
 information

Article

A Phrase-Level User Requests Mining Approach in Mobile
Application Reviews: Concept, Framework, and Operation

Cheng Yang 1 , Lingang Wu 2,∗ , Chunyang Yu 1 and Yuliang Zhou 2

����������
�������

Citation: Yang, C.; Wu, L.; Yu, C.;

Zhou, Y. A Phrase-Level User

Requests Mining Approach in Mobile

Application Reviews: Concept,

Framework, and Operation.

Information 2021, 12, 177. https://

doi.org/10.3390/info12050177

Academic Editor: Spina Damiano

Received: 28 February 2021

Accepted: 16 April 2021

Published: 21 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Creativity and Art Design, Zhejiang University City College, Hangzhou 310015, China;
yangchengyc@126.com (C.Y.); yucy@zucc.edu.cn (C.Y.)

2 College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China;
zhouyuliang123@gmail.com

* Correspondence: lingang_wu@zju.edu.cn

Abstract: Mobile application (app) reviews are feedback about experiences, requirements, and issues
raised after users have used the app. The iteration of an app is driven by bug reports and user
requirements analyzed and extracted from app reviews, which is a problem that app designers
and developers are committed to solving. However, a great number of app reviews vary in quality
and reliability. It is a difficult and time-consuming challenge to analyze app reviews using manual
methods. To address this, a novel approach is proposed as an automated method to predict high
priority user requests with fourteen extracted features. A semi-automated approach is applied to
annotate requirements with high or low priority with the help of app changelogs. Reviews from
six apps were retrieved from the Apple App Store to evaluate the feasibility of the approach and
interpret the principles. The performance comparison results of the approach greatly exceed the
IDEA method, with an average precision of 75.4% and recall of 70.4%. Our approach can be applied
to specific app development to assist app developers in quickly locating user requirements and
implement app maintenance and evolution.

Keywords: app reviews; user requests; request priority; sentiment analysis

1. Introduction

The growth of the app market has been boosted by the maturity of smartphones,
allowing users to conveniently browse and download apps from app stores (e.g., Apple
App Store and Google Play) and leave reviews for apps they have used, including star
ratings and text-based feedback. Many studies have proven that app reviews, which
contain problem feedback, feature requests, and other suggestions, can be regarded as
references for the iterative design and development of the app [1–3]. Rapid iteration, which
is one of the main factors for the success of an app’s development [4], mainly includes bug
fixing, feature modification, and the addition of new features. Hence, by analyzing user
data from the new versions, iteration strategies can be conducted by app designers and
developers. The timely and accurate gathering of information revealed by user reviews
can help developers maintain and update their apps and achieve effective word-of-mouth
marketing [5,6].

Unfortunately, analyzing app reviews is a challenge, especially through manual
methods. First, there are a great number of app reviews. For some popular apps, each
version is appended with hundreds or thousands of reviews [7]. Second, the quality of
reviews vary widely, and some are simply emotional evaluations (e.g., “Great!”) that are
not valuable for the development of apps. Third, the language expression of reviews
is relatively informal, containing lots of noise, such as misspellings, casual grammatical
structures, and non-English words [8]. To address these issues, there are many studies
dedicated to automatically filtering out non-informative reviews [9], categorizing reviews

Information 2021, 12, 177. https://doi.org/10.3390/info12050177 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1783-4760
https://orcid.org/0000-0002-2301-9199
https://orcid.org/0000-0001-8864-0106
https://orcid.org/0000-0002-7390-6597
https://doi.org/10.3390/info12050177
https://doi.org/10.3390/info12050177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12050177
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12050177?type=check_update&version=1

Information 2021, 12, 177 2 of 24

and user requirements [10], and obtaining valuable topics from massive reviews [11] for
the purpose of app maintenance and evolution.

These studies automatically extract useful information for developers (e.g., bug reports
and feature requests). Developers can quickly bug test and implement fixes, but for user
requirements, whether to implement user suggestions or not is not simply a subjective
decision. In other words, the studies above can only extract user request topics or sentences
from the reviews, but cannot speak on to what extent the requests are worthy of improving
or adding, or which feature requests have a high priority to implement. For example,
the review “I wish we had the option of making our own stylized photos though” can
be classified as a feature request, and the topics can be extracted as “make”, “stylized”,
and “photo”, which means the request of “editing photos”; however, whether the request
should be implemented in the next few releases is hard to say. Developers will consider
the questions “how many users proposed such requests”, “how the users think about the
present functionalities”, etc. Recently, a few studies address this question, such as Nayebi
and Ruhe [12], who proposed a bi-criterion integer programming model to select optimized
app functionalities based on feature value (e.g., rating) and cost (e.g., effort to implement).
However, the study focuses mainly on the trade-off solution for the functionalities and
neglect requirements discussed in reviews based on user feedback.

In this paper, we focus our attention on the user requirements in reviews and propose
a novel approach to (1) extract requirement phrases for the app functionalities; (2) calculate
features such as the occurrence frequency and rating for the requirement phrases; (3)
automatically predict those requirement phrases with high priority to be implemented
based on the features extracted for the phrases.

A total of 44,893 real-world reviews from six apps on the Apple App Store were
collected to verify the feasibility of the approach. The results indicate that the optimal
model can reach an average accuracy, precision, recall, F-Measure, and ROC_AUC of
67.6%, 67.3%, 69.2%, 68.0% and 71.4%, respectively, after optimization. To annotate the
true priority of the requirement phrases, a half-automated method is proposed to link the
requirement phrases with app changelogs and the requirement phrases linked successfully
to changelogs are annotated with high priority. The app changelog (the list of changes
in each release) is a short introduction presented in the App Store that is written by the
publisher and describes the issues that were addressed and the new features in the latest
version. The purpose of a changelog is encourage users to update and experience the
new version. We conjecture that the requirement phrases mentioned in changelogs can be
considered as high priority requirements. Figure 1 illustrates an example of a changelog
history for Google Photos in the Apple App Store.

The main contributions of this study are as follows. (1) A novel framework is imple-
mented to automatically extract and predict high priority requirement phrases from app
reviews with fourteen features calculated for the phrases. (2) A novel method is proposed
to semi-automatically annotate requirement phrases with high or low priority with help
of app changelogs and the effectiveness is verified. (3) An empirical study was designed
and performed to examine the effectiveness, interpretation, and comparison of the novel
approach in terms of high priority requirement mining.

The rest of the paper is structured as follows. Section 2 introduces the related work.
Section 3 explains the details of the framework of the approach. Section 4 describes the main
research questions and the method of evaluation for our approach. Section 5 presents the
results and discussions. Section 6 discusses the threats to validity, and Section 7 concludes
the paper.

Information 2021, 12, 177 3 of 24

Figure 1. A screenshot of a part of the changelog history for Google Photos.

2. Related Work

In this section, we introduce the related work in three main categories: app review
classification, requirement ranking, and aspect extraction from reviews.

2.1. App Review Classification

Classifying app reviews into different categories is quite a hot issue in app review analysis
research, and many studies consider classification as a preprocessing phase [9,13,14], and then
further analysis can be performed for specific categories of reviews. Panichella et al. [15]
combined the methods of natural language processing, text analysis, and sentiment analysis
to extract the reviews of verifiability for app maintenance and updates and classified
reviews into four categories—information seeking, information giving, feature request, and
problem discovery. Maalej et al. [16] proposed a classification model to categorize reviews
into bug reports, feature requests, user experiences, and simple ratings. McIlroy et al. [17]
analyzed the types of app reviews and proposed an automated method to assign multiple
labels to reviews since one review might have multiple types. Guzman et al. [18] compared
the performance using individual machine learning methods and their ensembles for
automatically classifying reviews and found the ensembles can reach a better result. Jha and
Mahmoud [19] focused on the non-functional requirements (e.g., security and performance)
mining and used classification methods to capture those requirements in reviews. These
studies can filter out some noise of app reviews and provide developers with specific
types of reviews. However, the developers still have to deal with plenty of reviews in each
category since the priority of the reviews is not considered.

The most obvious difference between the aforementioned studies and ours is that
instead of selecting reviews classified as one certain category, our approach deals with
all reviews. except for duplications, and extracts phrases that mention app functionality.
We assume that both a positive or negative review or a feature request will address the
app functionalities to some degree, and the extracted phrases can identify the subject. If a
review does not contain such subjects, no phrases will be extracted, so non-informative
information can be filtered out during the phrase extraction phase.

Information 2021, 12, 177 4 of 24

2.2. Sentiment Analysis for App Reviews

Sentiment analysis can obtain the positive and negative emotions and their intensity
in user reviews. Using this method, users’ satisfaction or dissatisfaction with functional
features can be quantified for future requirement analysis [20]. Although the satisfaction of
users can be reflected to some extent from the ratings put forward by the user themselves,
sentiment analysis can be specific to a sentence or a word in the review, so as to accurately
match the extracted topics. Sentiment analysis has great value and is widely applied in
review analysis.

However, sentiment analysis is only used as an initial review processing method to
quantify user sentiment and satisfaction, and a series of subsequent complex calculations
for specific demand analysis are essential. In terms of the implementation methods of sen-
timent analysis, different studies apply slightly different methods, but the overall principle
is based on sentiment lexical database and lexical association to realize the calculation of
sentiment value. For instance, Ranjan and Mishra [21] used TextBolb, Suprayogi et al. [11]
applied Sentistrength, and Gu and Kim [13] implemented Deeply Moving.

