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Abstract

:

Binary MQ arithmetic coding is widely used as a basic entropy coder in multimedia coding system. MQ coder esteems high in compression efficiency to be used in JBIG2 and JPEG2000. The importance of arithmetic coding is increasing after it is adopted as a unique entropy coder in HEVC standard. In the binary MQ coder, arithmetic approximation without multiplication is used in the process of recursive subdivision of range interval. Because of the MPS/LPS exchange activity that happens in the MQ coder, the output byte tends to increase. This paper proposes an enhanced binary MQ arithmetic coder to make use of look-up table (LUT) for (A × Qe) using quantization skill to improve the coding efficiency. Multi-level quantization using 2-level, 4-level and 8-level look-up tables is proposed in this paper. Experimental results applying to binary documents show about 3% improvement for basic context-free binary arithmetic coding. In the case of JBIG2 bi-level image compression standard, compression efficiency improved about 0.9%. In addition, in the case of lossless JPEG2000 compression, compressed byte decreases 1.5% using 8-level LUT. For the lossy JPEG2000 coding, this figure is a little lower, about 0.3% improvement of PSNR at the same rate.
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1. Introduction


Since Shannon announced in 1948 that a message can be expressed with the smallest bits based on the probability of occurrence, many studies on entropy coding have been conducted. A typical example is Huffman coding, which is simple and has relatively good performance, so it has been widely used as an entropy coding method in document and image compression [1,2,3].



In theory, close to optimal compression rate can be obtained using Huffman coding. To do this, we need to enlarge the alphabet, i.e., encode the whole message as a one letter of huge alphabet. However, it cannot be achieved because of the very high complexity of such Huffman code tree building. This was the reason why the arithmetic coding (AC) was developed. AC can build the codeword for a whole message with an acceptable complexity. AC procedure has its roots in the Shannon–Fano code developed by Elias (unpublished), which was analyzed by Jelinek [4]. The procedure for the construction of a prefix-free code is due to Gilbert and Moore [5]. The extension of the Shannon–Fano–Elias code to sequences is based on the enumerative methods in Cover [6] and was described with finite-precision arithmetic by Pasco [7] and Rissanen [1,8].



Arithmetic coding has the disadvantage of increasing precision by continuously dividing the probability interval of [0, 1] and expressing it as a decimal value. To circumvent the precision problem posed by the partitioning of the real interval [0, 1] in AC, one uses instead the set of integers [0, N]. To handle the precision issue, a renormalization is performed and output bits are used to indicate that normalization has occurred.



The multi-symbol arithmetic coding was implemented in hardware and software by Witten et al. [9] and Langdon [10] in the 1980s. Afterwards, the arithmetic code was applied to binary data to reduce computational complexity. In the 1990s, binary arithmetic coding began to be applied to still-image coding such as JPEG and JBIG.



There have been studies on solution on arithmetic coders and many adaptive methods have been published [10,11,12,13]. Many researchers pursued a probability estimation technique which provides a simple yet robust mechanism for adaptive estimation of probabilities during coding process [14,15,16]. The quite early successful adaptive binary arithmetic coder (BAC) was the Q-coder proposed by IBM [17]. In the BAC, the binary symbols are classified into the Most Probable Symbol (MPS) and the Least Probable Symbol (LPS). These symbols are assigned to 0 and 1. The Q-coder has a mechanism for adaptive encoding based on the probability estimated from the sequence input during the encoding process. The size of the hardware was reduced by limiting the precision of the probability interval to 16-bit length. However, various problems may occur due to the limited register size. Among them, the carry propagation problem in the renormalization process is solved by bit stuffing. That is, when eight consecutive 1s occur, 0s are inserted. Above all, in the process of continuously dividing the probability interval, a renormalization was performed to maintain the probability of occurrence of LPS and the value of the previous interval within [0.75, 1.50) and to avoid multiplication under these conditions. By adopting the 16-bit length precision, the hardware size was reduced by limiting the precision.



BAC has many advantages of high accuracy and good compression performance. However, interval subdivision requires the multiplication operation, which is accompanied by a severe challenge in implementation. Moreover, the probabilities of input symbols are often unknown. The appropriate method of accurately estimating the probabilities is another important issue. In the process of standardizing process of multimedia coding, the MQ-coder [18,19] and M-Coder [20,21,22,23] showed the best performance. These coders are table-based coder, in which multiplication is avoided by restricting the interval within a certain range.



As another multiplication-free arithmetic coding approach, Mitchell et al. [24] developed log arithmetic encoder/decoder which has a scheme of substituting multiplication with addition by using a logarithmic domain. However, the scheme fails to address the relationship between the original domain and the logarithmic domain. The domain-switching and probability-estimation processes require large amounts of memory and more computation with minor improvement in coding efficiency [14].



To address the above-mentioned problem of logarithmic encoder, new logarithmic BAC with adaptive probability estimation process was developed to improve coding performance compared with existent MQ-coder and M-coder. However, encoder–decoder complexity is quite increasing with a little bit savings [14,25].



As another adaptive BAC, the adaptive binary range coder (ABRC) [15] uses virtual sliding window (VSW) [26] for probability estimation, which does not require look-up tables. The VSW estimation provides a faster probability adaptation at the initial encoding/decoding stage and especially more precise probability estimation for very low entropy binary sources. However, it needs multiplication operations and more complex encoder—decoder processing.



In the 1990s, standardization of image coding was established. The arithmetic encoder was adopted as entropy encoding along with Huffman encoding in the compression method of still images known as JPEG [27]. Huffman coding was adopted as the baseline profile and arithmetic coding was selected as the extended profile. The JPEG committee chose the QM arithmetic coding method jointly proposed by IBM, Lucent, and Mitsubishi [2]. The QM arithmetic coding method applied MPS/LPS conditional exchange to increase the coding efficiency of Q-coder. The probability estimation was improved to enable fast initial learning. Q-coder is suitable for hardware implementation, while QM coder is suitable for implementation in software. Q-coder solved carry propagation in the decoder; however, the QM coder solved it in the encoder. Probability estimation is performed using the next estimated probability table and when the probability of the MPS is less than 0.5, MPS/LPS exchange is performed.



Subsequently, a compression standard named JBIG was established as a new standard for compressing binary documents [28]. In the JBIG compression standard, unlike JPEG, arithmetic coding was adopted as the baseline profile. JBIG is based on Q-coder that also uses a relatively minor refinement by Mitsubishi, resulting in what became known as the QM coder. In 2000, the JBIG2 binary coding standard was established and the MQ arithmetic coder instead of QM arithmetic coder was adopted [18]. The MQ coder has changed the carry propagation method. One 0 bit is inserted only when byte 0xFF is output. The bit stuffing of MQ coder is efficient in bandwidth and execution time. In 2004, a new still image coding method, so called JPEG2000, was established as a lossless/lossy image compression standard [29]. In JPEG2000 standard, MQ arithmetic coding was selected as a baseline profile, replacing Huffman coding. H.264/AVC, which is a video compression standard, adopted the so-called context adaptive binary arithmetic coding (CABAC) method as the standard entropy coding. High Efficiency Video Coding (HEVC), also known as H.265 and MPEG-H Part 2, is a video compression standard designed as a successor to the widely used H.264/AVC. In comparison to H.264/AVC, HEVC offers quite better data compression at the same level of video quality. In addition, HEVC chose M-coder as a unique entropy coding [30].



Recently, to increase the coding efficiency for M-coder, a new convolutional neural network (CNN), which was successfully operated in object classification, was applied to compress the syntax elements of the intra-predicted residues in HEVC. Instead of manually designing the binarization process and context models, the probability distributions of the syntax elements by training CNN are estimated directly. The BD-rate reductions are obtained in almost test sequences. However, the encoding and decoding complexity is quite high and AC structure suitable for implementation should be developed [31]. However, in this paper, the probability estimation issue like VSW (Virtual Sliding Window) and CNN-based estimation is not dealt.



In this paper, enhanced MQ-coder is proposed to obtain better compression performance with maintaining multiplication-free property. The existing binary MQ arithmetic coder approximates (A × Qe) to Qe in order to remove multiplication. When the Q-coder was proposed, however, the computing power was not satisfactory, and this approximation method was reasonable at that time. Because computing power has enormously increased afterward, there are lots of room for improvement of the approximation method. By this motivation, in this paper, using the existent probability estimation table Qe, multi-level quantization tables of (A × Qe) are proposed to be used as look-up table (LUT). The technical details are described in Section 3 and verified the performance by coding experiments of JBIG2 and JPEG2000.




2. Related Works


2.1. Shannon–Fano–Elias Arithmetic Coder


When trying to efficiently compress an input sequence composed of symbols of 0 and 1, the probability of occurrence of each symbol is used. According to Shannon’s entropy theory and lossless coding law, a smaller codeword is assigned to a symbol with a high probability of occurrence and a longer codeword is assigned to a symbol with a low probability of occurrence. When compressing a true document, it can be compressed very efficiently.



Let us say that the current range is represented by the interval (Lower, Upper). Let the initial range be (Lower, Upper) = [0, 1]. When one bit is input, the current range is divided into two by the following Equations (1) and (2).


