
 information

Article

Prediction Method of Multiple Related Time Series Based on
Generative Adversarial Networks

Weijie Wu, Fang Huang *, Yidi Kao, Zhou Chen and Qi Wu

����������
�������

Citation: Wu, W.; Huang, F.; Kao, Y.;

Chen, Z.; Wu, Q. Prediction Method

of Multiple Related Time Series Based

on Generative Adversarial Networks.

Information 2021, 12, 55. https://doi.

org/10.3390/info12020055

Received: 25 December 2020

Accepted: 22 January 2021

Published: 26 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Central South University, Changsha 410083, China;
wuweijie@csu.edu.cn (W.W.); 0902170620@csu.edu.cn (Y.K.); 0902170607@csu.edu.cn (Z.C.);
194711041@csu.edu.cn (Q.W.)
* Correspondence: hfang@csu.edu.cn

Abstract: In multiple related time series prediction problems, the key is capturing the comprehensive
influence of the temporal dependencies within each time series and the interactional dependencies
between time series. At present, most time series prediction methods are difficult to capture the
complex interaction between time series, which seriously affects the prediction results. In this paper,
we propose a novel deep learning model Multiple Time Series Generative Adversarial Networks
(MTSGAN) based on generative adversarial networks to solve this problem. MTSGAN is mainly
composed of three components: interaction matrix generator, prediction generator, and time series
discriminator. In our model, graph convolutional networks are used to extract interactional depen-
dencies, and long short-term memory networks are used to extract temporal dependencies. Through
the adversarial training between the generator and the discriminator, we enable the final prediction
generator to generate prediction values that are very close to the true values. At last, we compare the
prediction performance of the MTSGAN with other benchmarks on different datasets to prove the
effectiveness of our proposed model, and we find that MTSGAN model consistently outperforms
other state-of-the-art methods in the multiple related time series prediction problems.

Keywords: multiple related time series prediction; interactional dependencies generation; generative
adversarial networks; graph convolutional networks; long short-term memory networks

1. Introduction

Time series refers to a series of numbers representing the same statistical indicator
arranged in the order of their occurrence time. In the real world, time series data is
ubiquitous, such as precipitation, electricity consumption, sales of commodities, and stock
price. Time series prediction is predicting the future value by mining the implicit pattern
in the history values. For a long time, the research on time series prediction problems has
attracted a lot of attention of many scholars. In the early stage of studying time series,
the autoregressive integrated moving average (ARIMA) [1] model was widely used in time
series prediction problems. However, that model is based on the linear regression theory
in statistics, and it is essentially a linear model, which has obvious deficiency in fitting
data with complex nonlinear patterns. In recent years, with the continuous development
of artificial intelligence, many machine learning and deep learning methods have also
been used in time series prediction problems, such as support vector machines and neural
networks, and these models have the advantage of fitting data with complex nonlinear
patterns. So far, most of these studies have focused on single time series prediction
problems, and have achieved good results and applications.

However, in the real world, the problems we encounter are often more complex,
and the objects we need to study often contain many time series, in which there are
time series correlation. The problem of multiple related time series prediction is more
complicated than the problem only containing a single time series. We not only need
to take into consideration temporal dependencies within each time series but also the

Information 2021, 12, 55. https://doi.org/10.3390/info12020055 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info12020055
https://doi.org/10.3390/info12020055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12020055
https://www.mdpi.com/journal/information
https://www.mdpi.com/2078-2489/12/2/55?type=check_update&version=1

Information 2021, 12, 55 2 of 16

interactional dependencies between different time series. How to effectively capture these
interactional dependencies is the biggest challenge to solve the multiple related time series
prediction problems.

Inspired by the generative adversarial networks, we propose a sequence generation
model Multiple Time Series Generative Adversarial Networks (MTSGAN) combined with
a graph learning model to solve the prediction problem of multiple related time series.
The MTSGAN is designed by using Generative Adversarial Networks [2] (GAN) as the basic
model framework and combines the advantages of the Graph Convolutional Networks [3]
(GCN) and the Long Short-Term Memory [4] (LSTM). Specifically, there are two alternate
stages in the training of MTSGAN. During the generation stage, MTSGAN first maps a
random noise vector to an interaction matrix through a generator, which is a symmetric
matrix used to represent the interactional dependencies between time series, and then
uses GCN to process the complex interactional dependencies, finally using LSTM to
separately process the temporal dependencies contained within each time series and
generate the prediction values. During the discrimination stage, MTSGAN will train
a good discriminator to distinguish between real samples and fake samples generated
by generator. Through the adversarial training between generator and discriminator,
the generator can finally generate the prediction value very close to the true value.

The main contributions of this paper are summarized below:

(1) We propose a novel GAN-based deep learning model MTSGAN, which is an end-to-
end solution to the prediction problem of multiple related time series that exist widely
in the real world. Compared with other existing time series prediction models, MTS-
GAN can simultaneously capture the complex interactional dependencies between
time series and the temporal dependencies within each time series, which has unique
advantages in the multiple related time series prediction task.

(2) In the multiple related time series prediction problem, the complex interactional de-
pendencies between time series is hidden in the data. Conventional methods cannot
directly extract these hidden complex interactional dependencies. The MTSGAN
model we proposed skillfully uses a generator to generate these interactional depen-
dencies and uses a discriminator to optimize the generated interactional dependencies.
This method of directly extracting interactional dependencies from data does not
rely on other prior knowledge. In addition, we use transposed convolutional net-
works to implement our interaction matrix generator, which improves the scalability
of MTSGAN.

The rest of the paper is organized as follows. Section 2 introduces the related work.
Some definitions of the multiple related time series prediction problem and MTSGAN
model details are shown in Section 3. In Section 4, we introduce our experiments results.
Section 5 gives the conclusion and future work of this paper.