2.3. Requirement Ranking

To rank the significance of requirements or features for apps is another attractive
topic for app maintenance and evolution. Nayebi and Ruhe [12] calculated the optimized
functionality for a certain app category. Nayebi and Ruhe [22] proposed an asymmetric
release planning to maximize satisfaction and minimize dissatisfaction by predicting
whether an app feature should be offered or not in the next release. These two studies both
use bi-criterion integer programming to solve the trade-off between feature values and
costs or satisfaction and dissatisfaction. However, the verification of the proposed models
uses app features extracted from app descriptions and how to extract features from user
reviews is not considered, so the authors are coming from the perspective of developers.
Our approach differs from theirs in mainly two aspects. First, we extract requirements
from reviews, thus looking at the issue from the user’s perspective. Second, we mainly
focus on analyzing and prioritizing user requirements, while not considering the cost to
implement the requirements.

Chen et al. [9] proposed AR-Miner for extracting informative reviews and prioritizing
reviews by the effective review ranking scheme after grouping reviews. The difference
is that we directly extract requirement phrases from reviews so we do not need to filter
out non-informative reviews first in which step loss may generate, i.e., the classification
step cannot assure one hundred percent accuracy. For the prioritizing step, AR-Miner
depends on the volume and rating for the reviews in each group and has flexible weighting
parameters to calculate the priority scores, while our approach considers more parameters
(e.g., sentiment analysis results) and applies machine learning algorithms to predict the
priority of a requirement. In addition, the true set for the ranking scheme of AR-Miner
is created by another user feedback forum with a user voting mechanism, while ours is
created by the changelogs, so if an app does not have such feedback forums, our method
can be useful.

Another model called CLAP, developed by Scalabrino et al. [14], also used machine
learning algorithms—random forest was used to predict the priority of review clusters.
CLAP first classifies reviews into seven more detailed categories and uses clustering
techniques to group similar reviews into clusters in each category. The truth set for
priority also uses changelogs, in which, the authors believe if a review is implemented by
developers in the next release, the review can be labeled as a high priority. We argue that
some important requirements will not be implemented immediately in the next release, i.e.,
the priority cannot be decided only by the changelogs for the very next release. Usually,
changelogs for one release are quite short as shown in Figure 1, as such, we consider the
historical changelogs for greater clarity. Another difference is that we focus on the priority
of requirement phrases while CLAP focuses on reviews in clusters, so the features used for
prediction are totally disparate.

Information 2021, 12, 177 5 of 24

2.4. Aspect Extraction from Reviews

Generally, aspect extraction is to extract meaningful keywords from reviews such as
words, phrases, or short sentences, which is also a widely investigated area. Chen et al. [9]
used topic modeling methods to extract topics for reviews and then grouped reviews with
the same topics. Gao et al. [8] proposed an IDEA model based on Online Latent Dirichlet
Allocation to identity topics about emerging issues in the current release of apps. Jo and
Oh [23] discovered aspects evaluated in reviews with their sentiments by adapting a topic
model named ASUM. These approaches all applied topic modeling methods to mining
review aspects; however, topics mainly contain a few separated words and can result in
confusion so developers can meet the trouble to immediately interpret the topics.

Guzman and Maalej [24] applied a collocation method to extract feature phrases in
reviews and analyzed their sentiments. Gu and Kim [13] proposed SUR-Miner to extract
aspect–opinion pairs based on the monotonous structure and semantics of reviews. The two
studies both extracted aspects at the phrase level and analyzed opinions about the aspects,
which has a better interpretation for the extracted information. The aspects extraction
method for our approach combines the mentioned studies, but besides sentiment analysis,
we analyze more features for extracted aspects (e.g., frequency for aspects and similarity
analysis between aspects) and the features are used to predict the priority of aspects; both
of the studies did not do this. Additionally, the true set creation for both studies is manually
judging the validity of aspects extracted, whereas we consider the changelogs in a more
objective way.

3. The Framework of the Approach

The main purpose of the study is to identify and extract high priority requirements
from the reviews for app maintenance and evolution. Therefore, we propose a novel
approach to extract phrases from reviews and use machine learning techniques to pre-
dict those high priority requirements. The overall architecture of the approach can be
diagrammed as Figure 2. The procedure of the approach is briefly summarized as the
following four main steps. (1) Preprocessing the reviews and removing the noise for the
stage of requirement phrase extraction. (2) Extracting requirement phrases in the reviews
by the collocation finding method. (3) Calculating and obtaining multi-dimensional fea-
tures for the extracted requirement phrases. (4) Training and testing different machine
learning models with the features for predicting whether the requirement phrases are
highly prioritized to implement. The details are explained in subsequent sub-sections.

Figure 2. The overall architecture of the approach.

Information 2021, 12, 177 6 of 24

3.1. Review Preprocessing

Figure 3 shows an example of raw reviews. The reviews mainly include the textual
titles (in bold font) and contents, and star ratings (totally five levels) for the apps. To
prevent the noise from interfering with the phrase extraction from the raw reviews, the
textual data are required to be preprocessed as follows:

Figure 3. An example of raw reviews.

1. Review filtering. Since all users can write reviews for apps, noise can arise. First,
we remove duplicated reviews. These duplicated reviews have a high possibility of
maliciously copying others’ reviews and do not represent the reviewers’ own opinions.
Since further steps include calculating the frequency of phrases and duplication will
affect the results, the duplicated ones are only considered to appear once. Second, we
analyze the language of the reviews by the LangDetect method and then deleting non-
English reviews. Due to different grammatical rules and processing methods existing
in different languages, it is not proper for preprocessing with mixed languages. The
LangDetect method is based on Google’s language-detection project, which gets over
99% precision for detecting 53 languages [25].

2. Sentence splitting and sentiment analysis. Usually, one review contains more than
one sentence, and each sentence can review different aspects of the apps and have
different opinions. In addition, although the review has a corresponding holistic star
rating, each sentence may not match the overall rating. Therefore, we split reviews
into sentences and apply sentiment analysis for each sentence with TextBlob. TextBlob
is a popular Python library for processing textual data such as sentiment analysis and
other NLP tasks [26]. The result of sentiment analysis is a polarity score ranged in
[−1, 1] where −1 means very negative and 1 means very positive. Meanwhile, we
mark each sentence in the review with the original overall star rating as a contrast to
the sentiment result since rating is also widely studied [6,27–29].

3. Part-of-Speech (POS) tagging and filtering. Nouns, adjectives, and verbs in reviews
are most likely to describe the functionalities of apps according to Guzman and
Maalej [24]. Hence, we apply the POS technique to tokenize sentences into words
and tag the POS for each word using the Natural Language ToolKit (NLTK). NLTK
is another famous NLP tool containing tokenization, stemming, tagging, and many
other libraries, and it is widely used in app review preprocessing [16,24,26]. Only the
words tagged as nouns, adjectives, or verbs are preserved for further steps.

4. Word formatting. English words that have different syntactical forms share equal se-
mantics (e.g., the tense of verbs, the comparative forms of adjectives, and the singular
or plural forms of nouns). To prevent words with the same meaning from interfering
with the frequency calculation due to their various forms, the Lemmatization module
in NLTK is used to restore the words to their original forms after tokenization. For
example, the verbs “takes” and “took” will be lemmatized to “take”. Besides, since
misspellings occur frequently in raw reviews, we apply a Python library AutoCorrect
to correct those words.

5. Stopword removal. Some words (e.g., “is”, “this”) have no specific meanings but
appear frequently in the reviews. These words are not helpful for app functionality
descriptions and could severely affect the results of phrase extraction. The NLTK

Information 2021, 12, 177 7 of 24

standard English stopwords corpus defines such words and we remove these words
from word tokens. Meanwhile, referring to the stopwords used for app reviews in
previous studies [8,24] and combining app and review characteristics, some stopwords
(e.g., the name of the apps and “please”, “plz”) are appended into the stopword list.

After all the steps in preprocessing, the raw reviews are formed into a table where a
sentence is a sample with its tokens, sentiment score, and rating as shown in Table 1.

3.2. Requirement Phrase Extraction

User requirements can generally be described in terms of phrases. For example, if a
user proposes a requirement about a specific user interface, “user interface” is a phrase
describing such requests. Because of the controversy of definition for the requirement
types, and the classification of reviews can produce certain errors, the request mining work
in this paper does not apply the classification process. In contrast, we focus on the user
requirement phrase extraction, namely, extracting related phrases about app features and
analyzing user opinions as well as the advantages and disadvantages of these features.

The textual reviews are constituted by words, and two adjacent words can compose a
bigram collocation. Because of the continuity of semantics, the occurrence of collocations
has a certain regularity [30,31]. Some collocations appear frequently, while others only
occur occasionally. Hence, the number of occurrences of collocations in the entire corpus
can be counted and those recurring collocations can be considered as meaningful phrases
for user requirements.