Lower ￩ Lower + (Upper − Lower) × CDF(n − 1)



(1)






Upper ￩ Lower + (Upper − Lower) × CDF(n)



(2)




Here, CDF(n) is the cumulative distribution function of the n-th input symbol. Output occurs when all sequence inputs come in. The length of the last range is equal to the product of the probability of occurrence of all symbols. As each input bit enters, the range continuously decreases and the decimal point representing the accumulated range after the last input bit is expressed in binary. In this case, as the scale of the input sequence increases, it is difficult to increase the accuracy of the range. If the number of input bits is increased, the divided probability interval (range) value continuously decreases, and many bits are rapidly required to express the interval.



To solve the problem of increasing the precision of the arithmetic encoder, if the range value is reduced to less than 1/2, the probability interval is doubled through renormalization or scaling and output bits are generated during the renormalization process.




2.2. Binary MQ Arithmetic Coder (ITU-T Recommendation T.88, 2000)


As shown in Figure 1, the binary MQ arithmetic encoder generates binary output (CD) by inputting the continuous bit input (D) and the corresponding context (CX). Bit 0 or 1 is applied as input. The MQ arithmetic coder first determines whether the MPS and the LPS are 0 or 1, respectively, and compares the current input bit with the MPS value to determine whether it is MPS. Encoding is performed using a probabilistic model for each context of the symbol.



The current range value is divided into two ranges by the input bit value. In the process of dividing the range, the range of the MPS is positioned above the LPS. The input result is displayed as base (stored in C register) and interval (stored in A register) value. As a result of the encoding, the output code string is changed to indicate the base (C) value. At the beginning of encoding, the base C is initialized to 0 and the range A is initialized to 0.75 in decimal and 0x8000 in hex. Renormalization is performed when necessary to keep the range A within 0.75 ≤ A < 1.5.



That is, if the value of A is less than 0.75, the value of A is doubled and the value of C is also doubled each time the value of A is doubled. This operation is repeated until the A value is greater than 0.75. The A register is composed of 16 bits and the C register is set to have a length of 32 bits.



The lower 16 bits of the C register are shifted to the LSB by 1 byte from the A register and if the count value becomes 0 while performing renormalization, the 1-byte value at the b position is output. It is removed from the C register and placed in the output data column buffer. If the predicted value of the LPS occurrence probability is Qe, the divided range A is obtained by the following Equations (3) and (4).


Split interval for MPS = A − (A × Qe)



(3)






Split interval for LPS = A × Qe



(4)







In Equations (3) and (4), one multiplication is required for each input bit, so the calculation is large. Therefore, it is assumed that the value of A is close to 1 and that (A × Qe) is approximated by Qe [14]. Therefore, after removing the multiplication in Equations (3) and (4), it is approximated as Equations (5) and (6).


Split interval for MPS = A − Qe



(5)






Split interval for LPS = Qe



(6)







Whenever the MPS is coded, the value of Qe is added to the A register and the interval is reduced to A − Qe. Whenever the LPS is coded, the A register is left unchanged, and the interval is reduced to Qe. The precision range required for A is then restored, if necessary, by renormalization of both A and C. With the process illustrated above, the approximations in the interval subdivision process can sometimes make the LPS sub-interval larger than the MPS sub-interval. If, for example, the value of Qe is 0.5 and A is at the minimum allowed value of 0.75, the approximate scaling gives 1/3 of the interval to the MPS and 2/3 to the LPS.



To avoid this size inversion, the MPS and LPS intervals are exchanged whenever the LPS interval is larger than the MPS interval. This MPS/LPS conditional exchange can only occur when a renormalization is needed. Whenever renormalization occurs, a probability estimation process is invoked which determines a new probability estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative probabilities of renormalization after coding an LPS and MPS provide an approximate symbol counting mechanism which is used to directly estimate the probabilities.



2.2.1. MPS Encoder in Binary MQ Coder (CODEMPS)


The CODEMPS procedure shown in Figure 2a usually reduces the size of the interval A into A − Qe to the MPS sub-interval. If A register value which stores the interval size becomes less than 0.75 (=0x8000) adjusts the code register C so that it points to the base of the MPS sub-interval.



If the divided interval A value is less than 0.75, i.e., if A − Qe is greater than Qe, the base C value increases by Qe, and otherwise, if A − Qe is less than Qe, the A value is changed to Qe. However, if the interval sizes are inverted, the LPS sub-interval is coded instead. Note that the size inversion cannot occur unless a renormalization (RENORME) is required after the coding of the symbol. The probability estimate update changes the Index according to the next MPS (NMPS) column in Table 1. In addition, renormalization occurs.




2.2.2. LPS Encoder in Binary MQ Coder (CODELPS)


The CODELPS procedure shown in Figure 2b usually consists of a scaling of the interval to Qe, the probability estimates of the LPS determined from the Index. The upper interval is first calculated, so it can be compared to the lower interval to confirm that Qe has the smaller size. It is always followed by a renormalization (RENORME). If the interval sizes are inverted, however, the conditional MPS/LPS exchange occurs and the upper interval is coded. In either case, the probability estimate is updated. If the SWITCH flag for the Index is set, then the MPS is inverted. A new Index is saved as determined from the next LPS (NLPS) column in Table 1.




2.2.3. Renormalization (RENORME) and Byte-Out (BYTEOUT) in Binary MQ Coder


The RENORME procedure for the encoder is illustrated in Figure 3a. Both the interval register A and the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT and when CT is counted down to zero, a byte of compressed data is removed from C by the procedure BYTEOUT shown in Figure 3b. Renormalization continues until A is no longer less than 0x8000.




2.2.4. Adaptive Coding with Probability Estimation Table


The probability estimation state machine consists of several sequences of probability estimates. These sequences are interlinked in a manner which provides probability estimates based on approximate symbol counts derived from the arithmetic coder renormalization [16].



Table 1 shows the Qe value associated with each index. The Qe values are expressed as hexadecimal integers and decimal fractions. To convert the 15-bit integer representation of Qe to the decimal probability, the Qe values are calculated by (4/3) × (0x8000).



The estimator can be envisioned as a finite-state machine—a table of Qe indexes and associated next states for each type of renormalization (i.e., new table positions). The change in state occurs only when the arithmetic coder interval register is renormalized. This is always done after coding the LPS and whenever the interval register is less than 0x8000 (0.75 in decimal notation) after coding the MPS. After an LPS renormalization, NLPS gives the new index for the LPS probability estimate. After an MPS renormalization, NMPS gives the new index for the LPS probability estimate. If Switch is 1, the MPS symbol sense is reversed [18].



The LPS probability estimation table of the MQ arithmetic coder is different from that of the QM arithmetic coder [16], which is adopted in JPEG with 112 probability estimation values, but MQ coder has much smaller 46 probability estimation values. Features include three probability models that have an initial value (0x5601) in index 0, 6 and 14. When 0 or 1 occurs continuously, it is determined how quickly the probability of LPS occurrence converges to zero.





2.3. M-Coder (Marpe, D)


A new design of a family of multiplication-free binary arithmetic coders has been proposed for H.264/AVC coding [22,23]. Its main innovative features are given by a table-based interval subdivision coupled with probability estimation based on a finite-state machine (FSM) as well as a fast bypass coding mode. This so-called modulo (M) coder family of binary arithmetic coding schemes offers a parameterizable trade-off between coding efficiency and memory requirements for the underlying lookup tables.



The basic idea of the low-complexity M-coder approach of interval subdivision is to quantize the admissible domain D = [2(b−2), 2(b−1)) for the range register R induced by renormalization into a small number of K different cells. To further simplify matters, we assume a uniform quantization of D to be applied, resulting in a set of representative equispaced range values Q = {Q0, Q1, …, QK-1}, where K is further constrained to be a power of 2, i.e., K = 2k for a given integer k ≥ 0. By a suitable discretization of the range of LPS-related probability values pLPS ∈ (0, 0.5], a representative set P = {p0, p1,…, pM−1} of probabilities can be constructed together with a set of corresponding transition rules for FSM-based probability estimation.



Both discrete sets P and Q together enable an approximation of the multiplication operation pLPS × R for interval subdivision by means of a 2-D table RTAB that contains all M × K pre-calculated product values {pm × Qk−1|0 ≤ m < M; 0 ≤ k < K} in a suitably chosen integer precision. The entries of the RTAB table can be easily addressed by using the probability state index m and the quantization cell index k related to the given value of R. The RTAB example is partially shown in Table 2 when M equals 64 and K is 4 with b being 10.



H.264/AVC is standardized to use M-coder [22] and HEVC adopted it as a default entropy coding to remove Variable length codes (VLC) based on Golomb coding [23].