2. Related Work
2.1. Time Series Prediction

Early time series prediction methods are based on linear regression theory in statistics.
In 1970, American statisticians Box and Jenkins first proposed the autoregressive integrated
moving average model [1] (ARIMA), which adds a d-order difference process on the basis of
the ARIMA model, which can convert non-stationary time series into stationary time series,
which extends the method that can only model stationary time series to non-stationary time
series. The ARIMA method has greatly promoted the application and development of time
series analysis and prediction in various industries and has received widespread attention.

With the development of artificial intelligence, many machine learning methods
have been introduced into the field of time series prediction. In 1996, Drucker et al.
proposed Support Vector Regression [5] (SVR), which is a regression version of the well-
known machine learning method Support Vector Machine [6] (SVM). The solid theoretical
foundation of support vector machine ensures that it has unique advantages in solving
small samples, high-dimensional data and nonlinear problems. Kim [7] directly used

Information 2021, 12, 55 3 of 16

support vector machines to predict the stock price index. Tay and Cao [8] directly used
support vector machine to predict financial time series data and tested the feasibility of the
method through comparative experiments. Hao et al. [9] used SVR with a modified regular
function to predict the stock composite index and achieved good results. In addition to
applying SVM to financial time series prediction, Mellit et al. [10] also used SVM to predict
meteorological time series data.

Deep learning is a subfield of machine learning. LSTM and its variant Gate Recurrent
Unit (GRU) are deep learning models, which are widely used to process sequential data.
They are also being used to predict time series. LSTM can solve the multiple related
time series prediction problem by feeding multiple time series in parallel. The proposed
model still has three advantages over LSTM: (1) LSTM relies on the cell state that is a
vector to memorize the information of dependency in the input sequential data. If we
want to simultaneously capture the temporal dependencies within the time series and
the interactional dependencies between the time series through LSTM, we need LSTM to
compress the input matrix into a vector, in which each column represents a time series. This
will definitely lose some information. However, in MTSGAN, the dependency information
of two aspects will be stored in an intermediate feature representation, which is the same
size as the input matrix. This ensures that the information will not be lost. (2) MTSGAN
uses an interaction matrix generator to generate the interaction dependencies between time
series, and then can explicitly model the dependencies on the graph by capturing more
complex adjacency dependencies, including first-order adjacency dependencies between
node and its neighbor, second-order adjacency dependencies between node and neighbor
of its neighbor, and so on. But LSTM models the dependencies in an implicit way, which
can only capture first-order adjacency dependencies as far as possible.

Multivariate time series prediction is very similar to our research work. A multivariate
time series contains more than one time-dependent variable, and each variable not only
depends on its past historical values but also on other variables. The vector autoregressive
model [11] (VAR) is one of the most commonly used methods to solve the multivariate
time series forecasting problem. The dimension of the multivariate time series processed
by this method is usually low, and the dependencies between different variables is not very
complicated. However, multiple related time series prediction usually contains a large
number of time series, and there are often complex interactional dependencies between
time series. In the VAR model, the predicted value of each variable is obtained by linear
regression of the historical values of the variable and the historical values of other variables.
Although VAR can take into account the dependencies between different variables, it is
still a linear model in nature. It is limited by model assumptions when fitting data with
complex nonlinear pattern, so it is difficult to obtain satisfactory prediction results.

Another problem very similar to our research work is traffic prediction. The research
objects in traffic prediction are spatial-temporal sequences. Usually, the traffic volume data
recorded by sensors on each road segment over time can form a time series. These time
series have different adjacency relations geographically, and these adjacency relations are
usually regarded as dependencies between time series. Reference [12] proposed a multi-
graph convolutional network to predict shared bike flow, and Reference [13] combined
graph convolutional neural network and gated recurrent unit to propose a new model
T-GCN to solve the traffic prediction problem. Our research work is different from the
traffic prediction problem. The dependencies between time series in traffic prediction are
determined by the geographical position relations between time series, which depends on
prior knowledge. But the interactional dependencies between time series in our studying
problem are implicit and exist in the data. We use a generative method to mine these
interactional dependencies from the data with the help of MTSGAN and apply it to
multiple time series prediction problems.

Information 2021, 12, 55 4 of 16

2.2. GAN and GCN

Generative Adversarial Networks [2] (GAN) was proposed by Goodfellow in 2014.
Specifically, a GAN mainly contains two neural networks: a generator and a discrimina-
tor. The task of the generator is to map the random noise vector to synthetic data; the
discriminator takes real data and synthetic data as input, and outputs the probability that
this sample is true. At present, GAN is mainly used in the field of computer vision and
is used to generate realistic synthetic images. There is almost no research on applying
GAN to multiple time series prediction problems. The only relevant one is the use of GAN
in Reference [14] to deal with missing values in multivariate time series. As far as we
know, our research work should be the first to apply GAN to multiple related time series
prediction problem.

The graph convolutional network is a brand new neural network model recently
proposed. It is different from the traditional neural network that can only process euclidean
structure data. The object processed by the graph convolutional network is the graph
structure data. The graph convolutional network was first proposed by Bruna et al. [15] in
2013, and then Defferrard et al. [16] further improved the graph convolution by reducing
the complexity of the calculation process by designing a fast localized spectral convolution
kernel on the graph. Kipf et al. [3] designed the widely used graph convolutional network
by doing a first order local approximation of the spectral convolution and achieved good
results in the task of semi-supervised classification of literature cited data. The graph
convolutional network in the following description refers to the graph convolutional
network (GCN) proposed by Kipf et al., unless otherwise specified. GCN has attracted
great interest of researchers, and they have begun to use GCN to solve complex problems
in various fields. For example, Reference [17] uses GCN to classify text, and Reference [18]
uses GCN to predict diseases.