We apply the NLTK Collocation module to extract and analyze collocations. The
words in the collocations do not necessarily need to be adjacent, and several words can
separate the two words in a collocation, which is called skip-grams method [32]. Hence,
we adjust the length of a context window with the window_size parameter and the words
in the context windows can compose bigram collocations in pairs. The window_size is
experimentally set to 3, which means that a collocation can be composed of two words
separated by one word, considering that POS filtering is already applied and many invalid
words are removed.

Based on the number of overall reviews and collocations, collocations that appear less
than five times are filtered out in the whole collocation collection [24]. Those collocations
are presumed to occur by chance and have no specific meanings for user requirements.
In addition, at least one noun is necessary for the requirement phrases for the user re-
quirements should focus on nouns and without nouns, the requirements cannot point to
concrete objects. So, such collocations in the form of “adjective-adjective” or “verb-verb”
are removed. The experimental results show that with the filtering step, many meaningless
or equivocal collocations can be removed.

In this step, we not only extract collocations for each sentence preprocessed, but
summarize overall collocations, filter out unqualified collocations, and finally acquire the
requirement phrase collection. Table 1 shows an example of requirement phrase extraction
for sentences (noting, some collocations have been filtered out).

Table 1. An example of preprocessing results and requirement phrase extraction for sentences.

Sentence Automatically updates photos to cloud easy sharing and great organization.

Tokens ‘update’, ‘photo’, ‘cloud’, ‘easy’, ‘sharing’, ‘great’, ‘organization’

Sentiment score 0.6166666666666667

Rating 5.0

Requirement phrases (‘update’, ‘photo’), (‘photo’, ‘cloud’), (‘photo’, ‘easy’), (‘great’, ‘organization’)

3.3. Feature Extraction for Phrases

Each extracted requirement phrase has different features (e.g., occurrence frequency).
We conjecture that the features of high priority requirement phrases are different from

Information 2021, 12, 177 8 of 24

the features of low priority requirement phrases on account of a basic hypothesis that
those high priority requirements are generally discussed more frequently than with low
evaluations in user reviews [14,33,34]. Hence, features about requirement frequency and
evaluation can be extracted to predict requests in high priority.

In our work, a total of fourteen features were extracted for each requirement phrase
and summarized in Table 2 with their category, name, range, and example. The fourteen
features can mainly be divided into three categories: frequency, evaluation, and similarity. The
frequency and evaluation categories directly reflect the conjecture, while similarity considers
the different representations of the same requirement and it is an adjustment for the raw
frequency and evaluation. Details on features are clarified by category in sub-sections.

Table 2. Feature summary for prediction.

Category Name Range Example (for the Phrase “Save Photo”)

Frequency

f _grams

[0, 1]

0.008
f _w1 0.013
f _w2 0.091
f _ix 0.057
f _xi 0.376
f _io 0.049
f _oi 0.368

mention_rate 0.011

Evaluation rating [1, 5] 4.69
sentiment [−1, 1] 0.351

Similarity

simrate [0, 1] 0.050
mention_rate_s [0, 1] 0.177

rating_s [0, 5] 4.24
sentiment_s [−1, 1] 0.258

3.3.1. Features in Category Frequency

For category frequency, the rationale is that a high priority requirement should be
discussed in higher frequency. We calculate the frequency of a phrase from three levels—
word-level, phrase-level, and sentence-level:

(1) Word-level—The frequency of the first word (f _w1) and the second word (f _w2).
Since the phrase includes two words (the first word w1 and the second word w2), we
calculate individual word frequency by the count for the word divided by the total number
of words as in (1):

f _w(p) =
n(p(w))

Nw
(1)

where the parameter p means the feature is calculated for the phrase p, f _w means f _w1
or f _w2, n(p(w)) means n(p(w1)) or n(p(w2)) representing the count of the w1 or w2
of p in after preprocessing review corpora, and Nw means the total number of words in
the corpora.

(2) Phrase-level—The frequency of the phrase (f _grams), the frequency of the phrase
that contains w1 (f _ix) or w2 (f _xi), and the frequency of the phrase that only contains one
of the two words, i.e., containing the w1 but not w2 (f _io) and containing the w2 but not
w1 (f _oi). The algorithm is shown in (2):

f _p(p) =
n(p)
Np

(2)

where f _p means the five kinds of phrase-level frequency, n(p) means the count for the
corresponding phrase (the initial phrase p, phrase p_ix having w1, phrase p_xi having
w2, phrase p_io only having w1, phrase p_oi only having w2), and Np means the count
of all phrases (with repetition). For example, f _grams is calculated by the count for the

Information 2021, 12, 177 9 of 24

initial phrase p divided by Np, which considers the phrase as a whole part. The other four
consider individual words in the phrase— f _ix and f _xi reflect the occurrence ratio of w1 or
w2 in all phrases, whereas f _io and f _oi indicate the probability that the two words appear
independently in phrases. The correlations between the five features are shown in (3):

f _io = f _ix − f _grams, f _oi = f _xi − f _grams (3)

The phrase-level frequency is inspired by a classical phrase extraction algorithm—PMI
(Point-wise Mutual Information) [35] formulated in (4):

PMI(w1, w2) = ln
p(w1, w2)

p(w1)p(w2)
(4)

where p(w1, w2) means the probability of the co-occurrence of two words (in the same
phrase) whereas p(w1) and p(w2) means the probability of the two words appearing
independently. High PMI value means that the two words have a higher probability of
combining into a meaningful phrase. We do not use the PMI value as a feature but its
meta-data are more convenient and direct for model interpretation.

(3) Sentence-level—The frequency of how many sentences mention the phrase (mention_rate).
It is calculated as in (5):

metion_rate(p) =
n(s)
Ns

(5)

where n(s) means the count for the sentences that mention the phrase, and Ns means the
total count of all sentences.

3.3.2. Features in Category Evaluation

For category evaluation, the rationale is that a high priority requirement is generally
with lower user ratings and lower sentiments. We use both star ratings and sentiment
analysis results to present evaluation features:

(1) Average rating (rating). In the preprocessing step, we preserve the rating for
sentences and rating for a requirement phrase is the arithmetic mean of all the ratings of
sentences that mention the phrase as (6):

rating(p) =
∑

n(s)
i=1 r(pi)

n(s)
(6)

where r(pi) is the raw rating for the i-th sentence mentioning the phrase p, and n(s) means
the count for the sentences that mention the phrase.

(2) Average sentiment (sentiment). The method to compute this feature is like rating
except that we use the sentiment results for the sentences instead of raw ratings, which is
formulated in (7):

sentiment(p) =
∑

n(s)
i=1 s(pi)

n(s)
(7)

where s(pi) is the sentiment analysis result for the i-th sentence mentioning the phrase p.
The difference between rating and sentiment is that rating represents the autonomous

evaluation by users but the rating is for the whole review, not the sentence or the require-
ment phrase, whereas sentiment indicates the evaluation for the sentence so it is more
accurate for a concrete request but the sentiment is a statistical result from a predefined
sentiment corpus that may not represent the original evaluation of users. The two features
have their strengths and weaknesses, so we keep both.

3.3.3. Features in Category Similarity

Since the same requirement can be stated with different words and phrases, previous
studies use synonym skills to group phrases or sentences [14,15,24]. In this study, we used

Information 2021, 12, 177 10 of 24

a novel method to extract features regarding the similarity between phrases [36], as it is
another perspective to demonstrate the heat of discussion with certain requests considering
synonyms in reviews. The similarity is calculated by the cosine similarity between the
two phrases with a pre-trained word2vec model [37] trained by about 100 billion words
from the Google News dataset [38,39], which can reflect the semantic meanings of words
by their vector representations. The rationale is that we hypothesize that the requirement
phrases with the same semantics should be considered as one phrase and the frequency
and evaluation should be adjusted.

The features in category similarity are as follows:
(1) The rate of similar phrases (simrate). It is a feature summarizing how many phrases

have the same meaning to the phrase and is normalized to rate by dividing the count of
different phrases as in (8):

simrate(p) =
n(sp)
Npd

(8)

where n(sp) means the number of similar phrases of the phrase p, and Npd means the
count of all phrases (without repetition). High simrate indicates that the phrase has many
similar phrases and the corresponding requirement is hotly discussed.

(2) The frequency of how many sentences mention the phrase and their similar phrases
(mention_rate_s). It is the adaption of mention_rate that considering similar phrases and
calculated by the sum of all the mention_rate for all phrases having the same requirement
as in (9):

mention_rate_s(p) =
n(sp)

∑
i=1

mention_rate(pi) (9)

where pi means the i-th phrase similar with the phrase p.
(3) Adapted average ratings (rating_s) and sentiment (sentiment_s). Considering the

similar phrases, the average rating (or sentiment) is not for the identical phrase but all
similar phrases as in (10):

rating_s(p) =
∑

n(sp)
i=1 rating(pi)

n(sp)
, sentiment_s(p) =

∑
n(sp)
i=1 sentiment(pi)

n(sp)
(10)

After all the fourteen features are extracted, a matrix stores all the data with each row
as a sample for a requirement phrase corresponding to its 14 features, and each column
represents an individual feature.

