (5 convolutional layers,
2 pooling layers, four layers RPN(regional proposal network), 1 ROI pooling layer, 2 fully connecting
layers and 1 output layer). This model used max-out as an activation function in the convolution layers.
The detection process was made using three stages: 1—ROI extraction by applying the maximum
variance algorithm combined with morphological operations. 2—The 15 layers model was used to
extract the dominant features. 3—Classification of the results to get the exact ROI. The strength of
this model is using RPN in the designed model. RPN can efficiently and rapidly inspect locations to
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determine if it required more handling in a certain area. The major problem this model faced was the
first stage of ROI extraction applied. Firstly, an image was converted to grayscale and then applying
the maximum variance and morphological operations. After this process, they reconverted the image
again to color space. They lost a lot of details in the process of converting and reconverting from
gray to color image. This process was considered to be one of the forgeries and editing applied to the
image. This is the reason why the detection results were not satisfying enough. The recommendation
to advance this model is to omit the first step of applying the maximum variance with morphology
and applying batch normalization to their model. This will give a perfect result and can be applied in
different applications.

As this paper is inspired by the AlexNet model architecture that was published and announced
in 2012 [16], we searched and emphasized the study done on the previously published work that is
based on the AlexNet model. It is precious to mention that there are three research papers, the ultimate
found and known, which focalize their research on AlexNet specifically.

J. Ouyang et al. [17] proposed a framework that can only detect copy–move forgeries using
AlexNet structure directly without any modifications to the network topology. They applied AlexNet
on the ImageNet database. They applied AlexNet model on UCID, OXFORD flower, and CMFD
datasets. The model obtained a good performance to the forgery image generated automatically by
computer with a simple image copy–move operation, but is not robust to the copy–move forgery image
of real scenario. The result was not satisfied enough and not robust to copy move in a real scenario.
They also proved the concept that AlexNet can perform well in the forgery detection issue, and it
was the first implementation of AlexNet in forgery detection. This work was the inspiration of other
authors to start working on AlexNet as pre-trained network architecture.

A. Doegar et al. [18] proposed AlexNet model-based deep with SVM classifier to be applied to the
available benchmark dataset MICC-F220. The training was done by training SVM using AlexNet as
deep features and for testing, the test images are applied to the trained SVM to determine whether
or not the test image is forged. This model structure yields great results for the MICC-F220 dataset
as it consists of geometrical transformations of a genuine image’s. The performance of the deep
features extracted from the pre-trained AlexNet based model is quite satisfactory, the best accuracy of
image forgery detection achieved is 93.94%. This proposed technique can only solve the problem of
copy–move forgeries.

G. Muzaffer et al. [19] proposed a framework using AlexNet as a feature extractor and hence using
the similarity measure between feature vectors to detect and locate the forgeries. They tested their
technique on the available GRIP that includes copy–move forgeries [20]. This model was proven to
give a more successful result on the GRIP dataset only. It was recommended to apply it on different
datasets under different conditions.

Worthy massive research has been conducted on existing deep models for detecting and localizing
digital image forgeries. The research investigates whether such techniques are sufficiently robust and
whether they can properly model the manipulations that have occurred in images due to different types
of forgeries that can faithfully classify an image as an authentic or fake image. This brief summary
of the previously-published deep models clears that there is a high rising interest for novel solution
models, to face the threats posed by increasingly sophisticated fake multimedia tools.

3. Proposed Work

The AlexNet model is nominated to be the solid core of the proposed model. The reason why
we are using AlexNet, instead of any other pre-trained model is that we are planning to work with
a simple model and test performances without compromising memory and time. Figure 2 shows
the overall architecture of the proposed model; which is inspired by AlexNet but uses two different
concepts. The structure of the proposed model is very similar to that of the original AlexNet model;
which will be explained in Section 3.1 [21]. Both models have a similar number of layers, the same
number of neurons, and the same-size filters. An improved framework is proposed by introducing
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batch normalization and maxout as an activation function into AlexNet to resolve the drawback caused
by AlexNet:

1. The obstacle of ReLU that can perish and never actuate on a single data point.
2. Modify the effect of normalization made by the local response normalization (LRN) exercised in

the standard AlexNet. LRN is not trainable while batch normalization (BN) is trainable so the
application of the later gives more promising results than LRN.
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Figure 2. Overall architecture of the proposed AlexNet layers: convolution, max-pooling, max-out,
BN and, FC.

The reason why AlexNet model repeated twice the layers (Conv., max-out, BN, MXP), (Conv. and
max-out), and (FC, max-out, Dropout) is that the AlexNet was trained in a faster way by efficiently
implementing the GPU of the convolution and all other processing in the training of CNN. AlexNet is
therefore spread across two parallel GPUs which in turn fasten the processing speed of the model and
take a smaller time to train the model.