3. Proposed Model
3.1. Problem Definition

Multiple related time series prediction problem: suppose that the object we are study-
ing contains n time series T1, T2, · · · , Tn; the time step we need to predict is t + 1, so the
data features we can get are T1

[t−w+1,t], T2
[t−w+1,t], · · · , Tn

[t−w+1,t], which represents the
historical values of each series in a sliding window of length w. Our goal is to train a model
f to map the above data features to the future values of each time series at time step t + 1:

[T1
t+1, · · · , Tn

t+1] = f (T1
[t−w+1,t], · · · , Tn

[t−w+1,t]). (1)

Definition 1. Time series feature vector Ti
[t−w+1,t]. The time series feature vector is a feature

vector composed of historical values covered by a sliding window of length w at the time step t.
The i-th time series feature vector representation is as follows:

Ti
[t−w+1,t] = [Ti

t−w+1, Ti
t−w+2, · · · , Ti

t]. (2)

Definition 2. Time series feature matrix Xn×w. The time series feature matrix is composed of n
time series feature vectors, and each row in the matrix corresponds to a time series feature vector.
The number of columns in the matrix is equal to the length of the sliding window w, and the number
of rows in the matrix is equal to the number of time series n. The representation of time series feature
matrix is as follows:

Xn×w =

T1

t−w+1 T1
t−w+2 · · · T1

t

T2
t−w+1 T2

t−w+2 · · · T2
t

...
...

. . .
...

Tn
t−w+1 Tn

t−w+2 · · · Tn
t

. (3)

Information 2021, 12, 55 5 of 16

Definition 3. Time series interaction graph G. Figure 1 shows a time series interaction graph
containing five time series. The interactional dependencies of multiple time series are represented as
a weighted undirected graph G = (V, E). V is the set of nodes, each node corresponds to a time
series feature vector, and the time series feature matrix Xn×w can be used to describe the node set
V. The set of weighted edges E represents the weighted adjacency relations between the nodes of
the time series interaction graph, which is used to describe the interactional dependencies between
time series. The adjacency matrix of the time series interaction graph is represented by An×n; we
also call it the interaction matrix which is generated by interaction matrix generator; each matrix
element corresponds to an edge in E, and the range of its values defined as follows:

Ai,j =

{
a, (i 6= j and 0 ≤ a ≤ 1)

0, (i = j).
(4)

Time Series Feature Matrix 𝑋5×𝑚

Interaction Matrix A5×5

0 0.8 0.32 0.72 0.11
0.8 0 0.6 0.56 0
0.32 0.6 0 0.4 0
0.72 0.56 0.4 0 0.53
0.11 0 0 0.53 0

...

...

...

...

...

𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

𝑡2 𝑡1 𝑡3 𝑡𝑚 ⋯ 𝑇5 𝑇1

𝑇2
𝑇4

𝑇3

...

...

...

...

...

0.53

0.11

0.8

0.72
0.32

0.56

0.6
0.4

Time Series Interaction Graph

Figure 1. Time series interaction graph with five time series.

3.2. MTSGAN Overview

The original GAN was proposed in Reference [2]. GAN contains two networks. One
is the generation network, and the other is the discrimination network. GAN makes the
samples generated by the generation network obey the real data distribution through
adversarial training between two networks. MTSGAN is a deep learning model based on
GAN. The overall architecture of the model is shown in Figure 2. Similar to the structure of
the classic generative adversarial networks, MTSGAN is composed of an interaction matrix
generator Gi, a prediction generator Gp, and a time series discriminator D. The specific
descriptions of these three components are as follows:

1. Interaction Matrix Generator Gi: Gi consists of a transposed convolutional networks,
which implements a mapping function f : Rk → Rn×n. It maps a k dimensional
random noise vector sampled from the Gaussian distribution to a n× n interaction
matrix. We use this interaction matrix as the adjacency matrix of the time series
interaction graph.

2. Prediction Generator Gp: Gp consists of a graph convolutional networks (GCN) and a
long short-term memory networks (LSTM). Its input is a time series interaction graph,
which is described by an interaction matrix and a time series feature matrix. First,
GCN performs graph convolution operations on the time series interaction graph
to obtain an intermediate feature representation that incorporates the interactional
dependencies between time series, and then LSTM processes this intermediate feature
representation and capture the temporal dependencies. In this way, the predicted
value of each time series can be generated by the prediction generator.

Information 2021, 12, 55 6 of 16

3. Time Series Discriminator D: The discriminator is used to judge the quality of the
data generated by the prediction generator. It takes real time series samples and fake
time series samples as input, and then outputs a value indicating the probability that
the input sample is true. After the discriminator is well trained, it will be fixed as an
estimator of the above two generators, and the gradient information will be fed back
to Gi and Gp to optimize its parameters.

...

...

...

...

...
...

...

...

...

Concatenate

Fake

Samples

Concatenate

Real

Samples

...

Predict

Random

noise

Real data

Fake

target

Real

target

Gradients

G
ra

d
ie

n
ts

Interaction matrix

𝑇1

𝑇2
𝑇3

𝑇𝑛

𝑡1 𝑡2 𝑡3 𝑡𝑚

𝑡𝑚+1

𝑡 𝑚+1

𝐺𝑖 𝐺𝑝

𝐷

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

Figure 2. The architecture of the Multiple Time Series Generative Adversarial Network (MTSGAN).