3.4. High Priority Requirement Phrase Predicting

In this section, we applied supervised machine learning techniques to classify require-
ment phrases using the fourteen extracted features so that we can obtain high priority
requirement phrases automatically. Requirement phrases obtained can be roughly divided
into two categories—high priority requirement and low priority requirement. High priority
requirements are those features that will be implemented or those bugs that will be fixed
preferentially in the next few versions. We consider that requirement phrases covered in
changelogs are high priority requirements [8,14], since changelogs state the main addressed
requirements or bugs. The annotation of the priority for requirement phrases is detailed
and discussed in Section 4.2.

Since the features’ distribution varies in different apps (e.g., one app has a high
average rating but the other is not, so the rating feature is not on the same scale), rather
than training an integrated model with all features to predict all apps, we train a model for
each app with its own features. It is reasonable in actual app development that developers
focus on one app and determine its requirement.

Information 2021, 12, 177 11 of 24

In real-world datasets, high priority requests in reviews are generally less than low
priority requests. For classical classifier algorithms, different labeled samples need to be bal-
anced to have better training results [40]. Therefore, after all the requirement phrases being
annotated, a stratified random sampling method is applied to construct balanced samples,
which have an equal number of high priority and low priority requirement phrases.

Before classification model training, it is necessary to perform preprocessing work
for the feature matrix. The unprocessed data with differences in distribution may have
a greater impact on the prediction results. We adopt two steps to preprocess the feature
matrix with the preprocessing module in scikit-learn [41]: (1) Individual samples are L2
normalized to have the same unit norm. (2) Individual features are scaled to a standard
normal distribution.

Five classical supervised learning algorithms were trained with the default parameters
in scikit-learn using balanced samples to classify requirement phrases into high priority or
low priority: support vector machine (SVM), multiLayer perception (MLP), random forest
(RF), Gaussian naïve Bayes (GNB), and decision tree (DT). Performance results were compared
between algorithms. These methods are not randomly selected since previous studies have
proven the effectiveness of the techniques in review classification [9,11,15,42,43], fake review
detection [44], and product demands prediction [34], in which these studies likewise extract
features from reviews and automatically accomplish their prediction tasks.

To avoid overfitting, it is standard to split samples into a training set and a test set
where models are taught in the training set and tested with unseen data in the test set;
however, the random choice of splitting sets will have an unstable result, so cross-validation
was applied to evaluate the performance of the model. The samples were divided into
k-folds (in this paper, we experimentally set k to 10), one of which was in turn used as a
test set, and the remaining k-1 folds were used for training sets. After k-times of model
training, the average scores were computed as the final assessment of the model. Since
each cross-validation will randomly split samples with different folds, results can vary so
we repeated the cross-validation 30 times to obtain the average results of higher stability.
Moreover, to guarantee that each split has balanced samples, stratified sampling was used
in the splitting step.

4. Evaluation Method

Real-world reviews were used to evaluate the results of the approach for predicting
high priority requirement phrases. In this section, we explain the used datasets, how the
truth set was created, and the performance metrics. For specific evaluation purposes, we
focus on the following research questions (RQ):

• Effectiveness (RQ1): What is the performance of different machine learning tech-
niques when predicting high priority requirement phrases and which one is the best?

• Comparison (RQ2): How does our approach compare to other techniques for require-
ment extraction in app reviews?

• Model interpretation and optimization (RQ3): What is the importance of different
classification features? Is the basic hypothesis that high priority requirements are
generally discussed more frequently while being discussed less in low evaluations in
user reviews correct? How do we optimize the model?

4.1. Review Datasets

We mainly collected reviews from the Apple App Store. Given that the reviews and
changelogs for the apps are needed in pairs, the selected apps should meet the following
requirements: (1) The app should be active and currently being updated; (2) The number
of users and reviews of the app should be sufficient; (3) A detailed changelog statement is
required, simply stating “bug fixes and experience improvements” is not sufficient, and
any changelogs that do not specifically point to app functionalities are excluded.

The App Annie is a third-party app data analysis platform. It collects data from main-
stream app stores around the world, including app introductions, popularity rankings for a

Information 2021, 12, 177 12 of 24

certain period, user reviews, and ratings for the apps in each historical version. Considering
the popularity rankings, the number of reviews, and the quality of changelogs from this
platform, six apps from three categories in Apple App Store were chosen according to the
selecting criteria. In detail, the review data of the target apps from September to November
2019 in the region of the United States were retrieved, including the review titles, review
contents, app version numbers, user ratings, and historical changelogs. Table 3 shows the
subject apps with their names, categories, number of versions, and number of reviews.
Overall, 44,893 original reviews from 88 versions assure the generalization of our approach.
The review filtering step does not remove too many of the reviews (about 10%), so we
can infer that the raw reviews collected are not severely duplicated and generally written
in English.

Table 3. Summary of selected apps and reviews.

App Category #Versions #Reviews (Original) #Reviews (after Filtering)

TikTok Entertaiment 15 15,545 13,314
Netflix Entertainment 17 2544 2406

Google Photos Photo & Video 13 6794 5607
Snapchat Photo & Video 15 10,148 9622

Yelp Travel 13 5216 4902
Uber Travel 15 4646 4367

4.2. Truth Set Creation

It is essential to create a truth set for the extracted requirement phrases with their
priority to be implemented not only for the supervised learning procedure but for the
evaluation of the model. However, as is stated before, it is a challenge to get all the
requirement phrases annotated due to the large quantity of the phrases and the complexity
of priority. Changelogs are widely used as ground truth for issues or request identification
from user reviews [5,8,14] since emergent issues or requests will be implemented and
then logged as new functionalities in changelogs. We annotate those requirement phrases
covered in historical changelogs as high priority requirements for the whole review time
period. We do not distinguish reviews between versions because we only collect reviews
for a three month period and changelogs for each version are not sufficient to state all high
priority requests with only a few sentences. Using changelogs for just the next version
to annotate the high priority requests is unreasonable. As shown in Table 3, an app gets
a new release every two weeks on average, and some releases are routine bug fixes and
performance improvements, generally speaking; however, users still propose their requests
in reviews and it is unfair to conclude that there are no high priority requests for these
versions. In other words, request mining from reviews should also analyze reviews in the
previous few versions rather than the present version. Although we do not further explore
what the concrete time period proper for request mining is, we do analyze reviews in a
longer time period and annotate requests with their corresponding historical changelogs.

Normally, manual methods are used for annotating. For labeling high priority reviews,
annotators are required to compare reviews to changelogs sentence by sentence. In order to
label topics or phrases, annotators should first extract functionalities from changelogs and
then compare word by word. We explore a novel semi-automated method to reduce the
effort for manual annotation. Specifically, the first step is to extract functionality phrases
from changelogs. The same preprocessing and phrase extraction steps are executed for the
changelogs except that we no longer limit the frequency of occurrence for the phrases since
changelogs have fewer sentences than reviews and the same functionalities do not duplicate
as in reviews unless iterated many times. Then, two authors separately pick out those
phrases regarding app functionalities from all the extracted phrases, and proofread the
corresponding changelogs. All disagreements are resolved by two annotators until the two
authors reach an agreement. To distinguish the requirement phrases extracted from reviews,
we define the final selected phrases from changelogs as functionality phrases. We do not

Information 2021, 12, 177 13 of 24

directly manually extract functionality phrases from changelogs because it is necessary to
have the extracted functionality phrases use the same format as the requirement phrases so
that we can apply the same procedure as used in the reviews, which is more secure.

The second step is to link the requirement phrases with functionality phrases. Once
again, we applied the pre-trained Google News word2vec model to calculate the similarity
between requirement phrases and functionality phrases. We need to traverse all the
functionality phrases for each requirement phrase and obtain the maximum similarity and
the most similar phrase pair for the purpose of judging whether changelogs cover the
requirement phrases. If the maximum similarity exceeds the threshold, the two phrases are
considered to have the same meaning and the requirement phrase is annotated as a high
priority request.

Regarding the determination of the threshold, a sample of 200 pairs of phrases (the
most similar requirement phrase and functionality phrase pairs) are randomly selected for
experimentation, which is enough to reflect the population. The ground truth is created by
manually analyzing whether the two phrases are expressing the same or similar semantics by
the two annotators independently. Disagreements are likewise discussed and finally elimi-
nated. F-Measure [45] is the performance metric for the evaluation of different thresholds [5].
Since the range of similarity is [−1, 1], the thresholds were selected at an interval of 0.05,
and the F-Measure results under different thresholds are shown in Figure 4. According to
the results, the threshold is finally determined as 0.70, which is also used for the similarity
feature extraction.

Information 2021, 1, 0 13 of 25

functionality phrases for each requirement phrase and get the maximum similarity and
the most similar phrase pair for the purpose is to judge whether changelogs cover the
requirement phrases. If the maximum similarity exceeds the threshold, the two phrases are
considered to have the same meaning and the requirement phrase is annotated as a high
priority request.

Regarding the determination of the threshold, a sample of 200 pairs of phrases (the
most similar requirement phrase and functionality phrase pairs) are randomly selected
for experimentation, which is enough to reflect the population. The ground truth is
created by manually analyzing whether the two phrases are expressing the same or similar
semantics by the two annotators independently. Disagreements are likewise discussed
and finally eliminated. F-Measure [45] is the performance metric for the evaluation of
different thresholds [5]. Since the range of similarity is [-1,1], the thresholds are selected
at an interval of 0.05, and the F-Measure results under different thresholds are shown in
Figure 4. According to the results, the threshold is finally determined as 0.70, which is also
used for the similarity features extraction.