3.1. The Proposed CNN Architecture

AlexNet model can yield high-performance accuracy measurements on different datasets. Whilst,
detaching any of the convolutional layers must drastically decrease the AlexNet’s effectiveness.
The original AlexNet model network structure consists of eight consecutive layers, five convolution
layers and three fully connected layers as shown in Figure 3 [22]. This deep structure of AlexNet leads
it to be one of the best choices in the forgery process. All layers use a max-out activation function,
excluding the last fully connected layer where the softmax function is applied. The core contributions
are as follows:

1. Use max-out activation function instead of RELU for all the AlexNet layers.
2. Use batch normalization instead of LRN.
3. The proposed architecture will be used as a feature extractor for image input patches and as well

as a classifier for the output result to detect the forgery result.
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The input must be an RBG image of size 227 × 227. Without this image size, AlexNet suffers from
considerable overfitting, which would have been forced to use much smaller network layers. If the
input image is not RGB, it is modified to be an RGB image. If the input image’s size is not, it will be
converted to be of size 227 × 227. The first convolution layer performs convolution and max-pooling
with BN where 96 different filters are used which are 11 × 11 in size. Consider an input image of size
227 × 227 × 3 that is applied to a convolution layer 1 with a square filter size 11 × 11 and 96 output
maps (channels). Then layer 1 has:

• There are (227 × 227 × 96) output neurons in L, one per 227 × 227 “pixels” in the input and across
the 96 output maps.

• There are (11 × 11) × (3 × 96) weights, (11 × 11 × 3) per filter (the input size run through the
kernel), and 96 kernels in total (one for each output channel).

• There are (227 × 227 × 3 × 11 × 11 × 96) connections available. Single filter processes (11 × 11 × 3)
values in the input; this occurs for each of the (227 × 227 × 96) output units.

This is similarly repeated through the next four convolution layers. Each layer has its own input
size, filters size, the corresponding numbers of filters and output maps.

On the other hand, there are two fully connected layers, whichexercised with dropout succeeded
by Softmax at the end of the model to act as the discriminant.

For getting families, understanding and explanation of the proposed work, a details will be
elucidated in short and be focused on the significant terms used in the model:

1. Max Pooling (MXP): The proposed model utilizes a max-pooling technique that keeps only the
maximum value in the filter to lower the dimension.

2. Dropout: This technique works as turning off nodes units with an agreed probability.
We maintained a 50% dropout rate for the proposed AlexNet model. The reason for choosing
a 50% dropout rate, it will give a maximum regularization of the model. That is because the
dropout is used to minimize a loss function that follows a Bernoulli distribution [24].

3. Softmax Activation Function: An input vector x with pi neurons are given, the softmax value of
each neuron produces a corresponding output as in Equation (1).

y j =
ex j∑k=K

k=1 exk
(1)

where x is the input vector to the output layer, j indicates the output units, so j = 1, 2... K, and K is
the length of x.
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4. Max-out Activation Function: The proposed model uses a max-out function as an activation
function, instead of ReLU, since it is known to help fast convergence of large datasets. The max-out
function [25] can be represented as follows in Equation (2).

max
(
wT

1 x + b1, wT
2 x + b2

)
(2)

where: x is the input vector, w is the weight matrix and b is the bias. Max-out is well-known
to be a learning activation function. ReLU is known to be a max-out special version. ReLU is
a piecewise linear function that is easy to train and trivial to implement [26]. ReLU allows the
model to be trained faster. Thus, the max-out activation function enjoys all the merits of a ReLU
(operation linear regime, no saturation) and does not have its weaknesses (dying ReLU).

5. Batch Normalization is used for training a CNN that homogenizes inputs for each mini-batch.
This has the impact of settling the learning procedure and dramatically minimizing the number
of training epochs needed to train CNNs. BN has been used for the benefit of reducing Internal
Covariate Shift (ICS) and accelerating the network training [27]. In BN, the output is handled in
the following manner before going to the activation function:

i. Normalize the whole batch B to be zero mean and one variance.

• Calculate the mean of the entire batch output: µB

• Calculate the variance of the entire batch output: σ2
B

• Normalize the batch by subtracting the mean and dividing by the variance.

ii. Propose two training parameters (γ: for scaling and β: for shifting).
iii. Apply the scaled and shifted normalized batch to the activation function.