3. Proposal of Enhanced Binary MQ Coder


3.1. Problem of Existing Binary MQ Coder


As explained in related works, binary MQ coding is divided into MPS and LPS and interval segmentation is performed by approximating (A × Qe) to Qe under the assumption that A is close to 1. The disadvantage of this method is that if Qe becomes larger than A/2 after encoding, the MPS and LPS may be inverted. The error decreases as A gets closer to 1 through the renormalization process. In this paper, focusing on this problem, we intend to devise a method to increase the coding efficiency while maintaining multiplication-free operation by the table lookup method for (A × Qe) value. In this approach, we can make more accurate estimation of (A × Qe) instead of just approximation of (A × Qe) to Qe. We will show the improvement through experiment for compression system where MQ coder is applied as a standard entropy coder.




3.2. Proposed LPS Probability Estimation Look Up Table Method


We will propose a table lookup method that improves coding efficiency without direct multiplication in current MQ coder. If we want to arithmetically code like Elias coding in Equations (3) and (4), multiplication is required to encode binary symbols. In this paper, we implemented the idea of applying the quantization method to obtain the efficiency of the original Elias method while maintaining the current MQ coder. In the current MQ arithmetic coder, instead of (A × Qe) as shown in Equations (3) and (4), it is substituted with Qe like Equations (5) and (6) on the assumption that A is close to 1. However, this is approximation method, there might be loss of coding efficiency. To reduce shortcoming, as shown in Equations (7) and (8), we propose a method to select (A × Qe) value from look-up table (LUT) that quantizes (A × Qe) into 2-level, 4-level and 8-level according to the range of A values instead of Qe.


MPS: A = A − LUT(A × Qe), C = C + LUT(A × Qe)



(7)






LPS: A = LUT(A × Qe)



(8)







To encode new (MPS, LPS) symbol values, after renormalization is performed, the value A should be located between 0.75 and 1.5. When the index of the MQ arithmetic code is 0, the probability of occurrence Qe of LPS is 0.50395 (=0x5601) shown in original probability estimation Table 1, so (A × Qe) value is calculated between 0.75 *0.50395 (≈0x4082) and 1.5 *0.50395 (≈0x8104). In this paper, we propose a LUT method in which the quantization level consists of 2, 4 and 8.



3.2.1. 2-Level LUT


As shown in Figure 4, when the quantization levels are two, the entire range of A is divided into two, but if the value falls from 0x8000 to 0xC000, it is said to be quantized to A1. On the other hand, when it falls within 0xC000 to 0x10000, it is said to be quantized to A2. The quantization value is set according to two modes as shown in Table 3. Mode-1 is the mode set the quantization levels to the interval mid value. The quantized value in mode-2 is determined to divide equally entire interval. Parameters α and β are set to find the optimal quantization value to be determined experimentally according to compression methods such as non-contextual MQ, context-based JBIG2 and JPEG2000. We will seek the best compression in different modes. In addition, if possible, we can select the optimum LPS look-up table in MQ coder. The 2-level lookup tables for (Ai × Qe) are shown in Table 4. Adjusting the α and β values, the compression ratio is expected to change.




3.2.2. 4-Level LUT


When the quantization level is set to 4, the value of interval A is divided into 4 sections as shown in Table 5 and Figure 5.



Because the quantization level is set to 4, the interval A is divided into four, and A values variably are set by 4-modes. The quantization values of A1–A4 for each divided interval are determined shown in Table 6. The quantization LUT values are assigned to {A1 × Qe, A2 × Qe, A3 × Qe, A4 × Qe} and the parameters α and β are determined to experimentally find the optimal quantization value. Table 7 shows the LUT examples for 4-level quantized values of Ai × Qe.




3.2.3. 8-Level LUT


When the quantization level is set to 8, interval A is divided into 8 in Table 8 and Figure 6 and the quantization value of each divided interval is used to obtain a lookup table with the center value of the divided interval as the distinct value (A1~A8). The quantization values of A1–A8 for each divided interval are determined shown in Table 9.



The quantization values are assigned to {A1 × Qe, A2 × Qe, A3 × Qe, A4 × Qe, A5 × Qe, A6 × Qe, A7 × Qe, A8 × Qe} shown in Table 10 and the parameter α and β should be set to find the optimal quantization value through experiment. For example, in Mode-1, assuming that the Qe value is 0x5601 and α and β equal to 1, when the index is 0, (A1 × Qe) is 0x47AC, (A2 × Qe) is 0x4ED7, (A3 × Qe) is 0x5602, (A4 × Qe) is 0x5D2D, (A5 × Qe) is 0x6457, (A6 × Qe) is 0x6B82, (A7 × Qe) is 0x72AD and (A8 × Qe) is 0x79D8. Table 10 shows part of the (Ai × Qe) lookup tables of 47 × 8 sizes when α and β is 1.






4. Experimental Results


4.1. Experimental Enviroment


To verify the proposed algorithm, experiment was done by Visual Studio 2019 with binary document image, gray and color images in various resolutions. For binary document compression, a total of 12 documents were used. Eight 200 (dpi) and 300 (dpi) standard binary documents presented by the JBIG committee are used in Figure 7. Two Korean documents created by scanning at 200 (dpi) and 300 (dpi) were used in the experiment as shown in Figure 8. The color and gray images used for JPEG2000 experiment are shown in Figure 9. The images in Figure 9a–f are widely used in still image compression at SD resolution. An additional two HD images by capturing test video for H.264 are shown in Figure 9g–h.



Three experiments were executed to evaluate the compression performance of the proposed method. The first experiment is to compress standard binary documents with context free MQ arithmetic coding. The second experiment is JBIG2 lossless compression for binary document with two-dimensional context. The third experiment is executed for JPEG2000 lossless and lossy compression with proposed method by Jasper program [32].




4.2. Basic Context-Free MQ Coding Experimental Results


Using binary document images shown in Figure 7 and Figure 8, we executed binary MQ encoding without context. Compared to the standard MQ coding, the degree of improvement for the proposed method of 2, 4 and 8 level LUTs were measured. Parameter α and β values were changed by values such as 0.9, 0.95, 0.97, 1.0, 1.02, 1.03, 1.05, 1.1, etc., and the optimal parameter values were attempted to obtain experimentally.



The experimental results of the 2-level MQ encoder are shown in Table 11. For 12 documents, after varying the parameters α and β, the best result in mode-1 was obtained when α equals 1.02 and β equals 1.02. In this case, the average degree of improvement was 2.99%. The best overall improvement in mode-2 was 2.36%. Mode-1 shows the better results than mode-2. In terms of difference of resolution at 200 dpi and 300 dpi, the lower the resolution, the better the improvement.



In the 4-level MQ coding experiment, four modes were simulated and results are shown in Table 12. Though experimental data are not included when α and β are 1, there are improvements of 1.6~1.8% compared with original MQ coder. The mode-4 showed the best improvement of 2.16% when alpha and beta is 1.03 after various attempts for parameters α and β. In terms of the resolution, the case with 200 dpi documents showed better performance than that with 300 dpi documents. It was found that the performance was lower than that of 2-level MQ encoding, which showed that 2-level LUT MQ may be sufficient if context information is not considered.



In the 8-level MQ coding experiment, in mode-1, it showed the best performance when α and β are 1.0 and the improvement was averaged 2.13% for all documents shown in Table 13. In the case of mode-2, the best improvement was 2.08% when α and β are 1.03. In addition, the lower the resolution, the better the improvement.



Comparing the 2-level, 4-level and 8-level LUT MQ coder, 2-level MQ coder showed the best results. However, in the case of the JBIG2 and JPEG2000 experiments to be described below, different results can be obtained. It will be comprehensively examined later.




4.3. JBIG2 Experimental Results


For the experiment applying the proposed method to the JBIG2 standard compression at binary documents, a lossless refinement method was executed. First, in the case of the two-level LUT MQ method, as we saw in Table 14, there was no significant difference in performance between 200 dpi and 300 dpi documents. In the case of mode-1 when α and β equal 1, the average improvement was 0.58%. In addition, for 300 dpi document the best performance happens when α and β equal 1.03. In the case of mode-2, the best improvement of 0.52% is obtained when α and β equal 1.



As shown in Table 15, when applying the 4-level LUT MQ coder to JBIG2, mode-3 provided the best performance compared with other modes. Compared to the original MQ coding, the best improvement percentage was about 0.8%. With varying α and β, there was no significant improvement. In addition, there was no significant difference in performance with different resolutions. It was found to be 0.22% better than the 2-level LUT MQ coder.



As shown in Table 16, in the case of 8-level LUT MQ coder, slightly better results are obtained in mode-1. Improvement of compression ratio was measured 0.9% compared with original JBIG2 coder. As the quantization level increased, it was found to be less sensitive to parameter α and β.




4.4. JPEG2000 Experimental Results


JPEG2000 coding, which is the new still image compression standard, is applied on SD and HD color and gray images shown in Figure 9. Experimental results of lossless coding about 2-level, 4-level and 8-level LUT MQ coder are presented in Table 17 and Table 18. This experiment was carried out by modifying Jasper program [32]. In the case of the color image, only the results of green color are shown because the results of red and blue color are similar and in the case of MAN image, the result of the gray values is given.