Figure 4. Results for the thresholds selected and corresponding F-Measure

Table 4 indicates the results for the truth set creation with the semi-automated ap-
proach and the percent of high priority requirement phrases is calculated. We believe that
Google Photos is more a tool-like app without too many reviews discussing the content
issues in apps like videos in TikTok, so the reviews are more related to suggestions for app
development. However, since the F-Measure is not that high to neglect the error for truth
set creation, we sample 1000 phrases for each app and double-check the veracity of the
automated annotation. The double-checked manual annotation results and the F-Measure
for the automated results are listed in Table 5. Since we need to construct a balanced sample
for each app to train the machine learning model, a proper number of 600 requirement
phrases (300 high priority requirement phrases and 300 low priority requirement phrases)
are sampled for each app from 1000 unbalanced manually annotated phrases.

Figure 4. Results for the thresholds selected and corresponding F-Measure.

Table 4 indicates the results for the truth set creation with the semi-automated ap-
proach and the percent of high priority requirement phrases is calculated. We believe that
Google Photos is more of a tool-like app without too many reviews discussing the content
issues in apps with videos, such as TikTok, so the reviews relate more to suggestions
for app development. However, since the F-Measure is not high enough to neglect the
error for truth set creation, we sampled 1000 phrases for each app and double-check the
veracity of the automated annotation. The double-checked manual annotation results and
the F-Measure for the automated results are listed in Table 5. Since we need to construct
a balanced sample for each app to train the machine learning model, a proper number
of 600 requirement phrases (300 high priority requirement phrases and 300 low prior-

Information 2021, 12, 177 14 of 24

ity requirement phrases) were sampled for each app from 1000 unbalanced manually
annotated phrases.

Table 4. Results for semi-automated methods for truth set creation.

App #Requirement Phrases #High Priority Percent

TikTok 6092 1291 21.2%
Netflix 1195 374 31.3%

Google Photos 1679 841 50.1%
Snapchat 6460 2130 33.0%

Yelp 2196 629 28.6%
Uber 3072 981 31.9%

Table 5. Double-checked results of sampled 1000 phrases for each app.

App #High Priority F-Measure

TikTok 330 0.596
Netflix 387 0.657

Google Photos 577 0.751
Snapchat 439 0.703

Yelp 402 0.679
Uber 436 0.637

4.3. Performance Metrics

A total of five methods were used to evaluate the effectiveness of our approach to
predict high priority requirement phrases compared with the truth set: accuracy, precision,
recall, F-Measure, and ROC_AUC, which are widely used in classification tasks [14,46].
The calculations of the first four methods are formulated in (11), where TP means that
the requirement phrase is a high priority and was identified as a high priority, FP means
that the phrase is a low priority but was identified as a high priority, TN means that the
phrase is a low priority and was identified truly as a low priority, and FN represents that
the phrase is a high priority but was identified as a low priority.

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP
TP + FP

Recall =
TP

TP + FN
, F − Measure =

2 ∗ Precision ∗ Recall
Precision + Recall

(11)

Accuracy represents how the model predicts the results and has a reliable validity on
balanced samples. Precision is the proportion of correctly predicted samples among all the
samples identified as high priority (low priority can be wrongly identified as high priority,
FP). Precision represents how the model truly identifies high priority requests. Recall is
the proportion of correctly identified samples in all true high priority requests (the true
high priority samples may not be classified as high priority, FN). Recall represents how
the model identifies all the priority requests. The F-Measure is the harmonic mean of both
precision and recall, which can represent both precision and recall. ROC_AUC means the
area under ROC curve and the value represents “the probability that a randomly chosen
positive example is ranked higher than a randomly chosen negative example [47]”.

5. Results

In this part, results for the predicting task are presented and the three main research
questions are deeply analyzed and discussed.

Information 2021, 12, 177 15 of 24

5.1. Effectiveness (RQ1)

Table 6 reports the performance results for the five machine learning methods set
with their default parameters in scikit-learn. The initial prediction results are acceptable
for averagely about 60% score in all performance metrics. There are some differences
between apps due to app characteristics, but overall, the results are stable. The results
preliminarily verify the effectiveness of these supervised learning techniques trained with
the fourteen features.

For techniques comparison, in six apps × five performance metrics (a total of 30
optimal results): RF achieves optimal performance 20 times; SVM achieves optimal perfor-
mance 6 times; MLP achieves optimal performance 3 times; GNB only achieves optimal
performance 1 time. For individual performance metrics: RF achieves optimal accuracy on
five apps, optimal precision on four apps, optimal recall on three apps, optimal F-Measure
on four apps, and optimal ROC_AUC on four apps, while the other five models only
achieve the best results once, very infrequently.

Table 6. Performance results for different methods (the results styled in bold font are the optimal performances for the same
evaluation methods).

App Method Accuracy Precision Recall F-Measure ROC_AUC

TikTok

SVM 0.602 0.580 0.745 0.650 0.623
MLP 0.577 0.571 0.633 0.598 0.621
RF 0.626 0.623 0.646 0.631 0.674

GNB 0.582 0.565 0.723 0.632 0.596
DT 0.583 0.587 0.569 0.575 0.583

Netflix

SVM 0.647 0.688 0.538 0.600 0.677
MLP 0.663 0.678 0.627 0.649 0.708
RF 0.685 0.689 0.678 0.681 0.754

GNB 0.620 0.681 0.456 0.542 0.635
DT 0.624 0.627 0.620 0.621 0.624

Google Photos

SVM 0.578 0.658 0.330 0.436 0.648
MLP 0.590 0.595 0.575 0.581 0.639
RF 0.613 0.621 0.590 0.602 0.654

GNB 0.572 0.644 0.327 0.429 0.592
DT 0.571 0.573 0.574 0.571 0.571

Snapchat

SVM 0.591 0.577 0.699 0.630 0.644
MLP 0.593 0.590 0.620 0.602 0.628
RF 0.605 0.605 0.608 0.604 0.637

GNB 0.569 0.578 0.530 0.541 0.598
DT 0.554 0.556 0.552 0.551 0.554

Yelp

SVM 0.616 0.684 0.436 0.527 0.649
MLP 0.629 0.646 0.577 0.607 0.690
RF 0.626 0.632 0.611 0.618 0.677

GNB 0.590 0.705 0.315 0.430 0.620
DT 0.563 0.565 0.565 0.562 0.563

Uber

SVM 0.553 0.570 0.434 0.488 0.570
MLP 0.576 0.577 0.575 0.573 0.611
RF 0.580 0.582 0.572 0.574 0.616

GNB 0.532 0.572 0.266 0.358 0.577
DT 0.532 0.533 0.527 0.528 0.532

Average

SVM 0.598 0.626 0.530 0.555 0.635
MLP 0.605 0.610 0.601 0.602 0.650
RF 0.623 0.625 0.618 0.618 0.669

GNB 0.578 0.624 0.436 0.489 0.600
DT 0.571 0.574 0.568 0.568 0.571

Information 2021, 12, 177 16 of 24

On average, RF achieves a +1∼2 percent in terms of all performance metrics except
precision where the results for SVM, RF, and GNB are quite similar with only a 0.1 percent
difference. Though the superiority is not that huge, we conclude that RF has the best
performance in the predicting task and the following model interpretation and optimization
are for the RF model only.

5.2. Comparison (RQ2)

As far as we know, the research that is most relevant to us is the IDEA framework [8].
The authors intended to detect emerging issues/topics from app reviews, and the emerging
issues are basically equal to our defined high priority requests, because the same method is
used for truth set creation, in which IDEA extracts bug fixes and request improvements
from changelogs as emerging issues, which is consistent with the definition of high priority
requirements. While IDEA applies adapted topic modeling methods that outperform other
topic modeling methods, we extracted fourteen features and trained RF models to predict
the issues.

We run our method on the IDEA dataset, including the same required textual reviews,
ratings, and changelogs for another six apps (four from Google Play and two from the
Apple App Store). The functionality phrases were manually extracted from changelogs by
the authors so as to reduce the work for preprocessing changelogs and annotation. While
IDEA extracts issues both in the phrase level and the sentence level, we focus on the phrase
level, and we compare our prediction performance only on the phrase level.

The quantitative results shown in Table 7 confirm the overwhelming superiority for
RF, and that no matter whether in terms of individual apps or on average, the performance
results for RF are much better than IDEA, and RF is more stable and robust for different
apps. The RF model can also fit the Android apps in Google Play, which expands the
generalization of our approach.

Table 7. Performance comparison with IDEA (the number under app name is the total number
of reviews).