Batch normalization normalizes inputs xi through formulating µB and σ2
B for a mini-batch and

input channel, after which it formulates the normalized activation as in Equation (3).

x̂i =
xi − µB√
σ2

B + ε

, (3)

where ε is applied to enhance the stability if the variance of the mini-batch is very small.
In the end of the network training, the BN hence develops both mean and variance across the

whole training dataset, after which it retains them as properties named trained mean or trained
variance. Compared to LRN, the LRN is a non-trainable layer that square-normalizes the pixel values
in a feature map in a within a local neighborhood. LRN reduces activations that are uniformly huge
for the neighborhoods which in turn creates a high contrast in a feature map. LRN is based on lateral
inhibition which means performing a local maximum contrast [28]. BN has a regularization effect but
LRN has not. Table 1 shows the differences between LRN and BN.

Table 1. Difference between local response normalization and batch normalization.

Normalization Type Trainable # of Trainable Parameters Regularization

LRN No 0 No
BN Yes 2 Yes

4. Evaluation of the Proposed Work

This section discusses the details of the datasets used, the k-fold cross-validation, the experiment
settings and environment, the performance evaluation policies, the experiments done and the
comparisons of the results obtained. The experimental environment settings are explained in more
details. For the proposed model performance measurement, diverse experiments evaluation have been
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done and executed. Experimental results are represented to prove the proposed model’s efficiency in
detecting tampering and localizing it, and comparing performance with other related published work.

4.1. Datasets Description

For evaluating the proposed model performance, the used datasets were inspected, studying their
performance, and then collating the proposed model to other key baseline models as a referral. Thus,
we used CASIA v1.0, CASIA v2.0, NIST (National Institute of Standards and Technology) Nimble 2017,
and DVMM [29] datasets for this purpose.

• NIST Nimble 17 dataset comprises around 10,000 images with numerous types of manipulations
including the ones where anti-forensic algorithms were used to hide trivial manipulations.
Ground-truth images’ masks are in the hand for the evaluation process.

• CASIA v1.0, v2.0 datasets encompasses spliced and copy–moved tampered images altogether.
The total number of images in CASIA v1.0 is 1721 (800 authentic and 921 spliced) and in CASIA
v2.0 is 12,614 (7491 authentic and 5123 tampered images). They do not contain the ground truth
masks, so ground-truth masks are obtained by thresholding the difference between tampered and
original images.

• DVMM dataset encompasses only spliced tampered images. The total number of images is 1845
(912 forged and 933 original images). Ground truth images masks are at the hand for performance
process evaluation.

4.2. K-Fold Cross-Validation

K-fold cross-validation emphasizes that the model has learned the dataset correctly [30]. The k-fold
cross-validation method arbitrarily splits the dataset into equivalently sized enclosures, where k
determines the number of partitions in which the dataset is split. The choice of an optimal k was often
reported between 5 and 10, because the statistical performance did not raise that much for greater
values of k, and averaging of less than 10 splits remains computationally feasible. The choice of k
was a trade-off between the efficiency and the accuracy of the model. Multiple k-fold cross-validation
techniques, like 5-fold, 8-fold, and 10-fold for examples, were applied to the best-fit training dataset of
the proposed model, and we note that 10-fold is the best choice due to its lower sensitivity and less
biased while separating data into training and testing. The choice of k = 10 depends on the training
experiment and the accuracy of the model. There is no formal rule for choosing the number of k. If k
was small, then the bias of the model to the dataset will be increased. Although a higher estimate of
K decreased the bias, it may suffer from large variability. By applying k = 10; the dataset images are
therefore partitioned into ten equal groups. Nine of these groups are counted to be the training dataset,
while the one partition left was used for test data. Training was iterated ten times, every time using a
diverse partition as a test group and the leftover nine partitions like training dataset. In the end, the
mean result is considered as the final evaluation of the model.

4.3. Experiment Environment

To run the proposed model, all experiments are conducted on a machine with Intel(R) Core(TM)
i7-5930K CPU @ 3.50GHz, NVidia GeForce GTX 2080 Ti with 16.0 GB memory in 64-bit window 8.
The proposed model is implemented using anaconda navigator Python, Jupyter Notebook 6.0.2.

4.4. Performance Evaluation Policy

This sub-section pronounces the evaluation metrics used to evaluate performance. The evaluation
metrics used are accuracy, precision, recall, and F1 Score. All of these evaluation metrics are derived
from the four values that are listed in the confusion matrix as shown in Table 2 that is relied on the
predicted class against the actual class [31]. True positive (TP) is defined as the forged images number
that is detected as forged, true negative (TN) is defined as the number of the pristine images which
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are detected as pristine, false positive (FP) is defined as pristine images numbers that are detected as
forged and false negatives (FN) is defined as the number of forged images that are detected as pristine.

Table 2. Confusion matrix.