Compared to the existing JPEG2000 lossless compression, there were performance improvement of 1.2% for 2-level LUT and 1.38~1.45% for 4-level LUT and 1.5% for 8-level LUT MQ coder. At 2-level, the best results of 1.21% are obtained in mode-2, when α and β equal to 1.05. In the case of 4-level LUT, mode-2 showed the lowest performance and in the other modes, the similar improvement was obtained. In the case of 8-level LUT, there is no significant difference in between two modes. The maximum improvement percentage was 1.51%. In all modes, the best improvements are obtained when α and β is 1.05.



Table 19 and Table 20 show the experimental results of lossy compression with compression ratio of 20:1 in JPEG2000. In the case of lossy compression, performance improvement is lower than that of lossless compression. PSNR is compared at the same compression ratio. In the table at the compression ratio of 0.05, PSNR results using original JPEG2000 algorithm with existing MQ coding are shown and remaining values are the improvement ration in PSNR at the same rate. In the case of 2-level, improvement of 0.26~0.28% is obtained and in the case of 4-level and 8-level, the performance improvement was achieved by 0.30~0.34%. In the case of 2-level, the best is when α and β equal to 1 in mode-2. In lossy compression, because there is no significant difference in performance, 4-level LUT at mode-1 is adequate.



When the compression ratio is set to 50:1, the PSNR comparison results are shown in Table 21 and Table 22. The performance improvement ratio was 0.25~0.27% for 2-level LUT and 0.26~0.31% for 4-level LUT and 0.28~0.31% for 8-level LUT. 4-level and 8-level show similar performance to compare the best mode.





5. Discussion and Conclusions


A problem of the existing MQ coder to compute only addition and subtraction without multiplication is that encoding efficiency is degraded due to frequent MPS/LPS conditional exchange. In this paper, a method to reduce the artifacts caused by approximation is proposed while retaining the probability estimation table of the binary MQ arithmetic coder. By using a pre-calculated 2-level, 4-level and 8-level quantized (A × Qe) look-up table instead of approximation value of Qe, coding performance is improved. Instead of using uniform quantized value of (A × Qe), experiments were executed with varying the parameter α and β at each level of 2, 4 and 8. Nonuniform quantization of (A × Qe) is applied with changing α, β. When applied to the JBIG2 and JPEG2000 coding standards, we obtained affirmative results. By performing lots of experiments, optimal LUT was derived. In the case of JBIG2, the more quantized level, the better compressed performance. At 4-level or 8 levels, the best-chosen parameters α and β are 1.0. Meanwhile, in the case of JPEG2000, the best compression performance was obtained at a value of 1.05 at most quantization levels.



Compressing a binary document without context, compression rate was improved by up to 3% compared to the existing method. In addition, according to the JBIG2 coding with 2-dimesional context, it was confirmed that the proposed method improved the compression rate of 0.9% compared to the conventional method. In the case of the JPEG2000 still image lossless coding, we obtained around 1.0~1.5% depending on the number of levels. In case of JPEG2000 lossy image compression, the improvement of PSNR was 0.3%, which is a little disappointing compared to lossless compression. From the experimental results, the performance is slightly lowered at 2-level LUT and the 8-level LUT is slightly better than the 4-level LUT, but the degree of improvement is reduced.



It is not easy to select the optimal level and mode in common suitable to every coding method, rather it will be possible to variably select the optimal quantization level in rate-distortion optimization. This optimization is not easily done because there are many different binary input sources with different probability distributions. If optimization is needed, we pre-code the sample binary sequence and achieve an optimal quantization level and parameters α and β experimentally. However, if the optimization is not necessary, the best selection strategy for still image coding will be 4-level LUT with α and β equal to 1.05 according to my experimental results. In case of binary document compression, 8-level quantization with α and β equal to 1.0 is the best choice.



Finally, because probability estimation table in MQ coder was developed in 1980s, there is reason to change or modify the estimation table suitable to high resolution images such as HD and super HD images. The methods to be considered for this purpose are machine learning or deep learning approaches to train large data sets of binary sources.
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Figure 1. Arithmetic coder inputs and outputs. 
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Figure 2. (a) CODEMPS procedure, (b) CODELPS procedure. 
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Figure 3. (a) RENORME procedure, (b) BYTEOUT procedure. 
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Figure 4. 2-level quantization method. 
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Figure 5. 4-level Quantization method. 
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Figure 6. 8-level quantization method. 
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Figure 7. Standard binary images used for simulation. (a) CCITT1 document, (b) CCITT4 document, (c) CCITT5 document, (d) CCITT7 document. 
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Figure 8. Binary Korean text used for simulation. (a) Hangeul-1 document, (b) Hangeul-2 document 
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Figure 9. Still Images used for simulation. (a) Baboon (500 × 480), (b) Lenna (512 × 512), (c) Monarch (768 × 512), (d) Barbara (720 × 576), (e) Zelda (780 × 576), (f) Man (1024 × 1024), (g) Four people (1280 × 720), (h) Jockey (1920 × 1080). 
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Table 1. LPS probability estimation table in MQ coder.
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	Index
	Qe (Hex)
	Qe (Decimal)
	NMPS
	NLPS
	Switch





	0
	0x5601
	0.503960
	1
	1
	1



	1
	0x3401
	0.304729
	2
	6
	0



	2
	0x1801
	0.140656
	3
	9
	0



	3
	0x0ac1
	0.063015
	4
	12
	0



	4
	0x0521
	0.030054
	5
	29
	0



	5
	0x0221
	0.012475
	38
	33
	0



	6
	0x5601
	0.503960
	7
	6
	1



	7
	0x5401
	0.492240
	8
	14
	0



	8
	0x4801
	0.421924
	9
	14
	0



	9
	0x3801
	0.328168
	10
	14
	0



	10
	0x3001
	0.281290
	11
	17
	0



	11
	0x2401
	0.210973
	12
	18
	0



	12
	0x1c01
	0.164095
	13
	20
	0



	13
	0x1601
	0.128937
	29
	21
	0



	14
	0x5601
	0.503960
	15
	14
	1



	15
	0x5401
	0.492240
	16
	14
	0



	16
	0x5101
	0.474661
	17
	15
	0



	17
	0x4801
	0.421924
	18
	16
	0



	18
	0x3801
	0.328168
	19
	17
	0



	19
	0x3401
	0.304729
	20
	18
	0



	20
	0x3001
	0.281290
	21
	19
	0



	21
	0x2801
	0.234412
	22
	19
	0



	22
	0x2401
	0.210973
	23
	20
	0



	23
	0x2201
	0.199254
	24
	21
	0



	24
	0x1c01
	0.164095
	25
	22
	0



	25
	0x1801
	0.140656
	26
	23
	0



	26
	0x1601
	0.128937
	27
	24
	0



	27
	0x1401
	0.117218
	28
	25
	0



	28
	0x1201
	0.105498
	29
	26
	0



	29
	0x1101
	0.099638
	30
	27
	0



	30
	0x0ac1
	0.063015
	31
	28
	0



	31
	0x09c1
	0.057155
	32
	29
	0



	32
	0x08a1
	0.050563
	33
	30
	0



	33
	0x0521
	0.030054
	34
	31
	0



	34
	0x0441
	0.024927
	35
	32
	0



	35
	0x02a1
	0.015405
	36
	33
	0



	36
	0x0221
	0.012475
	37
	34
	0



	37
	0x0141
	0.007348
	38
	35
	0



	38
	0x0111
	0.006249
	39
	36
	0



	39
	0x0085
	0.003044
	40
	37
	0



	40
	0x0049
	0.001671
	41
	38
	0



	41
	0x0025
	0.000847
	42
	39
	0



	42
	0x0015
	0.000481
	43
	40
	0



	43
	0x0009
	0.000206
	44
	41
	0



	44
	0x0005
	0.000114
	45
	42
	0



	45
	0x0001
	0.000023
	45
	43
	0



	46
	0x5601
	0.503960
	46
	46
	0
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Table 2. M-coder RTAB (b = 10).
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	m
	Q0
	Q1
	Q2
	Q3





	0
	128
	176
	208
	240



	1
	128
	167
	197
	227



	2
	128
	158
	187
	216



	3
	123
	150
	178
	205



	4
	116
	142
	169
	195



	5
	111
	135
	160
	185



	6
	105
	128
	152
	175



	7
	100
	122
	144
	166



	8
	95
	116
	137
	158



	9
	⋯
	⋯
	⋯
	⋯



	62
	6
	7
	8
	9



	63
	2
	2
	2
	2
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Table 3. Two modes of 2-level quantization of A-register value.
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	A1
	A2





	Mode-1
	α × 0.75 × (1 + 1/4)
	β × 0.75 × (1 + 3/4)



	Mode-2
	α × 0.75 × (1 + 1/3)
	β × 0.75 × (1 + 2/3)
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Table 4. Two modes of 2-level lookup tables for (Ai × Qe) (47 × 2, α = β = 1).
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Qe

	
Mode-1

	
Mode-2




	
Index

	

