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Abstract: Face recognition algorithms based on deep learning methods have become increasingly
popular. Most of these are based on highly precise but complex convolutional neural networks
(CNNs), which require significant computing resources and storage, and are difficult to deploy
on mobile devices or embedded terminals. In this paper, we propose several methods to improve
the algorithms for face recognition based on a lightweight CNN, which is further optimized in
terms of the network architecture and training pattern on the basis of MobileFaceNet. Regarding
the network architecture, we introduce the Squeeze-and-Excitation (SE) block and propose three
improved structures via a channel attention mechanism—the depthwise SE module, the depthwise
separable SE module, and the linear SE module—which are able to learn the correlation of information
between channels and assign them different weights. In addition, a novel training method for the
face recognition task combined with an additive angular margin loss function is proposed that
performs the compression and knowledge transfer of the deep network for face recognition. Finally,
we obtained high-precision and lightweight face recognition models with fewer parameters and
calculations that are more suitable for applications. Through extensive experiments and analysis, we
demonstrate the effectiveness of the proposed methods.

Keywords: face recognition; convolutional neural network; lightweight neural network; attention
mechanism; knowledge distillation

1. Introduction

Face recognition is a technology for identifying people based on their facial features
and has been widely used in different areas of daily life. Face recognition systems can be
divided into several parts, including face detection, face alignment, feature extraction, and
classification, as shown in Figure 1. Due to the superior performance of CNNs for extracting
features, they are popular with researchers in face recognition tasks. DeepFace [1], proposed
by Facebook in 2014, is one of the earliest CNN-based face recognition algorithms, and was
able to achieve 97.35% accuracy on the Labeled Face in-the-Wild (LFW) dataset [2], which
is close to the level of a human. Subsequently, a series of CNN-based face recognition
algorithms have been successively proposed, such as DeepID [3–6], FaceNet [7], and
VGGFace [8,9]. These methods overcame the constraints of traditional algorithms and
improved the performance of face recognition.

Early researchers conducted various studies of network structures and datasets, includ-
ing via the use of different backbones and the expansion of the datasets, and achieved face
recognition through image classification. The focus of later explorations gradually shifted
to the design of a suitable loss function to guide the network to learn effective features.

Prior to 2017, the loss based on the Euclidean distance, which is a metric learning
method, played an important role. This approach embeds the input images into the
Euclidean space and expands the inter-class distance while reducing the intra-class distance.
Such methods include the contrastive loss [4], the triplet loss [7], and the center loss [10];
of these, triplet loss is used most commonly. Since 2017, the loss based on the angle or
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cosine margin and the normalization of features and weights have become popular, mainly
modified by the softmax loss function. L-softmax [11] converts the original softmax loss
into a cosine form, and multiplies the angle between features and weights by a margin.
A-softmax [12] realizes the normalization of features and weights using the L2 norm.
CosFace [13] improves the method of normalization and proposes a loss function with an
additive cosine margin. ArcFace [14], proposed by InsightFace, introduces another additive
margin, which directly adds the margin to the angle instead of to the cosine, so that the
network can learn more angle characteristics.
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However, the current popular face recognition algorithms are mostly based on highly
precise but complex CNNs, and require significant computing resources and storage, and
are difficult to deploy on mobile devices or embedded terminals. Although some highly
efficient and lightweight CNNs have been directly used for face recognition tasks, the
results have been unsatisfactory.

The focus of this study was the compression of the model while ensuring accuracy
is maintained. We implemented face recognition using a lightweight CNN, as shown in
Figure 2, making it suitable for mobile devices or embedded platforms. We improved the
algorithm in terms of the network structure design, loss function, and training method.
Our contributions can be summarized as follows:

1. We propose three improved structures based on the channel attention mechanism:
the depthwise SE module, depthwise separable SE module, and linear SE module.
We applied these to the lightweight network, adding a small number of parameters
and calculations, and verified their effectiveness on various datasets.

2. Combined with the additive angular margin loss function, we propose a novel training
method for the face recognition task, which improves the feature extraction ability
of the student network, and realizes the compression and knowledge transfer of the
deep network for face recognition.