Predicted Class

Malicious Benign
Actual Class Malicious True Positive (TP) False Negative (FN)

Benign False Positive (FP) True Negative (TN)

1. Accuracy (acc) or Proportion Correct: A quotient of absolutely detected examples for all items.
It is calculated as in Equation (4).

accuracy =
TP + TN

TP + TN + FP + FN
(4)

2. Positive Predictive Value (PPV) or Precision (p): A quotient of examples absolutely detected as X
to all samples that were detected as X. It is calculated as in Equation (5).

Percision =
TP

TP + FP
(5)

3. Sensitivity or True Positive Rate (TPR) or Probability of Detection (PD) or Recall (r): A quotient
of examples absolutely detected as X to all examples that were exactly X. It is calculated as in
Equation (6).

Recall =
TP

TP + FN
(6)

4. F1 Score (F1): The F1 Score is the subcontrary mean of precision and recall. It is calculated as in
Equation (7).

F1 =
2

1
r +

1
p

=
2 ∗ p ∗ r
p + r

(7)

5. Matthews Correlation Coefficient (MCC): The MCC is normally used for evaluating the localization
performance of each image in each dataset. The MCC is the cross-correlation between the model
detection result and the ground-truth. It is calculated as in Equation (8).

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(8)

4.5. Experimental Results and Performance Evaluation

In this sub-section, we demonstrate the analysis and achievement of the proposed CNN model
for image forgery detection. Comparing the performance is made between the proposed model and
state-of-the-art similar models. The proposed model achieves very consistent performance across all
testing datasets, indicating that it does generalize well on different datasets. Figure 4 displays different
kinds of image forgeries manipulations that are done to the genuine images. Qualitative analysis of the
proposed model results from different types of forgeries can be manifested as shown in Figures 5–8.
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Figure 8. Different samples of forgery-detection. The first and third columns represent the forged
images. The second and fourth columns represent the detection results of the proposed model.

From Figures 5–8, the first and third columns show the forged images using different types of
manipulation. The second and fourth columns show the color-coded result of the forgery detection
using the proposed model. Thus, one can easily identify forged areas and distinguish it from the
surrounded genuine areas. The forged and the copied regions are marked with a yellow color, while
the original areas are marked with a dark purple color.
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Figure 5, for example, shows different examples of multiple copy–move forgeries. A certain object
is copied and pasted at different times in the same image. This object can be scaled, rotated and shifted
before being pasted. The proposed model can detect all the objects that have been copied along with
the original one; to give an alarm that all of these objects are the same. Figure 7, for example, shows
examples of how the proposed model detects a splicing forgery in given images. The spliced objects
can be detected perfectly due to their appearance, their spatial extent and their geometrical structure,
which are completely different from the neighbor objects and background. The same detection that has
been occurred in Figure 6; Figure 8, the proposed model can detect the changes happened in an image.
The proposed model has the ability to detect such changes in backgrounds, structures of objects, spatial
extent of objects, contrast variations, and definitely the sudden variations of colors; that’s why it is
important to deal with color images to keep the color factor while analyzing images.

To evaluate the proposed model performance effectiveness, the upcoming experiments are
performed and run:

1. Differentiation manifested among the proposed model and the models proposed in [17–19].
2. Datasets cross-validation applying to the proposed model and the models presented in [17–19].
3. Evaluating the proposed model by using the evaluation metrics in Equations (4)–(8). After many

times experiments, the mean of all the results obtained is considered to be the final result as
shown in Figures 9–13 and Tables 3–8.

Table 3. The detailed results of 10-fold cross-validation on CASIA V1.0 using the proposed model.

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Iteration
6

Iteration
7

Iteration
8

Iteration
9

Iteration
10

#of training images 1549
# of test images 172

Accuracy 96.93 96.62 96.768 96.81 97.1 97.05 96.97 96.99 96.93 96.31
Precision 97.881 97.7 97.2 96.878 97.322 97.657 96.956 97.45 97.32 97.932

Recall 92.97 92.76 93.14 92.98 93.05 93.002 92.98 92.967 93.034 93.254
F1- Measure 95.363 95.1672 95.128 94.89 95.14 95.273 94.925 95.157 95.13 95.537

MCC 96.465 96.268 96.23 95.93 96.275 96.385 96.027 96.302 96.321 96.619
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Figure 9. The 10-fold cross-validation average result on CASIA V1.0 using the proposed model.

Table 4. The detailed results of 10-fold cross-validation on CASIA V2.0 using the proposed model.