	
A1 × Qe

	
A2 × Qe

	
A1 × Qe

	
A2 × Qe






	
0

	
0x5601

	
0x50A2

	
0x70E3

	
0x5602

	
0x6B83




	
1

	
0x3401

	
0x30C2

	
0x4442

	
0x3402

	
0x4102




	
2

	
0x1801

	
0x1681

	
0x1F82

	
0x1801

	
0x1E02




	
3

	
0x0AC1

	
0x0A15

	
0x0E1E

	
0xAC1

	
0x0D71




	
4

	
0x0521

	
0x04CF

	
0x06BB

	
0x0521

	
0x0669




	
5

	
0x0221

	
0x01FF

	
0x02CB

	
0x0221

	
0x02A9




	
6

	
0x5601

	
0x50A2

	
0x70E3

	
0x5602

	
0x6B83




	
7

	
0x5401

	
0x4EC2

	
0x6E43

	
0x5402

	
0x6903




	
8

	
0x4801

	
0x4382

	
0x5E83

	
0x4802

	
0x5A03




	
9

	
0x3801

	
0x3482

	
0x4982

	
0x3802

	
0x4602




	
10

	
0x3001

	
0x2D02

	
0x3F02

	
0x3002

	
0x3C02




	
11

	
0x2401

	
0x21C1

	
0x2F42

	
0x2402

	
0x2D02




	
12

	
0x1C01

	
0x1A41

	
0x24C2

	
0x1C01

	
0x2302




	
13

	
0x1601

	
0x14A1

	
0x1CE2

	
0x1601

	
0x1B82




	
14

	
0x5601

	
0x50A2

	
0x70E3

	
0x5602

	
0x6B83




	
15

	
0x5401

	
0x4EC2

	
0x6E43

	
0x5402

	
0x6903




	
16

	
0x5101

	
0x4BF2

	
0x6A53

	
0x5102

	
0x6543




	
17

	
0x4801

	
0x4382

	
0x5E83

	
0x4802

	
0x5A03




	
18

	
0x3801

	
0x3482

	
0x4982

	
0x3802

	
0x4602




	
19

	
0x3401

	
0x30C2

	
0x4442

	
0x3402

	
0x4102




	
20

	
0x3001

	
0x2D02

	
0x3F02

	
0x3002

	
0x3C02




	
21

	
0x2801

	
0x2582

	
0x3482

	
0x2802

	
0x3202




	
22

	
0x2401

	
0x21C1

	
0x2F42

	
0x2402

	
0x2D02




	
23

	
0x2201

	
0x1FE1

	
0x2CA2

	
0x2202

	
0x2A82




	
24

	
0x1C01

	
0x1A41

	
0x24C2

	
0x1C01

	
0x2302




	
25

	
0x1801

	
0x1681

	
0x1F82

	
0x1801

	
0x1E02




	
26

	
0x1601

	
0x14A1

	
0x1CE2

	
0x1601

	
0x1B82




	
27

	
0x1401

	
0x12C1

	
0x1A42

	
0x1401

	
0x1902




	
28

	
0x1201

	
0x10E1

	
0x17A2

	
0x1201

	
0x1682




	
29

	
0x1101

	
0x0FF1

	
0x1652

	
0x1101

	
0x1542




	
30

	
0x0AC1

	
0x0A15

	
0x0E1E

	
0x0AC1

	
0x0D71




	
31

	
0x09C1

	
0x0925

	
0x0CCE

	
0x09C1

	
0x0C31




	
32

	
0x08C1

	
0x0817

	
0x0B53

	
0x08A1

	
0x0AC9




	
33

	
0x0521

	
0x04CF

	
0x06BB

	
0x0521

	
0x0669




	
34

	
0x0441

	
0x03FD

	
0x0595

	
0x0441

	
0x0551




	
35

	
0x02A1

	
0x0277

	
0x0373

	
0x02A1

	
0x0349




	
36

	
0x0221

	
0x01FF

	
0x02CB

	
0x0221

	
0x02A9




	
37

	
0x0141

	
0x012D

	
0x01A5

	
0x0141

	
0x0191




	
38

	
0x0111

	
0x0100

	
0x0166

	
0x0111

	
0x0155




	
39

	
0x0085

	
0x007D

	
0x00AF

	
0x0085

	
0x00A6




	
40

	
0x0049

	
0x0044

	
0x0060

	
0x0049

	
0x005B




	
41

	
0x0025

	
0x0023

	
0x0031

	
0x0025

	
0x002E




	
42

	
0x0015

	
0x0014

	
0x001C

	
0x0015

	
0x001A




	
43

	
0x0009

	
0x0008

	
0x000C

	
0x0009

	
0x000B




	
44

	
0x0005

	
0x0005

	
0x0007

	
0x0005

	
0x0006




	
45

	
0x0001

	
0x0001

	
0x0001

	
0x0001

	
0x0001




	
46

	
0x5601

	
0x50A2

	
0x70E3

	
0x5602

	
0x6B83
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Table 5. MPS and LPS interval subdivision quantization level in case of 4-level.
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	if (0x8000 ≤ A < 0xA000) then A = A1 (shown in Table 6)



	else if (0xA000 ≤ A < 0xC000) then A = A2 (shown in Table 6)



	else if (0xC000 ≤ A < 0xE000) then A = A3 (shown in Table 6)



	else then A = A4 (shown in Table 6)
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Table 6. Four modes of 4-level quantization.
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	A1
	A2
	A3
	A4





	Mode-1
	α × 0.75 × (1 + 1/8)
	β × 0.75 × (1 + 3/8)
	β × 0.75 × (1 + 5/8)
	α × 0.75 × (1 + 7/8)



	Mode-2
	α × 0.75 × (1 + 1/5)
	β × 0.75 × (1 + 2/5)
	β × 0.75 × (1 + 3/5)
	α × 0.75 × (1 + 4/5)



	Mode-3
	α × 0.75 × (1 + 1/5)
	β × 0.75 × (1 + 3/8)
	β × 0.75 × (1 + 5/8)
	α × 0.75 × (1 + 4/5)



	Mode-4
	α × 0.75 × (1 + 1/8)
	β × 0.75 × (1 + 2/5)
	β × 0.75 × (1 + 3/5)
	α × 0.75 × (1 + 7/8)
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Table 7. (Ai × Qe) lookup table (47 × 4, α = 1, β = 1).
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	Mode
	Index
	A1 × Qe
	A2 × Qe
	A3 × Qe
	A4 × Qe
	NMPS
	NLPS
	Switch





	1
	0
	0x4892
	0x58B2
	0x68D3
	0x78F3
	1
	1
	1



	
	1
	0x2BE2
	0x35A2
	0x3F62
	0x4923
	2
	6
	0



	
	2
	0x1441
	0x18C1
	0x1D42
	0x21C2
	3
	9
	0



	
	3
	0x0913
	0x0B17
	0x0D1B
	0x0F20
	4
	12
	0



	
	4
	0x0454
	0x054A
	0x0640
	0x0737
	5
	29
	0



	
	5
	0x01CC
	0x0232
	0x0298
	0x02FE
	38
	33
	0



	
	6
	0x4892
	0x58B2
	0x68D3
	0x78F3
	7
	6
	1



	
	···
	···
	···
	···
	···
	···
	···
	···



	2
	0
	0x4D69
	0x5A4F
	0x6736
	0x741D
	1
	1
	1



	
	1
	0x2ECE
	0x369C
	0x3E69
	0x4636
	2
	6
	0



	
	2
	0x159B
	0x1935
	0x1CCE
	0x2068
	3
	9
	0



	
	3
	0x09AE
	0x0B4B
	0x0CE8
	0x0E85
	4
	12
	0



	
	4
	0x049E
	0x0563
	0x0628
	0x06ED
	5
	29
	0



	
	5
	0x01EB
	0x023C
	0x028E
	0x02E0
	38
	33
	0



	
	6
	0x4D69
	0x5A4F
	0x6736
	0x741D
	7
	6
	1



	
	···
	···
	···
	···
	···
	···
	···
	···



	3
	0
	0x4D69
	0x58B2
	0x68D3
	0x741D
	1
	1
	1



	
	1
	0x2ECE
	0x35A2
	0x3F62
	0x4636
	2
	6
	0



	
	2
	0x159B
	0x18C1
	0x1D42
	0x2068
	3
	9
	0



	
	3
	0x09AE
	0x0B17
	0x0D1B
	0x0E85
	4
	12
	0



	
	4
	0x049E
	0x054A
	0x0640
	0x06ED
	5
	29
	0



	
	5
	0x01EB
	0x0232
	0x0298
	0x02E0
	38
	33
	0



	
	6
	0x4D69
	0x58B2
	0x68D3
	0x741D
	7
	6
	1



	
	···
	···
	···
	···
	···
	···
	···
	···



	4
	0
	0x4892
	0x5A4F
	0x6736
	0x78F3
	1
	1
	1



	
	1
	0x2BE2
	0x369C
	0x3E69
	0x4923
	2
	6
	0



	
	2
	0x1441
	0x1935
	0x1CCE
	0x21C2
	3
	9
	0



	
	3
	0x0913
	0x0B4B
	0x0CE8
	0x0F20
	4
	12
	0



	
	4
	0x0454
	0x0563
	0x0628
	0x0737
	5
	29
	0



	
	5
	0x01CC
	0x023C
	0x028E
	0x02FE
	38
	33
	0



	
	6
	0x4892
	0x5A4F
	0x6736
	0x78F3
	7
	6
	1



	
	···
	···
	···
	···
	···
	···
	···
	···
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Table 8. MPS and LPS interval subdivision quantization level in case of 8-level.