The overall workflow of MTSGAN can be divided into a generation process, a discrim-
ination process and an adversarial process. In the generation process, first, the interaction
matrix generator transforms a random noise vector into an interaction matrix and then
combines the interaction matrix with the time series feature matrix to construct a time series
interaction graph. Next, the prediction generator capturea the interactional dependencies
between time series and temporal dependencies within each time series to generate the
predicted value of each time series. In the discrimination process, first, it is necessary to
construct real samples and fake samples. We use the real data represented by the time series
feature matrix and real targets to obtain real time series samples through matrix concate-
nating operation, as well as use the real data and fake targets generated by the prediction
generator to obtain fake time series samples through matrix concatenating operation. Then,
the discriminator will use real samples and fake samples as the training set for training.
When it can correctly distinguish between real samples and fake samples, the discriminator
training is completed. In the adversarial process, the well trained discriminator is fixed as
the generators’ evaluator, and the network parameters of two generators are adjusted to
maximize the probability that the fake samples generated by the two generators are judged
to be real samples by the discriminator.

The process of Gi, Gp, and D as the two parties’ competitors playing the minimax
game can be formally expressed as Equation (5), which is derived from GAN [2]. Finally,
the overall logic of MTSGAN is summarized in Algorithm 1.

min
θi ,θp

max
θd

V(Gi, Gp, D) = min
θi ,θp

max
θd

Ey∼ptrue(·|x)
[log D(y, X; θd]+

Ez∼p(z)[log(1− D(Gp(Gi(z; θi), X; θp), X; θd))]
. (5)

Information 2021, 12, 55 7 of 16

Algorithm 1 MTSGAN Framework

Input: time series feature vector {T1
[t−w+1,t], T2

[t−w+1,t], · · · , Tn
[t−w+1,t]}, real target

{T1
t+1, T2

t+1, · · · , Tn
t+1}

Output: prediction values {T̂1
t+1

, T̂2
t+1

, · · · , T̂n
t+1}, generator Gi, Gp and discriminator

D
1: Initialize Gi(; θi), Gp(; θp), D(; θd)
2: for number of training iterations do
3: generate the random noise z ∼ N(0, 1)
4: generate the interaction matrix Â = Gi(z; θi)
5: make interaction matrix symmetrical:

Â = (Â + ÂT)/2 and Âii = 0
6: construct time series feature matrix:

X =

T1

t−w+1 T1
t−w+2 · · · T1

t

T2
t−w+1 T2

t−w+2 · · · T2
t

...
...

. . .
...

Tn
t−w+1 Tn

t−w+2 · · · Tn
t

7: generate the prediction values {T̂1

t+1
, T̂2

t+1
, · · · , T̂n

t+1} = Gp(Â, X; θp)
8: construct real time series samples:

Ti
[t−w+1,t+1] = [Ti

t−w+1, Ti
t−w+2, · · · , Ti

t, Ti
t+1]

9: construct fake time series samples:

T̂i
[t−w+1,t+1]

= [Ti
t−w+1, Ti

t−w+2, · · · , Ti
t, T̂i

t+1
]

10: for k steps do
11: training D(; θd) to distinguish real samples from fake samples
12: update discriminator by ascending its gradient:

θd ← θd + α · ∇θd V(Gi, Gp, D)
13: end for
14: generate the random noise z ∼ N(0, 1)
15: update the Gi(; θi) by descending its gradient:

θi ← θi − α · ∇θi V(Gi, Gp, D)
16: update the Gp(; θp) by descending its gradient:

θp ← θp − α · ∇θp V(Gi, Gp, D)
17: end for
18: generate the random noise z ∼ N(0, 1)

19: get prediction values {T̂1
t+1

, T̂2
t+1

, · · · , T̂n
t+1} = Gp(Gi(z; θi), X; θp)

20: return {T̂1
t+1

, T̂2
t+1

, · · · , T̂n
t+1}, Gi, Gp, D

3.3. Interaction Matrix Generator

The role of the interaction matrix generator is to generate a matrix. If we regard
the matrix as a picture, the role of the interaction matrix generator is similar to that of
the generator in DCGAN [19], so we use transposed convolution [20] to implement the
interaction matrix generator. The effects of transposed convolution and convolution are
exactly opposite. The convolution operation can transform a fine-grained representation
into a coarse-grained representation, which is equivalent to a down-sampling method;
while transposed convolution operation can transform a coarse-grained representation into
a fine-grained representation, which is equivalent to an up-sampling method. The trans-
posed convolutional network has the advantages of local connectivity and kernel parameter
sharing. Compared with fully connected networks, it can greatly reduce the number of
network parameters and is more efficient when processing large scale data. The struc-
ture of the interaction matrix generator we implemented is shown in Figure 3. A high
dimensional random noise vector sampled from the Gaussian distribution will be used
as the input of the interaction matrix generator. The noise vector is mapped to a three-

Information 2021, 12, 55 8 of 16

dimensional feature map through a fully connected layer, the three dimensions are length,
width, and number of channels. The transposed convolutional layers will continue to
process the three-dimensional feature map. Each time through a transposed convolutional
layer, the number of channels of the feature map will decrease, the length and the width
will increase. Finally, the output of the transposed convolutional layers is a tensor in
which dimension is n× n× 1, where n is the number of time series we need to process.
The output result of the transposed convolutional layers cannot be used directly as an
interaction matrix, and it needs to be symmetric. The symmetrization operation is shown
in Equation (6), where O is the output matrix of the transposed convolutional layers, and A
is the symmetric matrix obtained after processing.

Ai,j =

{
(Oi,j+Oj,i)/2, (i 6= j)

0, (i = j)
. (6)

𝐴𝑛×𝑛 Symmetrize

Fully Connected

Layers

Transposed Convolutional

Layers

Figure 3. Implementation details of the interaction matrix generator.