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Iteration
6

Iteration
7

Iteration
8

Iteration
9

Iteration
10

#of training images 11,353
# of test images 1261

Accuracy 97.45 97.14 97.28 97.345 97.67 97.453 97.36 97.439 97.443 97.867
Precision 98.5 97.8 97.223 97.22 97.35 97.67 97.56 97.58 97.422 98.2

Recall 93.47 93.26 93.124 93.18 93.235 93.243 93.384 93.39 93.341 93.554
F1- Measure 95.92 95.4761 95.13 95.157 95.248 95.405 95.426 95.439 95.3385 95.8207

MCC 97.024 96.594 96.241 96.287 96.375 96.609 96.631 96.603 96.453 97.0321
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Figure 10. The 10-fold cross-validation average result on CASIA V2.0 using the proposed model.

Table 5. The detailed results of 10-fold cross-validation on DVMM using the proposed model.

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Iteration
6

Iteration
7

Iteration
8

Iteration
9

Iteration
10

#of training images 1660
# of test images 185

Accuracy 97.01 96.943 96.868 96.92 97.176 97.125 96.97 97.09 97.33 97.52
Precision 97.951 97.743 97.2656 96.908 97.622 97.887 97.056 97.6 97.52 98

Recall 93.07 92.85 93.163 93.08 93.074 93.012 93.086 93.067 93.096 93.354
F1- Measure 95.45 95.236 95.171 94.926 95.295 95.388 95.03 95.279 95.2578 95.622

MCC 96.567 96.345 96.259 96.023 96.468 96.456 96.206 96.965 96.4695 96.895
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Table 6. The detailed results of 10-fold cross-validation on the NIST 17 dataset using the proposed model.

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Iteration
6

Iteration
7

Iteration
8

Iteration
9

Iteration
10

#of training images 9000
# of test images 1000

Accuracy 97.33 97.02 97.16 97.33 97.54 97.43 97.248 97.36 97.39 97.75
Precision 98.52 97.83 97.54 97.22 98.12 97.67 97.56 97.58 97.422 98.423

Recall 93.35 93.14 93.05 93.004 93.12 93.154 93.234 93.123 93.278 93.323
F1- Measure 95.865 95.429 95.243 95.066 95.555 95.36 95.349 95.3 95.306 95.805

MCC 97.027 96.608 96.481 96.391 96.647 96.459 96.537 96.467 96.497 97.056
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By deep scrutiny of Figures 9–13, it is remarkable that the proposed model gave a higher trigger
response when the number of samples in the dataset increased. This is because the model is trained
using a wide variety of samples which leads the model to be updated in order to detect different types
of forgeries. For example, in Figure 13, as the model is trained using all the datasets mentioned, with a
total number of training images 23,562, the model is well trained using a massive example. In this case,
the proposed model gives a maximum value in terms of all evaluation metrics.

By careful study of Tables 3–7, it is noticeable that the evaluation metrics are varied by changing
the number iteration on each dataset. Based on the k-fold cross validation concept and using 10 folds
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for dividing datasets, the model splits each dataset into 10 groups. The model goes for 10 iterations,
based on the numbers of folds applied, and swaps between groups in order to get nine groups as a
training set and one group for the testing set. According to the Tables 3–7 and its recorded values,
the model has the best values when it reaches the 10th iteration that is because datasets are varied
in each group fold. This leads the model to be more generalized and capable of detecting different
sorts of forgeries; which, in turn, gives a high score and promising results. If the number of folds
increased by more than 10, there were no remarkable changes in the evaluation metrics and the results
will be saturated.

Table 8. The overall average performance of the proposed model and other comparable models
presented in [19–21].

Accuracy Precision Recall F1-Score MCC

Model in [17] 96.231 97.32 93.001 95.111 96.732
Model in [18] 96.645 98.1 93.512 95.75 97.028
Model in [19] 95.856 98.056 93.453 95.699 96.978

Proposed Model 98.178 98.19 94.007 96.053 97.263

4.6. Comparative Performance Analysis

Having justified the proposed design choices and given a complete explanation of the proposed
model, let us move to differentiate the proposed framework performance with those of comparable
baselines, using diverse of datasets common in the image forgery detection issues. The results of the
various experimental analyses of the proposed model using the modified version of Alex-net were
compared with other forgery detection models using different structures of Alex-net, all in terms of
accuracy, precision, recall, F1 score and MCC metrics. After describing and explaining the structure of
the AlexNet layers and functions used, it is clear that AlexNet was a promising model to be used in the
field of image forgery detection; that is, because of its deep and simple structure, its training speed, its
less memory occupation and the solution of ReLU and LRN issues.