Table 8. MPS and LPS interval subdivision quantization level in case of 8-level.





	if (0x8000 ≤ A < 0x9000) then A = A1



	else if (0x9000 ≤ A < 0xA000) then A = A2



	else if (0xA000 ≤ A < 0xB000) then A = A3



	else if (0xB000 ≤ A < 0xC000) then A = A4



	else if (0xC000 ≤ A < 0xD000) then A = A5



	else if (0xD000 ≤ A < 0xE000) then A = A6



	else if (0xE000 ≤ A < 0xF000) then A = A7



	else then A = A8
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Table 9. Two-modes of 8-level quantization.






Table 9. Two-modes of 8-level quantization.





	Mode
	A1
	A2
	A3
	A4
	A5
	A6
	A7
	A8





	1
	α × 0.75 ×

(1 + 1/9)
	α × 0.75 ×

(1 + 2/9)
	α × 0.75 ×

(1 + 3/9)
	α × 0.75 ×

(1 + 4/9)
	β × 0.75 ×

(1 + 5/9)
	β × 0.75 ×

(1 + 6/9)
	β × 0.75 ×

(1 + 7/9)
	β × 0.75 ×

(1 + 8/9)



	2
	α × 0.75 ×

(1 + 1/9)
	α × 0.75 ×

(1 + 2/9)
	α × 0.75 ×

(1 + 5/16)
	α × 0.75 ×

(1 + 7/16)
	β × 0.75 ×

(1 + 9/16)
	β × 0.75 ×

(1 + 11/16)
	β × 0.75 ×

(1 + 7/9)
	β × 0.75 ×

(1 + 8/9)
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Table 10. AiQe lookup table (Mode-1,2, 47 × 8, α = β = 1).






Table 10. AiQe lookup table (Mode-1,2, 47 × 8, α = β = 1).

















	Mode
	Idx
	A1 × Qe
	A2 × Qe
	A3 × Qe
	A4 × Qe
	A5 × Qe
	A6 × Qe
	A7 × Qe
	A8 × Qe





	1
	0
	0x47AC
	0x4ED7
	0x5602
	0x5D2D
	0x6457
	0x6B82
	0x72AD
	0x79D8



	
	1
	0x2B56
	0x2FAC
	0x3401
	0x3857
	0x3CAC
	0x4102
	0x4557
	0x49AD



	
	2
	0x1401
	0x1601
	0x1801
	0x1A01
	0x1C01
	0x1E01
	0x2001
	0x2201



	
	3
	0x08F6
	0x9DB
	0xAC1
	0xBA6
	0x0C8C
	0x0D71
	0x0E56
	0x0F3C



	
	4
	0x0446
	0x04B3
	0x0521
	0x058E
	0x05FB
	0x0669
	0x06D6
	0x0744



	
	5
	0x1C6
	0x01F3
	0x0221
	0x024E
	0x027B
	0x02A9
	0x02D6
	0x0304



	
	6
	0x47AC
	0x4ED7
	0x5602
	0x5D2D
	0x6457
	0x6B82
	0x72AD
	0x79D8



	
	···
	···
	···
	···
	···
	···
	···
	···
	···



	2
	0
	0x47AC
	0x4ED7
	0x54AA
	0x5CBA
	0x64CA
	0x6CDA
	0x72AD
	0x79D8



	
	1
	0x2B56
	0x2FAC
	0x3331
	0x3811
	0x3CF2
	0x41D2
	0x4557
	0x49AD



	
	2
	0x1401
	0x1601
	0x17A1
	0x19E1
	0x1C21
	0x1E61
	0x2001
	0x2201



	
	3
	0x08F6
	0x09DB
	0x0A96
	0x0B98
	0x0C9A
	0x0D9C
	0x0E56
	0x0F3C



	
	4
	0x0446
	0x04B3
	0x050C
	0x0587
	0x0602
	0x067D
	0x6D6
	0x0744



	
	5
	0x01C6
	0x01F3
	0x0218
	0x024B
	0x027E
	0x02B1
	0x02D6
	0x0304



	
	6
	0x47AC
	0x4ED7
	0x54AA
	0x5CBA
	0x64CA
	0x6CDA
	0x72AD
	0x79D8



	
	···
	···
	···
	···
	···
	···
	···
	···
	···
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Table 11. Experimental results for each mode using 2-level LUT for binary images.






Table 11. Experimental results for each mode using 2-level LUT for binary images.





	
Document

	
Resolution (dpi)

	
Original MQ Byte

	
Proposed MQ Byte

	
Improvement (%)






	
Mode

	

	

	
mode-1

	
mode-2

	
mode-1

	
mode-2




	
(α, β)

	

	

	
(1.02, 1.02)

	
(1.0, 1.0)

	
(1.02, 1.02)

	
(1.0, 1.0)




	
CCITT1

	
200

	
50,784

	
48,814

	
49,084

	
3.88%

	
3.35%




	
CCITT4

	
200

	
156,129

	
149,394

	
150,249

	
4.31%

	
3.77%




	
CCITT5

	
200

	
99,719

	
97,802

	
98,187

	
1.92%

	
1.54%




	
CCITT7

	
200

	
169,154

	
167,048

	
168,072

	
1.25%

	
0.64%




	
Hangeul-1

	
200

	
72,416

	
70,225

	
70,698

	
3.03%

	
2.37%




	
Hangeul-2

	
200

	
87,902

	
84,763

	
85,482

	
3.57%

	
2.75%




	
Avg improvement in 200

	

	

	

	
2.99%

	
2.40%




	
CCITT1

	
300

	
92,705

	
89,516

	
90,052

	
3.44%

	
2.86%




	
CCITT4

	
300

	
332,320

	
316,943

	
319,075

	
4.63%

	
3.99%




	
CCITT5

	
300

	
180,281

	
175,457

	
176,546

	
2.68%

	
2.07%




	
CCITT7

	
300

	
334,128

	
331,311

	
332,923

	
0.84%

	
0.36%




	
Hangeul-1

	
300

	
148,594

	
144,376

	
145,673

	
2.84%

	
1.97%




	
Hangeul-2

	
300

	
183,611

	
177,237

	
178,824

	
3.47%

	
2.61%




	
Avg Improvement in 300

	

	

	

	
2.98%

	
2.31%




	
Overall Improvement

	

	

	

	
2.99%

	
2.36%
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Table 12. Experimental Results for each mode using 4-level LUT for binary images.






Table 12. Experimental Results for each mode using 4-level LUT for binary images.





	
Document

	
Resol. (dpi)

	
Original MQ Byte

	
Proposed MQ Improvement (%)






	
Mode

	

	

	
mode-1

	
mode-2

	
mode-3

	
mode-4




	
(α, β)

	

	

	
(1.02, 1.02)

	
(1.05, 1.05)

	
(1.05, 1.05)

	
(1.03, 1.03)




	
CCITT1

	
200

	
50,784

	
2.96%

	
3.01%

	
3.01%

	
3.03%




	
CCITT4

	
200

	
156,129

	
3.59%

	
3.44%

	
3.46%

	
3.61%




	
CCITT5

	
200

	
99,719

	
1.23%

	
1.21%

	
1.19%

	
1.16%




	
CCITT7

	
200

	
169,154

	
0.68%

	
0.61%

	
0.55%

	
0.59%




	
Hangeul-1

	
200

	
72,416

	
2.24%

	
2.15%

	
2.17%

	
2.27%




	
Hangeul-2

	
200

	
87,902

	
2.64%

	
2.60%

	
2.60%

	
2.69%




	
Avg Improvement in 200

	

	
2.22%

	
2.17%

	
2.16%

	
2.23%




	
CCITT1

	
300

	
92,705

	
2.34%

	
2.53%

	
2.54%

	
2.45%




	
CCITT4

	
300

	
332,320

	
3.57%

	
3.50%

	
3.61%

	
3.70%




	
CCITT5

	
300

	
180,281

	
1.75%

	
1.79%

	
1.81%

	
1.82%




	
CCITT7

	
300

	
334,128

	
0.25%

	
0.18%

	
0.12%

	
0.23%




	
Hangeul-1

	
300

	
148,594

	
1.89%

	
1.64%

	
1.69%

	
1.83%




	
Hangeul-2

	
300

	
183,611

	
2.48%

	
2.25%

	
2.26%

	
2.49%




	
Avg Improvement in 300

	

	
2.04%

	
1.98%

	
2.01%

	
2.09%




	
Overall improvement

	

	
2.13%

	
2.08%

	
2.08%

	
2.16%
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Table 13. Experimental results for each mode using 8-level LUT for binary images.






Table 13. Experimental results for each mode using 8-level LUT for binary images.