3.4. Prediction Generator

It has been explained before that in multiple related time series prediction problems,
there are two dependencies that need to be dealt with: (1) interactional dependencies
between the time series; and (2) temporal dependencies within each time series. The in-
teractional dependencies has been obtained through an interaction matrix generator. Our
purpose of designing a prediction generator is to comprehensively deal with these two
kinds of dependencies. Our prediction generator is shown in Figure 4. We use the in-
teraction matrix as the adjacency matrix and the time series feature matrix as the feature
matrix of the graph to construct a time series interaction graph. The time series feature
vector on each node in the graph contains the temporal dependencies within each time
series, and the weighted edges between nodes contain the interactional dependencies
between the time series. As a well-known graph representation learning algorithm, GCN
has the advantage of efficiently processing graph structured data. Using GCN to process
time series interaction graphs can get an intermediate feature representation. Specifically,
in Figure 1, node set {1, 2, 4} is the input of the graph convolution on node 1, in which
node 1 is the central node, and node 2 and node 4 are the neighbor nodes of node 1. So, the
output of graph convolution is the weight sum of central node feature and its neighbor
node feature. The same is true for the node set {2, 1, 4} and node set {6, 3 ,4, 5}. From the
perspective of graph embedding, GCN embeds the topological information in the time
series interaction graph, that is, the information in the edges into the output intermediate
feature representation. So, the intermediate feature representation we get actually contains
two aspects of information: (1) the information in the time series feature matrix containing
the temporal dependencies within each time series; and (2) the information in the inter-

Information 2021, 12, 55 9 of 16

action matrix containing the interactional dependencies between time series. Finally, we
use LSTM [4] to process this intermediate feature representation and generate the final
predicted values.

1 2

3

4 5

6

...

...

...

...

...

...

1

2

4

...

...

...

1 ...

𝑎11

𝑎12

𝑎14

2

1

4

...

...

...

2 ...
𝑎21
𝑎24

𝑎22

6

3

4

...

...

...
6 ...

5 ...

𝑎66

𝑎63

𝑎64

𝑎65

⋯ ⋯

Graph Convolution
Intermediate Feature

Representation

LSTM

LSTM

LSTM

Prediction Values

⋯ ⋯

Time Series

Interaction Graph

Figure 4. Implementation details of the prediction generator.

3.4.1. GCN for Extracting Interactional Dependencies

GCN is used to model the interactional dependencies between time series. The graph
convolutional layer in MTSGAN is shown in Equation (7):

H = GCN(A, X) = f (D̃−
1
2 ÃD̃−

1
2 XW), (7)

where Ã = A + I, A is the interaction matrix generated by the generator, and I is the
identity matrix. Converting A to Ã is equivalent to adding a self loop edge for each node.
The purpose of that is to prevent losing original information of the node itself during
the operation of graph convolution. Matrix D̃ is the degree matrix corresponding to Ã.

The elements on the main diagonal are D̃ii =
n
∑

j=1
Ãij, and the other elements are 0. Ã left

multiplied by D̃−
1
2 and right multiplied by D̃−

1
2 is the normalization process to prevent the

problem of inconsistent scales of node features in graph convolution operation. X ∈ Rn×w

is the time series feature matrix on the graph, each row of the matrix is a time series feature
vector, and W ∈ Rw×w is the learnable parameter in GCN. H ∈ Rn×w is the representation
matrix obtained after graph convolution.

3.4.2. LSTM for Extracting Temporal Dependencies

LSTM uses some gate structure to allow information to selectively affect the state
of each moment in the recurrent neural network. The so-called gate structure is a mini
neural network using a sigmoid activation function and a element-wise multiplication
operation. It is called the gate structure because the fully connected neural network layer
using sigmoid as the activation function will output a value between 0 and 1, describing
how much information the current output can pass through this gate structure. When the
door is fully opened, that is, when the sigmoid output is 1, all information can pass; when
the door is completely closed, that is, the sigmoid output is 0, all information cannot be
passed. The following is the definition of each gate in LSTM:

z = tanh(Wz[ht−1, xt] + bz), (8)

i = sigmoid(Wi[ht−1, xt] + bi), (9)

Information 2021, 12, 55 10 of 16

f = sigmoid(W f [ht−1, xt] + b f), (10)

o = sigmoid(Wo[ht−1, xt] + bo), (11)

ct = f � ct−1 + i� z, (12)

ht = o� tanh(ct), (13)

where i, f , and o represent input gate, forget gate, and output gate, respectively, and ct
represents the memory unit at time t, which can be regarded as a representation vector of
the previous input sequence information. ht represents the output value at time t. W and b,
respectively, represent the weight parameter and bias parameter corresponding to each
gate in LSTM.

3.5. Time Series Discriminator

In the original GAN, the discriminator, as an opponent in the minimax game with the
generator, needs to make a correct distinction between the data generated by the generator
and the real data. In the MTSGAN model, the prediction generator generates the prediction
value of each time series. In our problem, it is not meaningful to directly use the scheme in
GAN to let the discriminator distinguish between the predicted value and the true value,
or this method is not applicable to the problem we are studying. Our improved method is
to add the generated prediction value to the original time series feature vector to construct
a fake time series sample, as well as to add the true value to the original time series feature
vector to construct a real time series sample. Equations (14) and (15), respectively, represent
the specific forms of fake time series samples and real time series samples.