Platform App Method Precision Recall F-Measure

Google Play

Clean Master IDEA 0.677 0.318 0.431
(44,327) RF 0.801 0.718 0.755

eBay IDEA 0.229 0.251 0.227
(35,483) RF 0.731 0.609 0.662

SwiftKey IDEA 0.517 0.653 0.523
(21,009) RF 0.804 0.748 0.774

Viber IDEA 0.625 0.340 0.440
(17,126) RF 0.743 0.741 0.741

Apple App Store

NOAA Radar IDEA 0.571 0.497 0.531
(8363) RF 0.768 0.741 0.751

YouTube IDEA 0.592 0.472 0.523
(37,718) RF 0.677 0.666 0.669

Average IDEA 0.534 0.422 0.446
RF 0.754 0.704 0.725

In this section, we discuss the reason why RF has a better performance than IDEA.
First, IDEA detects emerging issues by the discovery of distribution anomalies in topics
between versions. IDEA can identify topic discrepancies between versions, but there is no
evidence suggesting a strong connection between user requests and anomalous topics. The
discrepancies may come from different users, content, and other non-version related factors.
Second, the topic modeling methods are based on the frequency distribution of words,
which is considered to be subset features of RF. The sentiment features in RF contribute a lot
to the prediction, whereas in IDEA, sentiment analysis is just used for topic interpretation.

Information 2021, 12, 177 17 of 24

Lastly, RF considers the differences between apps and fit estimators for each app, while
IDEA applies the same parameters for different apps.

For qualitative results, we present and compare the predicted results for YouTube
with the two approaches. We randomly sampled 10 identified phrases for each method
and made sure there was no duplicated request; the results are listed in Table 8. Though
contingency exists, we can see that both the methods can identify high priority requests
quite well and some requests are both identified by both methods. For example, the
changelog states “Added slide over and split view support” and IDEA identifies “split
screen”, whereas RF predicts “split view”.

Table 8. Qualitatively comparison with IDEA (the phrases styled in bold font represent the correctly
identified high priority requirements).

Method Examples for High Priority Requirement Phrases

IDEA description box; user interface; split screen; battery drain; force quit; sound
quality; home button; notification center; playback error; comment section

RF comment section; split view; middle screen; auto play; video playlist; keep
mess; bring keyboard; video description; view reply; drain battery

For one correctly predicted requirement, an example for positive sentences of “split
view” is “Well, I have added a star because they have added slide over and split view”,
which means that the user is satisfied with the new feature. For negative evaluations,
one user reviews “But at that point I can’t write comment in split view”, representing
the request of improvement for the split view feature. For one incorrectly predicted
requirement, “bring keyboard” in a raw review is “if you do not press it exactly in the right
spot, it will automatically bring up the keyboard to write a comment”. There is no positive
review for the requirement. We can believe that it is just a mis-operation for a few users
and the developers consider it a low priority.

5.3. Model Interpretation and Optimization (RQ3)

This section mainly discusses why random forest works for the predicting task by
analyzing the fourteen features, and then models are optimized by the interpretation results.

5.3.1. Model Interpretation

Random forest is an ensemble method that works by constructing multiple decision
trees from bootstrap samples in the training set and the final result is voted by all trees,
which can improve robustness over single estimators [48]. In each decision tree, yes/no
questions about features (e.g., is rating > 3.5?) are asked for each input sample (tree split),
and the answers decide the classification result for the sample. Tree-based estimators can
compute the impurity-based feature importance by calculating the frequency of the feature
used in the tree split. High frequency shows that the feature is relatively more important.

We first analyze the importance of features to interpret the model, which is calculated
by scikit-learn embedded model parameter f eature_importances_ for RF. The feature im-
portance to predict high priority requests for each app is listed in Figure 5, where the value
of the y-axis means the importance percent of the feature and the x-axis means the features.
As shown in the figures, though there are differences between apps, common results can be
summarized. On average, the three most important features are simrate (9.0%), sentiment_s
(8.9%), and mention_rate_s (8.8%). In individual apps, the latter three features are always in
the top five most important features. The results indicate that the frequency and evaluation
features in the similarity category work better than concrete words/phrases frequency
and sentiments for individual phrases. In other words, the group technique or similarity
methods applied to determine the semantic meaning between phrases and sentences is
more appropriate and effective since users can use a varied vocabulary in their feature
requests. Moreover, sentiment_s/sentiment has higher importance than rating_s/rating

Information 2021, 12, 177 18 of 24

in the six apps, indicating that the sentiment analysis for the individual sentences makes
sense in contrast to the original rating for the whole reviews. Users do propose and discuss
more than one request with different sentiments suggesting that the overall rating will mix
up opinions, so splitting up the sentences is more scientific.

Figure 5. Feature importance for each app.

The three most important features are consistent with our basic hypothesis that fre-
quency and evaluation will affect a request’s priority when deciding the features to extract;
thus, further exploration for the three features was conducted to examine whether there
are differences between high/low priority requirement phrases. We first plot the distri-
bution of the features categorized by the priority with the enhanced boxplot provided by
Seaborn [49]. Figure 6 exhibits the plot results where 1.0 for the priority means high priority
phrases whereas 0.0 means the low priority. It can be roughly inferred that the average
mention_rate_s and simrate in high priority are greater than in low priority, especially for
Google Photos, Netflix, and Uber. High priority requests have wider ranges and more
phrase samples with the greater mention_rate_s and simrate, while low priority requests
have larger quantities but with a few users reviewing the same requests. Additionally, the
ranges for sentiment_s in low priority are wider than in high priority, with many samples

Information 2021, 12, 177 19 of 24

having extreme high/low sentiment_s. The reason could be that low priority requests of
extremely high or low average evaluation may have only a few mentions by users, so these
requirements are not regarded as high priority requests. Moreover, the distribution of the
three most important features varies for different apps, so it is necessary to have learning
models for each app.

Figure 6. Enhanced boxplot for the three most important features in each app.

Statistical tests were applied to analyze whether the differences of the three features
between high and low priority are statistically significant. Since the number of samples
is not equal, we applied the Mann–Whitney U test [50] (two-sided) and the results are
listed in Table 9. At the alpha level of 0.001, mention_rate_s and simrate in high priority
are significantly greater than in low priority. Except for Google Photos and Snapchat,
sentiment_s in high priority is significantly greater than in low priority.

Information 2021, 12, 177 20 of 24

Table 9. Mann–Whitney U test results for the features in high/low priority.

App mention_rate_s simrate sentiment_s

TikTok U = 3.41 × 105, *** U = 3.37 × 106, *** U = 3.77 × 106, ***
Netflix U = 2.56 × 105, *** U = 2.52 × 105, *** U = 1.79 × 105, ***

Google Photos U = 5.66 × 105, *** U = 5.55 × 105, *** U = 3.39 × 105

Snapchat U = 6.48 × 106, *** U = 6.42 × 106, *** U = 4.46 × 106, *
Yelp U = 6.68 × 105, *** U = 6.52 × 105, *** U = 5.85 × 105, ***
Uber U = 1.49 × 106, *** U = 1.49 × 106, *** U = 1.10 × 106, ***

p-value: *** < 0.001, * < 0.05.

The results partially support our hypothesis that high priority requests have a higher
probability to be addressed by more users. However, the evaluation of the high priority
requests disobeys our conjecture and it seems that requests with a higher evaluation on
average are prioritized. We discuss the reason as follows: (1) Reviews with several versions
were used, so the requests proposed in early versions may have been implemented. Users
who proposed the requests before add new reviews to praise the newly implemented
functionality and the related requests gain evaluation feedback. (2) The new functionality
attracts and satisfies new users who also give positive evaluations. Overall, the average
sentiment for the previously proposed requests is balanced and are even better than the
requests that have not been implemented (low priority). This would also explain why
the sentiment_s in high priority is dispersed with a narrower distribution. (3) Some
low evaluation requests may be ignored by developers due to effort devotion and many
other reasons so these requests are marked as impractical requests. Though not matching
our conjecture, the differences exist and the sentiment_s is an important feature for the
prediction task. However, the results also remind us that one of the limitations of the
approach is that the high priority request detection is not time-effective over versions. The
developers should pay attention to the identified requests and seek further confirmation
on whether the requests have been implemented or need further improvement.

5.3.2. Model Optimization

Feature selection is an effective method to optimize the learning model that can help
removing irrelevant and redundant features and can improve prediction performance,
reduce training effort, and facilitate model interpretation [51]. Here, we applied a widely
used recursive feature elimination [52,53] method to select features. Specifically, RF was
initially trained with all features, then, the feature importance of the model was analyzed
and the least important feature was eliminated. The rest of the features were used to
train a new RF model; the procedure was recursive until there was only one feature
left. The same cross-validation method was applied to evaluate the performance of each
estimator and figure out how many and which features can reach the best performance; we
focused on the F-Measure since different performance metrics can lead to different selection
results, and F-Measure is an appropriate choice for our study. For six apps, the optimal
number of features is different, ranging from 3 to 14. However, the three most important
features were all selected and every feature was selected at least one time as the optimal
estimator. The results show that, although there are differences in the apps, the same three
important features can improve the performance of the estimator; therefore, no feature is
fully abundant for the prediction, demonstrating the effectiveness of feature extraction.