By deep scrutiny of the work done in this paper, it is apparent that the proposed model outperforms
similar models using AlexNet model like models in [17–19]. This is because they all focus on the
standard architecture of AlexNet, which only contains partial information for localization that limits
their performance. The proposed model outperforms these models with the NIST17, CASIA v1.0,
CASIA v2.0, and DVMM datasets. The proposed model captures global pixels rather than nearby
pixels, which helps collect more cues such as contrast variation for the classification of manipulation.
The 10-fold algorithm is utilized for dataset partitioning into training and testing, and examined the
generalization capability of the model. Cross-validation is used to the utmost evaluation to reveal
the weaknesses and assure the robustness of the image forgery detection model. By deep scrutiny
of Tables 3–7, the evaluation metric values oscillate through 10 iterations of the cross-validation
processing. The reason for this oscillation is that each run will permute data to generate a different
dataset for training and another one dataset for testing. This is normal because the result’s values
are close and they do not vary that much. However, if the results metrics vary wildly, in this case
using cross-validation is not valid for applying on the model. Table 8 summarizes the performance
comparisons between the proposed models and similar models in [17–19]. The proposed model is
ranked in the first place in the overall datasets used; this is possible because of the generalization
ability of the proposed model.

By applying the cross-validation concept and constructing 10 different datasets, the model has
been able to predict and work correctly on all datasets. When using cross-validation along with
deep models, we ensure how accurate the proposed model is for many different datasets. We can,
therefore, guarantee that the model generalizes perfectly to the dataset which will be applied later on.
Consequently, we can say with confidence that cross-validation can improve the accuracy of the model
and guarantee the generalization of the model.
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Early deep learning architectures based on AlexNet, as models in [17–19], use a local response
normalization layer which normalizes the central coefficient within a sliding window of a feature
map considering its neighbors. Lately, Ioffe et al., presented in [32] the batch normalization layer
that dramatically accelerates the training of deep networks. BN minimizes the internal covariate
shift, which is a change in the inputs’ distribution to a learning system. This has been performed by
using the data zero-mean and unit-variance conversion whilst training the model. Each layer input
has been influenced by the parameters of the preceding layers and even small changes get amplified.
Thus, this type of layer addresses an important problem and increases the final accuracy of a CNN
model. By using batch normalization, small changes in parameter to one layer do not get propagated
to other layers. This makes it feasible to use greater learning rates for optimization. It also makes
gradient propagation in the network more stable. Thus, using BN in AlexNet, as proposed in this work,
instead of LRN, gives promising results in image forgeries using different datasets; which outperforms
different proposed models using AlexNet in image forgery detection.

Comparing with the model proposed in [19], which used SVM as a classifier for the resultant
values from the AlexNet instead of using its last fully connected layer with a softmax activation
function. To differentiate SVM with Softmax, the SVM can be considered and classified as if it is a local
objective [33]. So, SVM can intuitively be thought of as a feature. Softmax is highly used in the field
of deep learning and gives a better classification output. So, softmax outperforms the result of SVM
when applying to the problem of image forgeries. Thus, the proposed model gains greater and higher
forgery detection results than the methods used in [18,19].

By deep investigation of the evaluation metrics used, it is clear that the proposed improved
AlexNet model outperformed the previously published related work on different datasets. The model
triggers higher scores using all performance measures used, which authorizes the model to be used in
many forgeries problems.

5. Conclusions

In this paper, a modified deep CNN model based on a pre-trained AlexNet for image forgery
detection and localization is proposed. The proposed work shows that the proposed model is deemed
to be one of the best models to detect tampered images. Not only it is able to acquire performance
much better than other models previously published, but it is also strongly robust to the most known
image processing. Plainly, the proposed model can cope with a variety of operations with a strong
learning capability. Inclusive experimental results presented that the proposed model is masterful
in catching manipulations and attains good generalizability to unseen data and obscure editing
types. The experimental results also show that the improved AlexNet model proposed for detecting
and locating the forged areas score an effect that is better than the existing models on the datasets
aforementioned. The detection results of people in different postures were also proved to be excellent.
The improved AlexNet is proved to have the capability to learn the outlines of the forged areas
and thus the capability to distinguish between the tampered and non-tampered areas. Even with
promising results, it is a must to keep in mind that no model can solve all forgery attacks editing
by itself. The model still needs further research to detect small forged areas and regions under
massive variations.

6. Future Work

• Designing deep learning models to learn from smaller data: Deep learning models have been
used for applications where huge amounts of unsupervised data are required. Deep learning has
greater success with giant numbers of unlabeled training datasets. However, when the training
dataset accessible is small, potent models are needed to gain improved learning capability. As a
consequence, research on how to develop a deep model learning from the small training dataset is
highly recommended.
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• Applying optimization techniques to adjust the model’s parameters: Adjusting the parameters
in machine learning algorithms is an emerging topic in computer science. In deep learning
CNN models, parameters that are needed to be adjusted is massive. Over and above, due to the
hidden units’ great number, the model is more probably gotten snared in the local peak optimal.
Optimization techniques, e.g., PSO [34], are hence needed to solve this issue. The proposed model,
therefore, should be capable of adjusting the parameters and extracting the features automatically.