T̂i
[t−w+1,t+1]

= [Ti
t−w+1, Ti

t−w+2, · · · , Ti
t, T̂i

t+1
], (14)

Ti
[t−w+1,t+1] = [Ti

t−w+1, Ti
t−w+2, · · · , Ti

t, Ti
t+1]. (15)

The role of the time series discriminator is to correctly distinguish the true and fake
time series samples constructed above, for which implementation details are shown in
Figure 5. The entire discriminator contains two input terminals. One of the inputs is the
embedding layers, which takes a one-hot encoding vector as input, and outputs a low
dimensional dense vector. The one-hot encoding vector is a sparse vector with a very
high dimension, used to distinguish which time series in the dataset the current time
series sample comes from. The other input terminal is a bidirectional long short-term
memory network [21], which takes a time series sample as input. The main structure of the
bidirectional long short-term memory network is the combination of two unidirectional
LSTMs. At each time t, the input will be provided to the two LSTMs in opposite directions.
The two LSTMs are calculated independently, and each generates the hidden state and
output at that moment. The two unidirectional LSTMs are symmetrical except for the
different directions. The output of FLSTM at the last time step encodes the forward
temporal information in the time series sample, and the output of BLSTM at the first
time step encodes the reverse temporal information of the time series sample. The output
of the bidirectional long short-term memory networks is actually the concatenation of
FLSTM’s output vector and BLSTM’s output vector. Finally, in our time series discriminator,
the vector output by the embedding layer and the vector output by the bidirectional long
short-term memory network will be concatenated together and input into a fully connected
network, in which output value is the probability that the input time series sample is true.

Information 2021, 12, 55 11 of 16

Embedding Layers

Bidirectional LSTM Fully Connected Layers

BLSTM

FLSTM

1x

1o

BLSTM

FLSTM

2x

2o

BLSTM

FLSTM

tx

to

Figure 5. Implementation details of the time series discriminator.

4. Experiments

In order to verify the effectiveness of the MTSGAN model, we compared the pre-
diction performance of the MTSGAN model and other state-of-art methods on different
datasets, and used different metrics for evaluation. Then, we experimentally studied the
influence of the model structure on the performance of MTSGAN, that is, the influence
of the interaction matrix generator structure and the depth of the GCN network on the
prediction performance.

4.1. Data Sets

• Store Item Demand Dataset (https://www.kaggle.com/c/demand-forecasting-kernels-
only/data). This dataset provides daily sale records of 50 different products in 10 dif-
ferent stores. The sale records of each product start on 1 January 2013 and end on
31 December 2017, which means this dataset contains 500 time series, and the length
of each time series is 1826 days.

• Web Traffic Dataset (https://www.kaggle.com/c/web-traffic-time-series-forecasting/
data). This dataset records the data of Wikipedia website traffic. The entire dataset
contains about 145,000 time series. Each time series represents the daily traffic of a
Wikipedia page. The recording time starts from 1 July 2015 to 10 September 2017.
The length of time series is 804 days. The dataset contains missing values, and the
data used in the experiment is 500 time series that do not contain missing values.

• NOAA China Dataset (https://www.ncei.noaa.gov/data/global-summary-of-the-
day/). This dataset is the meteorological data recorded by weather stations in different
locations in China provided by the National Oceanic and Atmospheric Administration
of the United States. We extracted daily temperature data from 400 different weather
stations from 2015 to 2018 as our experimental data.

4.2. Experimental Settings

We use the Pytorch (https://pytorch.org/) deep learning framework to implement
MTSGAN. In the interaction matrix generator, the dimension of the random noise vector
is set to 512, and it is sampled from a Gaussian distribution. In the prediction generator,
the number of GCN layers is set to 3, the number of hidden layers of LSTM is set to 3,
and the dimension of the hidden layer is set to 64. Since the LSTM finally needs to generate
a scalar value, the output of the LSTM needs to go through a fully connected layer to
transform the dimension from 64 to 1. In the time series discriminator, the dimension of the

https://www.kaggle.com/c/demand-forecasting-kernels-only/data
https://www.kaggle.com/c/demand-forecasting-kernels-only/data
https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
https://www.kaggle.com/c/web-traffic-time-series-forecasting/data
 https://www.ncei.noaa.gov/data/global-summary-of-the-day/
 https://www.ncei.noaa.gov/data/global-summary-of-the-day/
 https://pytorch.org/

Information 2021, 12, 55 12 of 16

embedding layer vector is set to 8, the number of hidden layers of the bidirectional long
short-term memory networks is set to 3, and the dimension of the hidden layer is set to 64.
In the process of training model, the learning rate is set to 0.001, the batch size parameter
is set to 16, Adam [22] is used as the optimization algorithm, and the Dropout [23,24]
technique is used to avoid overfitting of the model, for which parameter is set to 0.2.

The prediction performance of the MTSGAN model will be compared with the follow-
ing methods:

(1) Autogressive Integrated Moving Average [1] (ARIMA): This method first make the
time series stationary through a difference operation, and then combines the AR
model and the MA model to predict the future value of the time series. It is a very
widely used time series prediction method.

(2) Vector Auto-Regressive [11] (VAR): This model is often used to solve the prediction
problem of multivariate time series. It can consider the correlation between variables
of different dimensions.

(3) Support Vector Regression machines [5] (SVR): This model is a well-known machine
learning model with solid mathematical theoretical support.

(4) LightGBM [25] (LGB): This model is an improved gradient boosting tree model,
which can solve classification and regression problems, and demonstrates powerful
prediction performance in various data mining competitions.

(5) Long Short-Term Memory [4] (LSTM): This model is a recurrent neural network model
that can capture long-distance dependencies in sequence data.

(6) Gate Recurrent Unit [26] (GRU): This model is also a recurrent neural network model,
which simplifies the gate structure in LSTM and makes training more efficient.