With the optimal features, we further tuned the hyper-parameters using the most
widely used method—grid search [54,55], which exhaustively searches candidates from
a grid of pre-defined parameters and compares the performance of estimators with dif-
ferent parameters. For the RF model, we mainly tuned four parameters—max_features,
n_estimators, min_samples_split, and min_samples_leaf according to the characteristics
of RF [48,56] and the API of RF in scikit-learn. max_features is the number of features to
consider when the tree looks for the best split. n_estimators means the number of trees in
the forest. min_samples_split represents the minimum samples used to split at an internal

Information 2021, 12, 177 21 of 24

node. min_samples_leaf defines the minimum samples at a leaf node. Since our approach
is intended to not only predict as many high priority requests in reviews as possible (high
recall), but also assure that as many of the predicted requests are true high priority requests
as possible (high precision), the comprehensive F-Measure is thus the most appropriate. We
optimized for the F-Measure only so that the tuned hyper-parameters can obtain the best
F-Measure for the model. Table 10 enumerates the performance after optimization. After
optimization, the average accuracy, precision, recall, F-Measure, and ROC_AUC for the
prediction task are 67.6%, 67.3%, 69.2%, 68.0% and 71.4%, respectively. The improvement
is slight with about +3% to +12% and the recall is improved mostly by an average of 7.4%.

Table 10. Performance results after optimization (the number in brackets represents the improvement).

App Accuracy Precision Recall F-Measure ROC_AUC

TikTok 0.702 (+0.076) 0.707 (+0.084) 0.710 (+0.064) 0.705 (+0.074) 0.728 (+0.054)
Netflix 0.722 (+0.037) 0.714 (+0.025) 0.747 (+0.069) 0.728 (+0.047) 0.785 (+0.031)

Google Photos 0.677 (+0.064) 0.672 (+0.051) 0.687 (+0.097) 0.677 (+0.075) 0.706 (+0.052)
Snapchat 0.642 (+0.037) 0.741 (+0.036) 0.650 (+0.042) 0.644 (+0.040) 0.674 (+0.037)

Yelp 0.697 (+0.071) 0.689 (+0.057) 0.730 (+0.119) 0.707 (+0.089) 0.746 (+0.069)
Uber 0.617 (+0.037) 0.617 (+0.035) 0.627 (+0.055) 0.620 (+0.046) 0.642 (+0.026)

Average 0.676 (+0.054) 0.673 (+0.048) 0.692 (+0.074) 0.680 (+0.062) 0.714 (+0.045)

Classifying reviews in the categories of feature requests is a more complex problem
than other categories [15], let alone the priority of features. We believe that there are
overlaps in features between high/low priority requests and it is difficult to obtain better
results based on the approach; however, the wrongly detected requests also have meaning,
because these requests have the same feature distribution with high priority requests,
and the conflict may come from the truth set creation with changelogs or the developers
neglecting some user requests.

6. Threats to Validity

Threats to construct validity mainly refer to the truth set creation, where we used
word2vec model to calculate the similarity between requirement phrases and functionality
phrases, which are manually selected by two authors. Different word2vec models and
annotators can lead to bias. We alleviate the threat by applying the widely used Google
News word2vec model and the manual annotation rules are specified, including conflict
solving. The annotators are not required to be experts at app development, since the most
important work for annotators is to understand the changelogs and judge whether the
extracted phrases are meaningful functionalities. The annotation work is without request
estimation for high or low priority, which is relatively objective. Finally, we double-check
the semi-manual annotation with the word2vec model by sampling results and examining
the accuracy.

Another threat is that the requirement phrases extracted from the reviews may be
blended with some meaningless phrases or others, which can decrease the performance for
the predicting task and increase the burden for result interpretation. In order to mitigate
the threat, we applied a series of preprocessing steps to remove noise before collocation
and POS techniques to filter out meaningless phrases; however, the probability still exists
since we do not examine which preprocessing methods can lead to the best results, but
instead apply general approaches.

For internal validity, the method of truth set creation has a basic requirement, which
is that the apps’ changelogs cover sufficient high priority requests. These requests are
derived from the changelogs released by the app development teams. However, the
comprehensiveness and accuracy of changelogs are unstable, and usually, the changelog
for one release is not detailed enough with only one or two sentences. How the changelogs
state the new functionalities will also seriously affect the request annotating stage. For

Information 2021, 12, 177 22 of 24

this, instead of analyzing reviews version by version, we concentrate on all the collected
reviews with corresponding historical changelogs; the cost is that the requests detected
may have been implemented in previous versions.

The final chosen machine learning method is RF since RF obtains relatively better
results but the differences are not significant, as other models also have good results. We
cannot exclude that there are more proper algorithms or hyper-parameter settings for the
task that can achieve better performance. It is a very complex process for the releasing
plan and the prediction results for high priority requests can only be considered as a
recommendation for developers.

Threats to external validity relate the generalization of our approach and findings.
Since our approach successfully runs on different apps from different categories and
platforms, generalization stands; however, whether the approach and findings can be
generalized to apps in other categories (e.g., games), or apps with insufficient reviews,
was not investigated in this study. Additionally, since the RF estimator was trained for
individual apps, the model cannot be applied to different apps.

7. Conclusions

This study proposes a novel approach for mining high priority requirements for apps
from user reviews. We used real-world reviews to verify the effectiveness of the method.
When compared to the state-of-the-art methods, our approach performed better. This
method can be quickly applied to app designers and developers to schedule the release
plan for apps. With sufficient user reviews, the approach can automatically analyze a large
number of reviews, avoiding unnecessary time-consuming efforts by manual methods to
extract high priority user requirements.

A suggested future work is to focus on analyzing phrase features in more dimensions
or implementing other classification models to improve the performance of predicting.
More specific changelogs and larger review datasets for a longer time period can be
obtained to find the most proper time period for request mining. Predicting high priority
requests for each version and then formulating the trends for the app requests between
versions is another direction.

Author Contributions: Conceptualization, C.Y. (Cheng Yang) and L.W.; methodology, C.Y. (Cheng
Yang); software, L.W.; validation, C.Y. (Chunyang Yu) and Y.Z.; writing—original draft preparation,
L.W.; writing—review and editing, L.W. and C.Y. (Chunyang Yu). All authors have read and agreed
to the published version of the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China (No.
62002321), and Zhejiang Provincial Natural Science Foundation of China (No. Y18E050014).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to privacy or ethical.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Genc-Nayebi, N.; Abran, A. A systematic literature review: Opinion mining studies from mobile app store user reviews. J. Syst.

Softw. 2017, 125, 207–219. [CrossRef]
2. Xie, H.; Yang, J.; Chang, C.K.; Liu, L. A statistical analysis approach to predict user’s changing requirements for software service

evolution. J. Syst. Softw. 2017, 132, 147–164. [CrossRef]
3. Jabangwe, R.; Edison, H.; Duc, A.N. Software engineering process models for mobile app development: A systematic literature

review. J. Syst. Softw. 2018, 145, 98–111. [CrossRef]
4. Jha, A.K.; Lee, S.; Lee, W.J. An empirical study of configuration changes and adoption in Android apps. J. Syst. Softw. 2019,

156, 164–180. [CrossRef]

http://doi.org/10.1016/j.jss.2016.11.027
http://dx.doi.org/10.1016/j.jss.2017.06.071
http://dx.doi.org/10.1016/j.jss.2018.08.028
http://dx.doi.org/10.1016/j.jss.2019.06.095

Information 2021, 12, 177 23 of 24

5. Palomba, F.; Linares-Vásquez, M.; Bavota, G.; Oliveto, R.; Penta, M.D.; Poshyvanyk, D.; Lucia, A.D. Crowdsourcing user reviews
to support the evolution of mobile apps. J. Syst. Softw. 2018, 137, 143–162. [CrossRef]

6. Noei, E.; Zhang, F.; Wang, S.; Zou, Y. Towards prioritizing user-related issue reports of mobile applications. Empir. Softw. Eng.
2019, 24, 1964–1996. [CrossRef]

7. Pagano, D.; Maalej, W. User feedback in the Appstore: An empirical study. In Proceedings of the 2013 21st IEEE International
Requirements Engineering Conference (RE), Rio de Janeiro, Brazil, 15–19 July 2013; pp. 125–134.

8. Gao, C.; Zeng, J.; Lyu, M.R.; King, I. Online app review analysis for identifying emerging issues. In Proceedings of the 40th
International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018; pp. 48–58.

9. Chen, N.; Lin, J.; Hoi, S.C.; Xiao, X.; Zhang, B. AR-miner: Mining informative reviews for developers from mobile app marketplace.
In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 767–778.

10. Li, C.; Huang, L.; Ge, J.; Luo, B.; Ng, V. Automatically classifying user requests in crowdsourcing requirements engineering.
J. Syst. Softw. 2018, 138, 108–123. [CrossRef]

11. Suprayogi, E.; Budi, I.; Mahendra, R. Information extraction for mobile application user review. In Proceedings of the 2018
International Conference on Advanced Computer Science and Information Systems (ICACSIS), Yogyakarta, Indonesia, 27–28
October 2018; pp. 343–348.

12. Nayebi, M.; Ruhe, G. Optimized functionality for super mobile apps. In Proceedings of the 2017 IEEE 25th International
Requirements Engineering Conference (RE), Lisbon, Portugal, 4–8 September 2017; pp. 388–393.

13. Gu, X.; Kim, S. What parts of your apps are loved by users? In Proceedings of the 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), Lincoln, NE, USA, 9–13 November 2015; pp. 760–770.