Author Contributions: Conceptualization, S.S.; methodology, S.S., and E.E.; software, S.S.; validation, S.S., E.E.,
K.E.-S., and H.O.; investigation, S.S., E.E., K.E.-S., and H.O.; writing—original draft preparation, S.S.; supervision,
E.E., K.E.-S., and H.O. All authors have read and agree to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that there is no actual or potential conflict of interest regarding the
publication of this article.

References

1. The 2017 Nimble Challenge Evaluation Datasets. Available online: https://www.nist.gov/itl/iad/mig/nimble-
challenge-2017-evaluation (accessed on 28 September 2019).

2. Hadji, I.; Wildes, R.P. What do we understand about convolutional networks? arXiv 2018, arXiv:1803.08834v1.
3. Rao, Y.; Ni, J. A deep learning approach to detection of splicing and copy-move forgeries in images.

In Proceedings of the 2016 IEEE International Workshop on Information Forensics and Security (WIFS), Abu
Dhabi, UAE, 4–7 December 2016; pp. 1–6. [CrossRef]

4. Liu, Y.; Guan, Q.; Zhao, X.; Cao, Y. Image Forgery Localization based on Multi-Scale Convolutional
Neural Networks. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia
Security—IH&MMSec ’18, Innsbruck, Austria, 20–22 June 2018; pp. 85–90.

5. Bayar, B.; Stamm, M.C. A Deep Learning Approach to Universal Image Manipulation Detection Using a New
Convolutional Layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia
Security, Vigo Galicia, Spain, 20–22 June 2016; pp. 5–10.

6. Cozzolino, D.; Poggi, G.; Verdoliva, L. Recasting Residual-based Local Descriptors as Convolutional Neural
Networks. In Proceedings of the 5th ACM Workshop on Challenged Networks-CHANTS ’10, Philadelphia,
PA, USA, 20–21 June 2017; pp. 159–164.

7. Zhou, P.; Han, X.; Morariu, V.I.; Davis, L.S. Learning Rich Features for Image Manipulation Detection.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 1053–1061.

8. Marra, F.; Gragnaniello, D.; Cozzolino, D.; Verdoliva, L. Detection of GAN-Generated Fake Images over
Social Networks. In Proceedings of the 2018 IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR), Miami, FL, USA, 10–12 April 2018; pp. 384–389.

9. Rossler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Niessner, M. FaceForensics++: Learning to Detect
Manipulated Facial Images. In Proceedings of the 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.

10. Salloum, R.; Ren, Y.; Kuo, C.-C.J. Image Splicing Localization using a Multi-task Fully Convolutional Network
(MFCN). J. Vis. Commun. Image Represent. 2018, 51, 201–209. [CrossRef]

11. Zhang, Z.; Zhang, Y.; Zhou, Z.; Luo, J. Boundary-based Image Forgery Detection by Fast Shallow CNN.
In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China,
20–24 August 2018; pp. 2658–2663.

12. Choi, H.-Y.; Jang, H.-U.; Kim, D.; Son, J.; Mun, S.-M.; Choi, S.; Lee, H.-K. Detecting composite image
manipulation based on deep neural networks. In Proceedings of the 2017 International Conference on
Systems, Signals and Image Processing (IWSSIP), Poznan, Poland, 22–24 May 2017; pp. 1–5.

13. Jaiswal, A.K.; Srivastava, R. Image Splicing Detection using Deep Residual Network. SSRN Electron. J. 2019,
8, 102. [CrossRef]

14. Dong, J.; Wang, W. CASIA v1.0 and CASIA v2.0 Image Splicing Dataset. Available online: https://www.kagg
le.com/sophatvathana/casia-dataset (accessed on 28 September 2019).

https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation
https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation
http://dx.doi.org/10.1109/wifs.2016.7823911
http://dx.doi.org/10.1016/j.jvcir.2018.01.010
http://dx.doi.org/10.2139/ssrn.3351072
https://www.kaggle.com/sophatvathana/casia-dataset
https://www.kaggle.com/sophatvathana/casia-dataset


Information 2020, 11, 275 19 of 19

15. Qi, G.; Wang, H.; Haner, M.; Weng, C.; Chen, S.; Zhu, Z. Convolutional Neural Network Based Detection
and Judgment of Environmental Obstacle in Vehicle Operation. CAAI Trans. Intell. Technol. 2019, 4, 80–91.
[CrossRef]

16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Pdf ImageNet classification with deep convolutional neural
networks. Commun. ACM 2017, 60, 84–90. [CrossRef]

17. Ouyang, J.; Liu, Y.; Liao, M. Copy-move forgery detection based on deep learning. In Proceedings of the
2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics
(CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–5. [CrossRef]

18. Doegara, A.; Duttaa, M.; Kumar, G. CNN based Image Forgery Detection using pre-trained AlexNet Model.
Proc. Int. Conf. Comput. Intell. IoT (ICCIIoT) 2019, 2.