4.3. Prediction Performance of MTSGAN

Table 1 shows the prediction performance comparison of MTSGAN and other six
methods on the three datasets of Store Item, Web Traffic, and NOAA China. In the six
methods of comparison, ARIMA and VAR are statistical methods; SVR and LGB are
machine learning methods; LSTM and GRU are deep learning methods. From the table, we
can see that under the two evaluation metrics of MAE and RMSE, the model we proposed
has the best prediction results on the three datasets. Among other comparison methods,
ARIMA is a single time series prediction method. In the multiple related time series
prediction problem we studied, this method did not take into account the interactional
dependencies between the time series, in which prediction results in the experiment is
the worst. In the experiment, VAR model converts multiple related time series prediction
problem into a multivariate time series prediction problem. This method can capture the
correlation between time series to a certain extent. However, because it is a linear model,
in which ability to fit data with complex patterns is limited, its prediction results are only
better than the ARIMA model. Both SVR and LGB are excellent machine learning models,
and their prediction results are very close. LGB is slightly better than SVR overall. Both
LSTM and GRU are deep learning models and are very similar in structure. The prediction
results of LSTM is slightly better than that of GRU, but, from the perspective of model
training, the training efficiency of GRU is significantly better than that of LSTM. Comparing
with LGB and LSTM, the former has better results on the Store Item and NOAA China
datasets, and the latter has better results on the Web Traffic dataset. Based on the results of
the entire experiment, the prediction results of MTSGAN on the three dataset completely
outperform the other six methods, which proves that our proposed model has obvious
advantages in the multiple related time series prediction problem.

Information 2021, 12, 55 13 of 16

Table 1. The prediction results of the MTSGAN and other methods.

Store Item Web Traffic NOAA China

MAE RMSE MAE RMSE MAE RMSE

ARIMA 12.637 15.479 20.196 35.712 8.954 11.231
VAR 7.714 9.729 16.108 31.197 7.806 9.879
SVR 8.419 11.527 13.482 22.754 5.692 7.539
LGB 6.897 9.029 13.078 21.531 4.419 5.853

LSTM 9.113 12.217 12.314 18.538 4.755 6.436
GRU 9.237 13.351 13.197 18.017 4.892 6.785

MTSGAN 5.843 7.675 10.610 16.968 3.467 4.726

4.4. Influence of Interaction Matrix Generator’s Structure

We conducted a comparative experiment on the influence of using fully connected net-
works and transposed convolutional networks to implement the interaction matrix generator
on the prediction performance of the MTSGAN model. The results of the experiment are
shown in Figure 6. The figure in each row represents the prediction result on a certain evalua-
tion metric, and the figure in each column represents the prediction result on a certain dataset.
The “FCN” in the figure represents the fully connected networks, and “Tconv” represents a
transposed convolutional networks. In each subfigure, the specific meaning of the indepen-
dent variable on the horizontal axis is the number of time series in the dataset used by the
model; the specific meaning of the dependent variable on the vertical axis is the prediction
result of the model under a certain metric. Through our experiments, we found that when
the number of time series is small, for example, between 50 and 100, there is little differ-
ence in the prediction performance of two network structures. However, with the gradual
increase in the number of time series, the prediction performance of the model implemented
by the transposed convolutional networks is better than that of the fully connected networks,
and the greater the number of time series, the more obvious the difference. This advantage
of the transposed convolutional network may be because it has the characteristics of local
connectivity and parameter sharing similar to the convolutional network, so the transposed
convolutional network is more efficient in processing two-dimensional grid data, and it is
used to implement MTSGAN with better prediction performance.

50 100 200 300 400 500
The number of time series

 (a)

5.0

5.5

6.0

6.5

7.0

7.5

St
or

e
Ite

m
 M

AE

TConv
FCN

50 100 200 300 400 500
The number of time series

(b)

7

8

9

10

11

St
or

e
Ite

m
 R

M
SE

TConv
FCN

50 100 200 300 400 500
The number of time series

(c)

11

12

13

14

15

W
eb

 T
ra

ffi
c

M
AE

TConv
FCN

50 100 200 300 400 500
The number of time series

(d)

18

20

22

24

26

28

30

W
eb

 T
ra

ffi
c

RM
SE

TConv
FCN

50 100 200 300 400
The number of time series

(e)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

NO
AA

 C
hi

na
 M

AE

TConv
FCN

50 100 200 300 400
The number of time series

(f)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

NO
AA

 C
hi

na
 R

M
SE

TConv
FCN

Figure 6. The influence of interaction matrix generator structure on prediction performance.

Information 2021, 12, 55 14 of 16

4.5. Influence of GCN Depth

In this experiment, we studied the influence of the number of GCN layers on the
prediction performance of the MTSGAN. The specific experimental results are shown in
Figure 7. We measure the different prediction performance of the model on the training set
and the test set under the conditions of different GCN layers on three datasets. The eval-
uation metric of the prediction results in the first row of figures is MAE, and the second
row of figures is RMSE. We found that under these two evaluation metrics, when the
number of GCN layers is 3 or 4, the model has the best fitting ability (the training set has
the smallest error) and the best generalization ability (the test set has the smallest error).
When the number of GCN layers is less than 3, the model does not fully fit the data. At this
time, the training error and generalization error will gradually decrease as the number of
GCN layers increases. When the number of GCN layers exceeds 6, the model begins to
overfit. At this time, the generalization error increases significantly as the number of GCN
layers increases.

1 2 3 4 5 6 7 8 9
Number of layers

2

4

6

8

10

12

M
AE

Store Item
Train
Test

1 2 3 4 5 6 7 8 9
Number of layers

8

10

12

14

16
M

AE

Web Traffic
Train
Test

1 2 3 4 5 6 7 8 9
Number of layers

2

4

6

8

10

M
AE

NOAA China
Train
Test

1 2 3 4 5 6 7 8 9
Number of layers

4

6

8

10

12

14

16

RM
SE

Store Item
Train
Test

1 2 3 4 5 6 7 8 9
Number of layers

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

RM
SE

Web Traffic
Train
Test

1 2 3 4 5 6 7 8 9
Number of layers

4

6

8

10

12

RM
SE

NOAA China
Train
Test

Figure 7. The influence of Graph Convolutional Network (GCN) depth on prediction performance.