	
Documents

	
Resol. (dpi)

	
Original MQ Byte

	
Proposed MQ Byte

	
Improvement (%)






	
Mode

	

	

	
mode-1

	
mode-2

	
mode-1

	
mode-2




	
(α, β)

	

	

	
(1.0, 1.0)

	
(1.03, 1.03)

	
(1.0, 1.0)

	
(1.03, 1.03)




	
CCITT1

	
200

	
50,784

	
49,342

	
49,298

	
2.84%

	
2.93%




	
CCITT4

	
200

	
156,129

	
150,970

	
150,860

	
3.30%

	
3.37%




	
CCITT5

	
200

	
99,719

	
98,598

	
98,565

	
1.12%

	
1.16%




	
CCITT7

	
200

	
169,154

	
167,733

	
168,049

	
0.84%

	
0.65%




	
Hanguel-1

	
200

	
72,416

	
70,717

	
70,856

	
2.35%

	
2.15%




	
Hanguel-2

	
200

	
87,902

	
85,579

	
85,665

	
2.64%

	
2.54%




	
Avg Improvement in 200

	

	

	

	
2.18%

	
2.14%




	
CCITT1

	
300

	
92,705

	
90,457

	
90,449

	
2.42%

	
2.43%




	
CCITT4

	
300

	
332,320

	
320,778

	
320,512

	
3.47%

	
3.55%




	
CCITT5

	
300

	
180,281

	
177,392

	
177,125

	
1.60%

	
1.75%




	
CCITT7

	
300

	
334,128

	
332,777

	
333,297

	
0.40%

	
0.25%




	
Hanguel-1

	
300

	
148,594

	
145,605

	
145,974

	
2.01%

	
1.76%




	
Hanguel-2

	
300

	
183,611

	
178,919

	
179,237

	
2.56%

	
2.38%




	
Avg Improvement in 200

	

	

	

	
2.08%

	
2.02%




	
Overall Improvement

	

	

	

	
2.13%

	
2.08%
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Table 14. 2-level LUT experimental results for JBIG2. (α = β = 1.0).






Table 14. 2-level LUT experimental results for JBIG2. (α = β = 1.0).





	
Documents

	
Resol. (dpi)

	
Original JB2 Byte

	
Proposed JB2 Byte

	
Improvement (%)






	
Mode

	

	

	
mode-1

	
mode-2

	
mode-1

	
mode-2




	
CCITT1

	
200

	
16,116

	
16,032

	
16,026

	
0.52%

	
0.56%




	
CCITT4

	
200

	
60,737

	
60,268

	
60,292

	
0.78%

	
0.73%




	
CCITT5

	
200

	
28,109

	
27,962

	
27,980

	
0.53%

	
0.46%




	
CCITT7

	
200

	
60,456

	
60,143

	
60,184

	
0.52%

	
0.45%




	
Hanguel-1

	
200

	
19,681

	
19,591

	
19,602

	
0.46%

	
0.40%




	
Hanguel-2

	
200

	
25,998

	
25,862

	
25,858

	
0.53%

	
0.54%




	
Avg improvement in 200

	

	

	

	
0.56%

	
0.52%




	
CCITT1

	
300

	
22,026

	
21,895

	
21,893

	
0.60%

	
0.60%




	
CCITT4

	
300

	
85,167

	
84,748

	
84,726

	
0.49%

	
0.52%




	
CCITT5

	
300

	
39,049

	
38,793

	
38,867

	
0.66%

	
0.47%




	
CCITT7

	
300

	
87,132

	
86,620

	
86,693

	
0.59%

	
0.50%




	
Hanguel-1

	
300

	
27,938

	
27,782

	
27,788

	
0.56%

	
0.54%




	
Hanguel-2

	
300

	
37,471

	
37,220

	
37,226

	
0.67%

	
0.65%




	
Avg improvement in 300

	

	

	

	
0.60%

	
0.52%




	
Overall improvement

	

	

	

	
0.58%

	
0.52%
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Table 15. 4-level LUT experimental results for JBIG2. (α = β = 1.0).






Table 15. 4-level LUT experimental results for JBIG2. (α = β = 1.0).





	
Document

	
Resol (dpi)

	
Original JB2 Byte

	
Improvement (%)






	
Mode

	

	

	
mode-1

	
mode-2

	
mode-3

	
mode-4




	
CCITT1

	
200

	
16,116

	
0.81%

	
0.79%

	
0.94%

	
0.77%




	
CCITT4

	
200

	
60,737

	
0.96%

	
0.98%

	
1.06%

	
0.94%




	
CCITT5

	
200

	
28,109

	
0.76%

	
0.70%

	
0.73%

	
0.74%




	
CCITT7

	
200

	
60,456

	
0.69%

	
0.72%

	
0.65%

	
0.70%




	
Hangeul-1

	
200

	
19,681

	
0.68%

	
0.71%

	
0.69%

	
0.68%




	
Hangeul-2

	
200

	
25,998

	
0.68%

	
0.77%

	
0.77%

	
0.76%




	
Avg improvement in 200

	

	
0.76%

	
0.78%

	
0.81%

	
0.76%




	
CCITT1

	
300

	
22,026

	
0.70%

	
0.74%

	
0.78%

	
0.74%




	
CCITT4

	
300

	
85,167

	
0.74%

	
0.68%

	
0.74%

	
0.75%




	
CCITT5

	
300

	
39,049

	
0.78%

	
0.78%

	
0.76%

	
0.87%




	
CCITT7

	
300

	
87,132

	
0.77%

	
0.82%

	
0.85%

	
0.77%




	
Hangeul-1

	
300

	
27,938

	
0.72%

	
0.72%

	
0.82%

	
0.71%




	
Hangeul-2

	
300

	
37,471

	
0.83%

	
0.81%

	
0.81%

	
0.78%




	
Avg improvement in 300

	

	
0.76%

	
0.76%

	
0.79%

	
0.77%




	
Overall improvement

	

	
0.76%

	
0.77%

	
0.80%

	
0.77%
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Table 16. 8-level LUT experimental results for JBIG2. (α = β = 1.0).






Table 16. 8-level LUT experimental results for JBIG2. (α = β = 1.0).





	
Document

	
Resolution (dpi)

	
Original JB2 Byte

	
Proposed JB2 Byte

	
Improvement (%)






	
Mode

	

	

	
mode-1

	
mode-2

	
mode-1

	
mode-2




	
CCITT1

	
200

	
16,116

	
15,970

	
15,955

	
0.91%

	
1.00%




	
CCITT4

	
200

	
60,737

	
60,071

	
60,096

	
1.10%

	
1.06%




	
CCITT5

	
200

	
28,109

	
27,857

	
27,861

	
0.90%

	
0.88%




	
CCITT7

	
200

	
60,456

	
59,954

	
59,961

	
0.83%

	
0.82%




	
Hangeul-1

	
200

	
19,681

	
19,524

	
19,537

	
0.80%

	
0.73%




	
Hangeul-2

	
200

	
25,998

	
25,764

	
25,779

	
0.90%

	
0.84%




	
Avg improvement in 300

	

	

	

	
0.90%

	
0.89%




	
CCITT1

	
300

	
22,026

	
21,823

	
21,839

	
0.92%

	
0.85%




	
CCITT4

	
300

	
85,167

	
84,442

	
84,428

	
0.85%

	
0.87%




	
CCITT5

	
300

	
39,049

	
38,689

	
38,687

	
0.92%

	
0.93%




	
CCITT7

	
300

	
87,132

	
86,359

	
86,377

	
0.89%

	
0.87%




	
Hangeul-1

	
300

	
27,938

	
27,698

	
27,724

	
0.86%

	
0.77%




	
Hangeul-2

	
300

	
37,471

	
37,112

	
37,116

	
0.96%

	
0.95%




	
Avg improvement in 300

	

	

	

	
0.90%

	
0.87%




	
Overall improvement

	

	

	

	
0.90%

	
0.88%
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Table 17. Improvement percentage of compressed byte with proposed algorithm applying multi-level MQ in JPEG2000 (lossless compression, 2-level and 8-level LUT MQ coder) (α = β = 1.05).






Table 17. Improvement percentage of compressed byte with proposed algorithm applying multi-level MQ in JPEG2000 (lossless compression, 2-level and 8-level LUT MQ coder) (α = β = 1.05).





	
Image

	
Image Size

	
Original JP2k Byte

	
2-Level

	
2-Level

	
8-Level

	
8-Level






	
Mode

	
W

	
H

	

	
mode-1

	
mode-2

	
mode-1

	
mode-2




	
Baboon

	
500

	
480

	
570,089

	
1.18%

	
1.40%

	
1.60%

	
1.61%




	
Lena

	
512

	
512

	
446,062

	
1.23%

	
1.27%

	
1.55%

	
1.55%




	
Monarch

	
768

	
512

	
442,830

	
1.19%

	
1.13%

	
1.44%

	
1.43%




	
Barbara

	
720

	
576

	
646,509

	
1.22%

	
1.26%

	
1.54%

	
1.53%




	
Zelda

	
780

	
576

	
564,745

	
0.98%

	
0.93%

	
1.25%

	
1.24%




	
Man

	
1024

	
1024

	
633,199

	
1.21%

	
1.30%

	
1.55%

	
1.54%




	
Four people

	
1280

	
720

	
823,889

	
1.25%

	
1.19%

	
1.58%

	
1.57%




	
Jockey

	
1920

	
1080

	
1,851,880

	
1.25%

	
1.18%

	
1.57%

	
1.56%




	
Average Improvement

	

	
1.19%

	
1.21%

	
1.51%

	
1.50%
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Table 18. Improvement percentage of compressed byte with proposed algorithm applying multi-level MQ in JPEG2000 (lossless compression, 4-level LUT MQ coder) (α = β = 1.05).