19. Muzaffer, G.; Ulutas, G. A new deep learning-based method to detection of copy-move forgery in digital
images. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering
and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019. [CrossRef]

20. Cozzolino, D.; Poggi, G.; Verdoliva, L. Copy-move forgery detection based on PatchMatch. In Proceedings
of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014;
pp. 5312–5316.

21. A Walk Through AlexNet. Available online: https://medium.com/@smallfishbigsea/a-walk-through-of-alex
net-6cbd137a5637 (accessed on 5 April 2020).

22. Architecture of AlexNet. Available online: https://iq.opengenus.org/architecture-and-use-of-alexnet/
(accessed on 19 May 2020).

23. Available online: https://www.saagie.com/blog/object-detection-part1/ (accessed on 2 October 2019).
24. Understanding Dropout with the Simplified Math Behind It. Available online: https://towardsdatascience.c

om/simplified-math-behind-dropout-in-deep-learning-6d50f3f47275 (accessed on 5 May 2020).
25. Goodfellow, I.J.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout Networks. arXiv 2013,

arXiv:1302.4389v4 stat.ML.
26. A Gentle Introduction to the Rectified Linear Unit (ReLU). Available online: https://machinelearningmastery

.com/rectified-linear-activation-function-for-deep-learning-neural-networks/ (accessed on 4 May 2020).
27. Romero, F.P.; Tang, A.; Kadoury, S. Multi-Level Batch Normalization in Deep Networks for Invasive Ductal

Carcinoma Cell Discrimination in Histopathology Images. In Proceedings of the 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019. [CrossRef]

28. What Is Local Response Normalization in Convolutional Neural Networks. Available online: https://pratee
kvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/ (accessed
on 4 May 2020).

29. Ng, T.T.; Chang, S.F. A Dataset of Authentic and Spliced Image Blocks Dept. Elect. Eng., Columbia Univ.,
New York, NY, USA, Tech. Rep. 203. Available online: http://www.ee.columbia.edu/ln/dvmm/newDownloa
ds.htm (accessed on 27 September 2019).

30. Sebastian, R. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv 2018,
arXiv:1811.12808v2 cs.LG.

31. Understanding Confusion Matrix. Available online: https://towardsdatascience.com/understanding-confusi
on-matrix-a9ad42dcfd62 (accessed on 5 October 2019).

32. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

33. Qi, X.; Wang, T.; Liu, J. Comparison of Support Vector Machine and Softmax Classifiers in Computer.
In Proceedings of the Second International Conference on Mechanical, Control and Computer Engineering
(ICMCCE), Harbin, China, 8–10 December 2017; pp. 151–155.

34. Zeng, N.; Wang, Z.; Zhang, H.; Alsaadi, F.E. A Novel Switching Delayed PSO Algorithm for Estimating
Unknown Parameters of Lateral Flow Immunoassay. Cogn. Comput. 2016, 8, 143–152. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/trit.2018.1045
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/cisp-bmei.2017.8301940
http://dx.doi.org/10.1109/ebbt.2019.8741657
https://medium.com/@smallfishbigsea/a-walk-through-of-alexnet-6cbd137a5637
https://medium.com/@smallfishbigsea/a-walk-through-of-alexnet-6cbd137a5637
https://iq.opengenus.org/architecture-and-use-of-alexnet/
https://www.saagie.com/blog/object-detection-part1/
https://towardsdatascience.com/simplified-math-behind-dropout-in-deep-learning-6d50f3f47275
https://towardsdatascience.com/simplified-math-behind-dropout-in-deep-learning-6d50f3f47275
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
http://dx.doi.org/10.1109/isbi.2019.8759410
https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/
https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/
http://www.ee.columbia.edu/ln/dvmm/newDownloads.htm
http://www.ee.columbia.edu/ln/dvmm/newDownloads.htm
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
http://dx.doi.org/10.1007/s12559-016-9396-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Proposed Work 
	The Proposed CNN Architecture 

	Evaluation of the Proposed Work 
	Datasets Description 
	K-Fold Cross-Validation 
	Experiment Environment 
	Performance Evaluation Policy 
	Experimental Results and Performance Evaluation 
	Comparative Performance Analysis 

	Conclusions 
	Future Work 
	References