5. Conclusions

This paper proposes a novel deep learning model MTSGAN for multiple related time
series prediction problems. The model is based on the architecture of a generative adver-
sarial network, which consists of two generators and one discriminator. The discriminator
helps the two generators to optimize their own parameters by means of adversarial training
and finally makes the generated data very close to the true data. In the experiment, we first
compared the prediction performance of MTSGAN and other six methods on three datasets.
The results of the experiment show that the prediction performance of MTSGAN completely
outperform other methods. In addition, we conducted two experiments on the impact of
the model structure on the prediction performance of MTSGAN. These experiments can
guide us to better use MTSGAN in applications to solve practical problems.

MTSGAN is a novel end-to-end solution to multiple related time series prediction
problem that exists widely in the real word. Based on MTSGAN model framework to
develop a prediction system to solve the relevant problems in the industry is our future
work. A common industrial scenario of applying the prediction system is predicting sales
of many commodities to help shop owner arrange inventory reasonably to increase revenue
and reduce costs. Our following work will take more additional features into consideration,
such as holiday information, weather information, and further expand the model to enable
it to perform multi-step predictions of time series.

Information 2021, 12, 55 15 of 16

Author Contributions: Conceptualization, W.W. and F.H.; methodology, W.W. and F.H.; software,
W.W.; validation, W.W., Y.K., Z.C. and Q.W.; formal analysis, W.W. and F.H.; investigation, W.W.;
data curation, Y.K., Z.C. and Q.W.; writing—original draft preparation, W.W.; writing—review and
editing, W.W., F.H., Y.K., Z.C. and Q.W.; visualization, W.W.; supervision, F.H.; project administration,
F.H.; funding acquisition, F.H. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Science and Technology Plan of Hunan Province Project grant
number 2016JC2011.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Box, G.E.P.; Jenkins, G. Time Series Analysis, Forecasting and Control; Holden-Day, Inc.: Stoakland, CA, USA, 1990.
2. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680.
3. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
4. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
5. Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst.

1996, 9, 155–161.
6. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
7. Kim, K.J. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55, 307–319. [CrossRef]
8. Tay, F.E.; Cao, L. Application of support vector machines in financial time series forecasting. Omega 2001, 29, 309–317. [CrossRef]
9. Hao, W.; Yu, S. Support vector regression for financial time series forecasting. In International Conference on Programming Languages

for Manufacturing; Springer: Boston, MA, USA, 2006; pp. 825–830.
10. Mellit, A.; Pavan, A.M.; Benghanem, M. Least squares support vector machine for short-term prediction of meteorological time

series. Theor. Appl. Climatol. 2013, 111, 297–307. [CrossRef]
11. Zivot, E.; Wang, J. Vector autoregressive models for multivariate time series. In Modeling Financial Time Series with S-PLUS®;

Springer: New York, NY, USA, 2006; pp. 385–429.
12. Chai, D.; Wang, L.; Yang, Q. Bike flow prediction with multi-graph convolutional networks. In Proceedings of the 26th ACM

SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 6–9 November 2018;
pp. 397–400.

13. Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-gcn: A temporal graph convolutional network for traffic
prediction. IEEE Trans. Intell. Transp. Syste. 2019, 21, 3848–3858. [CrossRef]

14. Luo, Y.; Cai, X.; Zhang, Y.; Xu, J. Multivariate Time Series Imputation with Generative Adversarial Networks. Advances in Neural
Information Processing Systems. 2018, pp. 1596–1607. Available online: https://papers.nips.cc/paper/7432-multivariate-time-
series-imputation-with-generative-adversarial-networks (accessed on 25 January 2021).

15. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013,
arXiv:1312.6203.

16. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. Adv.
Neural Inf. Process. Syst. 2016, 29, 3844–3852.

17. Yao, L.; Mao, C.; Luo, Y. Graph convolutional networks for text classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, Honolulu, HI, USA, 5 September 2019; Volume 33, pp. 7370–7377.

18. Parisot, S.; Ktena, S.I.; Ferrante, E.; Lee, M.; Guerrero, R.; Glocker, B.; Rueckert, D. Disease prediction using graph convolutional
networks: Application to Autism Spectrum Disorder and Alzheimer’s disease. Med. Image Anal. 2018, 48, 117–130. [CrossRef]
[PubMed]

19. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv 2015, arXiv:1511.06434.

20. Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285.
21. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
22. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
23. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing

co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.
24. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/S0925-2312(03)00372-2
http://dx.doi.org/10.1016/S0305-0483(01)00026-3
http://dx.doi.org/10.1007/s00704-012-0661-7
http://dx.doi.org/10.1109/TITS.2019.2935152
https://papers.nips.cc/paper/7432-multivariate-time-series-imputation-with-generative-adversarial-networks
https://papers.nips.cc/paper/7432-multivariate-time-series-imputation-with-generative-adversarial-networks
http://dx.doi.org/10.1016/j.media.2018.06.001
http://www.ncbi.nlm.nih.gov/pubmed/29890408
http://dx.doi.org/10.1109/78.650093

Information 2021, 12, 55 16 of 16

25. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision
tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.

26. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

	Introduction
	Related Work
	Time Series Prediction
	GAN and GCN

	Proposed Model
	Problem Definition
	MTSGAN Overview
	Interaction Matrix Generator
	Prediction Generator
	GCN for Extracting Interactional Dependencies
	LSTM for Extracting Temporal Dependencies

	Time Series Discriminator

	Experiments
	Data Sets
	Experimental Settings
	Prediction Performance of MTSGAN
	Influence of Interaction Matrix Generator's Structure
	Influence of GCN Depth

	Conclusions
	References