Table 18. Improvement percentage of compressed byte with proposed algorithm applying multi-level MQ in JPEG2000 (lossless compression, 4-level LUT MQ coder) (α = β = 1.05).





	
Image

	
Image Size

	
Original JP2k Byte

	
4-Level

	
4-Level

	
4-Level

	
4-Level






	
Mode

	
W

	
H

	

	
mode-1

	
mode-2

	
mode-3

	
mode-4




	
Baboon

	
500

	
480

	
570,089

	
1.55%

	
1.45%

	
1.56%

	
1.54%




	
Lena

	
512

	
512

	
446,062

	
1.47%

	
1.41%

	
1.47%

	
1.49%




	
Monarch

	
768

	
512

	
442,830

	
1.36%

	
1.35%

	
1.38%

	
1.38%




	
Barbara

	
720

	
576

	
646,509

	
1.47%

	
1.42%

	
1.48%

	
1.48%




	
Zelda

	
780

	
576

	
564,745

	
1.18%

	
1.12%

	
1.17%

	
1.19%




	
Man

	
1024

	
1024

	
633,199

	
1.47%

	
1.42%

	
1.48%

	
1.48%




	
Four people

	
1280

	
720

	
823,889

	
1.51%

	
1.43%

	
1.51%

	
1.54%




	
Jockey

	
1920

	
1080

	
1,851,880

	
1.51%

	
1.43%

	
1.50%

	
1.52%




	
Average Improvement

	

	
1.44%

	
1.38%

	
1.44%

	
1.45%
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Table 19. Improvement percentage of PSNR with proposed algorithm applying multi-level MQ in JPEG2000 (lossy compression (compression ratio = 20:1), 2-level and 8-level LUT MQ coder).






Table 19. Improvement percentage of PSNR with proposed algorithm applying multi-level MQ in JPEG2000 (lossy compression (compression ratio = 20:1), 2-level and 8-level LUT MQ coder).





	
Image

	
Color

	
Original

JPEG2000

PSNR (dB)

	
2-Level

	
2-Level

	
8 Level

	
8-Level




	
mode

	

	
mode-1

	
mode-2

	
model-1

	
mode-2




	
(α, β)

	

	
(1.0, 1.0)

	
(1.0, 1.0)

	
(1.05, 1.05)

	
(1.05, 1.05)




	
Baboon

	
G

	
26.025

	
0.21%

	
0.31%

	
0.20%

	
0.38%




	
Lena

	
G

	
35.943

	
0.38%

	
0.39%

	
0.44%

	
0.44%




	
Monarch

	
G

	
40.269

	
0.34%

	
0.33%

	
0.38%

	
0.39%




	
Barbara

	
G

	
35.953

	
0.34%

	
0.33%

	
0.40%

	
0.42%




	
Zelda

	
G

	
41.754

	
0.12%

	
0.13%

	
0.12%

	
0.15%




	
Man

	
Gray

	
32.441

	
0.42%

	
0.42%

	
0.48%

	
0.44%




	
Four people

	
G

	
44.364

	
0.28%

	
0.28%

	
0.29%

	
0.31%




	
Jockey

	
G

	
45.473

	
0.16%

	
0.16%

	
0.19%

	
0.19%




	
Average improvement

	

	
0.28%

	
0.29%

	
0.31%

	
0.34%
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Table 20. Improvement percentage of PSNR (peak signal-to-noise ratio) with proposed algorithm applying multi-level MQ in JPEG2000 (lossy compression (compression ratio = 20:1), 4-level LUT MQ coder).






Table 20. Improvement percentage of PSNR (peak signal-to-noise ratio) with proposed algorithm applying multi-level MQ in JPEG2000 (lossy compression (compression ratio = 20:1), 4-level LUT MQ coder).





	
Image

	
Color

	
Original

JPEG2000

PSNR (dB)

	
4-Level

	
4-Level

	
4-Level

	
4-Level




	
Mode

	

	
mode-1

	
mode-2

	
mode-3

	
mode-4




	
(α, β)

	

	
(1.0, 1.0)

	
(1.0, 1.0)

	
(1.0, 1.0)

	
(1.05, 1.05)




	
Baboon

	
G

	
26.025

	
0.33%

	
0.21%

	
0.23%

	
0.36%




	
Lena

	
G

	
35.943

	
0.44%

	
0.44%

	
0.44%

	
0.43%




	
Monarch

	
G

	
40.269

	
0.38%

	
0.37%

	
0.38%

	
0.37%




	
Barbara

	
G

	
35.953

	
0.37%

	
0.41%

	
0.37%

	
0.40%




	
Zelda

	
G

	
41.754

	
0.14%

	
0.18%

	
0.13%

	
0.15%




	
Man

	
Gray

	
32.441

	
0.45%

	
0.40%

	
0.44%

	
0.48%




	
Four people

	
G

	
44.364

	
0.29%

	
0.29%

	
0.29%

	
0.31%




	
Jockey

	
G

	
45.473

	
0.18%

	
0.17%

	
0.18%

	
0.18%




	
Average improvement

	

	
0.32%

	
0.31%

	
0.31%

	
0.34%
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Table 21. Improvement percentage of PSNR with proposed algorithm applying multi-level MQ in JPEG2000 (lossy compression (compression ratio = 50:1), 2-level and 8-level LUT MQ coder).






Table 21. Improvement percentage of PSNR with proposed algorithm applying multi-level MQ in JPEG2000 (lossy compression (compression ratio = 50:1), 2-level and 8-level LUT MQ coder).





	
PSNR Improve

	
Color

	
Original

JPEG2000

PSNR (dB)

	
2-Level

	
2-Level

	
8-Level

	
8-Level




	
Mode

	

	
mode-1

	
mode-2

	
model-1

	
mode-2




	
(α, β)

	

	
(1.0, 1.0)

	
(1.0, 1.0)

	
(1.05, 1.05)

	
(1.0, 1.0)




	
Baboon

	
G

	
22.874

	
0.29%

	
0.33%

	
0.36%

	
0.32%




	
Lena

	
G

	
32.894

	
0.26%

	
0.27%

	
0.27%

	
0.26%




	
Monarch

	
G

	
33.868

	
0.54%

	
0.51%

	
0.58%

	
0.56%




	
Barbara

	
G

	
30.601

	
0.32%

	
0.31%

	
0.39%

	
0.40%




	
Zelda

	
G

	
39.060

	
0.13%

	
0.13%

	
0.19%

	
0.21%




	
Man

	
Gray

	
29.040

	
0.21%

	
0.17%

	
0.22%

	
0.21%




	
Four people

	
G

	
39.398

	
0.25%

	
0.22%

	
0.20%

	
0.28%




	
Jockey

	
G

	
42.456

	
0.12%

	
0.11%

	
0.16%

	
0.15%




	
Average improvement

	

	
0.27%

	
0.26%

	
0.30%

	
0.30%
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Table 22. Improvement percentage of PSNR with proposed algorithm applying multi-level MQ in JPEG2000 (lossy compression, compression ratio = 50:1, 4-level LUT MQ coder).






Table 22. Improvement percentage of PSNR with proposed algorithm applying multi-level MQ in JPEG2000 (lossy compression, compression ratio = 50:1, 4-level LUT MQ coder).





	
PSNR Improve

	
Color

	
Original

JPEG2000

PSNR (dB)

	
4-Level

	
4-Level

	
4-Level

	
4-Level




	
Mode

	

	
mode-1

	
mode-2

	
model-3

	
mode-4




	
(α, β)

	

	
(1.0, 1.0)

	
(1.0, 1.0)

	
(1.05, 1.05)

	
(1.0, 1.0)




	
Baboon

	
G

	
22.874

	
0.29%

	
0.30%

	
0.41%

	
0.30%




	
Lena

	
G

	
32.894

	
0.27%

	
0.25%

	
0.25%

	
0.26%




	
Monarch

	
G

	
33.868

	
0.59%

	
0.51%

	
0.59%

	
0.54%




	
Barbara

	
G

	
30.601

	
0.31%

	
0.34%

	
0.39%

	
0.39%




	
Zelda

	
G

	
39.060

	
0.19%

	
0.18%

	
0.19%

	
0.22%




	
Man

	
Gray

	
29.040

	
0.19%

	
0.23%

	
0.20%

	
0.25%




	
Four people

	
G

	
39.398

	
0.27%

	
0.24%

	
0.27%

	
0.23%




	
Jockey

	
G

	
42.456

	
0.15%

	
0.14%

	
0.16%

	
0.15%




	
Average improvement

	

	
0.28%

	
0.27%

	
0.31%

	
0.29%
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