14. Scalabrino, S.; Bavota, G.; Russo, B.; Penta, M.D.; Oliveto, R. Listening to the crowd for the release planning of mobile Apps.
IEEE Trans. Softw. Eng. 2019, 45, 68–86. [CrossRef]

15. Panichella, S.; Di Sorbo, A.; Guzman, E.; Visaggio, C.A.; Canfora, G.; Gall, H.C. How can I improve my App? Classifying
user reviews for software maintenance and evolution. In Proceedings of the 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Bremen, Germany, 29 September–1 October 2015; pp. 281–290.

16. Maalej, W.; Kurtanović, Z.; Nabil, H.; Stanik, C. On the automatic classification of App reviews. Requir. Eng. 2016, 21, 311–331.
[CrossRef]

17. McIlroy, S.; Ali, N.; Khalid, H.; Hassan, A.E. Analyzing and automatically labelling the types of user issues that are raised in
mobile app reviews. Empir. Softw. Eng. 2016, 21, 1067–1106. [CrossRef]

18. Guzman, E.; El-Haliby, M.; Bruegge, B. Ensemble methods for App review classification: An approach for software evolution.
In Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Lincoln, NE,
USA, 9–13 November 2015; pp. 771–776.

19. Jha, N.; Mahmoud, A. Mining non-functional requirements from App Store reviews. Empir. Softw. Eng. 2019, 24, 3659–3695.
[CrossRef]

20. Cambria, E.; Schuller, B.; Xia, Y.; Havasi, C. New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 2013,
28, 15–21. [CrossRef]

21. Ranjan, S.; Mishra, S. Comparative sentiment analysis of App reviews. In Proceedings of the 2020 11th International Conference
on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–7.

22. Nayebi, M.; Ruhe, G. Asymmetric release planning: Compromising satisfaction against dissatisfaction. IEEE Trans. Softw. Eng.
2019, 45, 839–857. [CrossRef]

23. Jo, Y.; Oh, A.H. Aspect and sentiment unification model for online review analysis. In Proceedings of the Fourth ACM
International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011; pp. 815–824.

24. Guzman, E.; Maalej, W. How do users like this feature? a fine grained sentiment analysis of app reviews. In Proceedings of the
2014 IEEE 22nd International Requirements Engineering Conference (RE), Karlskrona, Sweden, 25–29 August 2014; pp. 153–162.

25. Shuyo, N. Language Detection Library for JAVA. Available online: https://github.com/shuyo/language-detection (accessed on
19 April 2021).

26. Palomba, F.; Salza, P.; Ciurumelea, A.; Panichella, S.; Gall, H.; Ferrucci, F.; De Lucia, A. Recommending and localizing change
requests for mobile apps based on user reviews. In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), Buenos Aires, Argentina, 20–28 May 2017; pp. 106–117.

27. Sarro, F.; Al-Subaihin, A.A.; Harman, M.; Jia, Y.; Martin, W.; Zhang, Y. Feature lifecycles as they spread, migrate, remain, and
die in app stores. In Proceedings of the 2015 IEEE 23rd International Requirements Engineering Conference (RE), Ottawa, ON,
Canada, 24–28 August 2015; pp. 76–85.

28. Banerjee, S.; Bhattacharyya, S.; Bose, I. Whose online reviews to trust? Understanding reviewer trustworthiness and its impact on
business. Decis. Support Syst. 2017, 96, 17–26. [CrossRef]

29. Zhang, J.; Wang, Y.; Xie, T. Software feature refinement prioritization based on online user review mining. Inf. Softw. Technol.
2019, 108, 30–34. [CrossRef]

30. Manning, C.; Schutze, H. Foundations of Statistical Natural Language Processing; MIT Press: Cambridge, MA, USA, 1999.
31. Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly

Media, Inc.: Newton, MA, USA, 2009.
32. Cheng, W.; Greaves, C.; Warren, M. From n-gram to skipgram to concgram. Int. J. Corpus Linguist. 2006, 11, 411–433. [CrossRef]

http://dx.doi.org/10.1016/j.jss.2017.11.043
http://dx.doi.org/10.1007/s10664-019-09684-y
http://dx.doi.org/10.1016/j.jss.2017.12.028
http://dx.doi.org/10.1109/TSE.2017.2759112
http://dx.doi.org/10.1007/s00766-016-0251-9
http://dx.doi.org/10.1007/s10664-015-9375-7
http://dx.doi.org/10.1007/s10664-019-09716-7
http://dx.doi.org/10.1109/MIS.2013.30
http://dx.doi.org/10.1109/TSE.2018.2810895
https://github.com/shuyo/language-detection
http://dx.doi.org/10.1016/j.dss.2017.01.006
http://dx.doi.org/10.1016/j.infsof.2018.12.002
http://dx.doi.org/10.1075/ijcl.11.4.04che

Information 2021, 12, 177 24 of 24

33. Liang, T.P.; Li, X.; Yang, C.T.; Wang, M. What in consumer reviews affects the sales of mobile apps: A multifacet sentiment
analysis approach. Int. J. Electron. Commer. 2015, 20, 236–260. [CrossRef]

34. Chong, A.Y.L.; Ch’ng, E.; Liu, M.J.; Li, B. Predicting consumer product demands via Big Data: the roles of online promotional
marketing and online reviews. Int. J. Prod. Res. 2017, 55, 5142–5156. [CrossRef]

35. Bouma, G. Normalized (pointwise) mutual information in collocation extraction. In Proceedings of the Biennial GSCL Conference,
Potsdam, Germany, 30 September 2009; pp. 31–40.

36. Islam, A.; Inkpen, D. Semantic text similarity using corpus-based word similarity and string similarity. ACM Trans. Knowl.
Discov. Data 2008, 2, 1–25. [CrossRef]

37. Rehurek, R.; Sojka, P. Software framework for topic modelling with large corpora. In Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks, Valletta, Malta, 22 May 2010; pp. 45–50.

38. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations ofwords and phrases and their composition-
ality. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013;
pp. 1–9.

39. Mikolov, T.; Yih, W.T.; Zweig, G. Linguistic regularities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Atlanta, GA, USA, 9–14 June 2013; pp. 746–751.

40. Chawla, N.V.; Japkowicz, N.; Kotcz, A. Special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl. 2004,
6, 1–6. [CrossRef]

41. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

42. Maalej, W.; Nabil, H. Bug report, feature request, or simply praise? on automatically classifying app reviews. In Proceedings
of the 2015 IEEE 23rd International Requirements Engineering Conference (RE), Ottawa, ON, Canada, 24–28 August 2015;
pp. 116–125.

43. Wang, C.; Zhang, F.; Liang, P.; Daneva, M.; van Sinderen, M. Can app changelogs improve requirements classification from
app reviews? an exploratory study. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, Oulu, Finland, 11–12 October 2018; pp. 1–4.

44. Martens, D.; Maalej, W. Towards understanding and detecting fake reviews in app stores. Empir. Softw. Eng. 2019, 24, 3316–3355.
[CrossRef]

45. Baeza-Yates, R.; Ribeiro-Neto, B. Modern Information Retrieval; ACM Press: New York, NY, USA, 1999; Volume 463.
46. Carreno, L.V.G.; Winbladh, K. Analysis of user comments: an approach for software requirements evolution. In Proceedings of

the 2013 35th International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May 2013; pp. 582–591.
47. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
48. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,

Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282.
49. Waskom, M.L. Seaborn: statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]
50. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math.

Stat. 1947, 18, 50–60. [CrossRef]
51. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
52. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn.

2002, 46, 389–422. [CrossRef]
53. Chen, X.W.; Jeong, J.C. Enhanced recursive feature elimination. In Proceedings of the 6th International Conference on Machine

Learning and Applications, ICMLA 2007, Cincinnati, OH, USA, 13–15 December 2007; pp. 429–435.
54. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
55. Hinton, G.E. A practical guide to training restricted Boltzmann machines. In Neural Networks: Tricks of the Trade; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 599–619.
56. Bernard, S.; Heutte, L.; Adam, S. Influence of hyperparameters on random forest accuracy. In Proceedings of the International

Workshop on Multiple Classifier Systems, Reykjavik, Iceland, 10–12 June 2009; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 171–180.

http://dx.doi.org/10.1080/10864415.2016.1087823
http://dx.doi.org/10.1080/00207543.2015.1066519
http://dx.doi.org/10.1145/1376815.1376819
http://dx.doi.org/10.1145/1007730.1007733
http://dx.doi.org/10.1007/s10664-019-09706-9
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.21105/joss.03021
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1023/A:1012487302797

	Introduction
	Related Work
	App Review Classification
	Sentiment Analysis for App Reviews
	Requirement Ranking
	Aspect Extraction from Reviews

	The Framework of the Approach
	Review Preprocessing
	Requirement Phrase Extraction
	Feature Extraction for Phrases
	Features in Category Frequency
	Features in Category Evaluation
	Features in Category Similarity

	High Priority Requirement Phrase Predicting

	Evaluation Method
	Review Datasets
	Truth Set Creation
	Performance Metrics

	Results
	Effectiveness (RQ1)
	Comparison (RQ2)
	Model Interpretation and Optimization (RQ3)
	Model Interpretation
	Model Optimization

	Threats to Validity
	Conclusions
	References