3. We combined the teacher–student training pattern with the improved structures using
the channel attention mechanism, further improving the model’s performance on
the basis of MobileFaceNet [15]. Through corresponding experiments and analysis,
we promoted the accuracy on different datasets while maintaining the lightweight
characteristic of the network. The results showed accuracy of 99.67% on LFW, with
storage occupation of 5.36 MB and 1.35M parameters.
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The remainder of this paper is organized as follows: Section 2 introduces previous
related work. The proposed methods are introduced in Section 3, including network
architectures and the training pattern. Section 4 describes and analyzes corresponding
experiments and results. Section 5 concludes this paper.

2. Related Work

The initial development trend of CNNs was to design deeper and more complex
networks to obtain higher accuracy, such as VGGNet [16], GoogleNet [17], ResNet [18], and
DenseNet [19]. However, due to the continuous improvement of accuracy, the size of these
models has steadily increased, thus increasing the requirements for computing equipment
and storage resources, while also increasing the time required for the inference. To resolve
the problem of low efficiency caused by complex models, researchers turned their attention
to the design of lightweight CNNs, and proposed specific and efficient architectures to
build lightweight CNNs.

SqueezeNet [20] is a relatively early and classic lightweight network, proposed at
ICLR2017. It can achieve the same level of accuracy as AlexNet [21] on the ImageNet
dataset with a 50-fold reduction in parameters. The fire module of SqueezeNet is the
main factor that allows reduction of the number of parameters, and is comprised of a
squeeze convolution module and an expand module. The squeeze module helps to com-
press the number of input channels, and 3 × 3 filters of the expand module are then
replaced with 1 × 1 filters. ShuffleNetV1 [22] utilizes the operations of pointwise group
convolution and channel shuffle to reduce parameters and calculations while maintaining
accuracy. Considering the actual inference speed, ShuffleNetV2 [23] no longer uses a
large number of group convolutions, but improves performance of the network through
the channel split operation. MobileNetV1 [24] proposes a novel convolution operation,
named depthwise separable convolutions, which splits the standard convolution into
depthwise convolutions and pointwise convolutions, greatly reducing redundant calcula-
tions. MobileNetV2 [25] introduces inverted residuals and linear bottlenecks to overcome
the problem of MobileNetV1. MobileNetV3 [26] combines hardware-aware network archi-
tecture search (NAS) [27] and the NetAdapt algorithm, and then improves performance
through novel architecture advances. SENet [28] proposes the “Squeeze-and-Excitation”
(SE) block, which adaptively recalibrates channel-wise feature responses by explicitly mod-
elling interdependencies between channels, thus resulting in significant improvements
in performance for existing state-of-the-art CNNs at a slight additional computational
cost. However, when directly used for face recognition tasks, the performance of these
lightweight CNNs is unsatisfactory.

To address the problems caused by complex models, researchers have designed several
particular network architectures for face recognition tasks. MobileFaceNet [15] is a model
based on MobileNetV2 [25] for face verification and achieves 99.55% accuracy on LFW [2];
it is also able to run on mobile phones or embedded devices in real time. MobiFace [29]
replaces the global depthwise convolution of MobileFaceNet with a fully connected layer.
Although the performance was improved, the number of parameters was also increased
significantly. SeesawFaceNet [30] uses the Seesaw block [31] and the SE block [28] to build
a more lightweight and precise model, and further optimizes MobileFaceNet. A large
number of effective and lightweight CNNs remain that have not been used in the field of
face recognition, such as SqueezeNet [20], ShuffleNet [22,23] and Xception [32], but have
the potential for this task and deserve more attention, as introduced in [33].

In addition to the design of lightweight network architectures, common model com-
pression methods include model pruning, model quantization, low-rank decomposition,
and knowledge distillation. Several effective face recognition models are trained using
methods involving knowledge distillation [34]. In [35], an enhanced version of triplet loss
is proposed, named triplet distillation, which exploits the capability of a teacher model
to transfer the similarity information to a small model by adaptively varying the margin
between positive and negative pairs. In [36], the authors present a novel model compres-
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sion approach based on the student–teacher paradigm for face recognition applications,
which consists of a training teacher network at greater image resolution while student
networks are trained at lower image resolutions than that of teacher network. More-
over, both the teacher network and the student network are fully convolutional networks
(FCN). VarGFaceNet [37] employs an equivalence of angular distillation loss to guide the
lightweight network and apply recursive knowledge distillation to relieve the discrepancy
between the teacher model and the student model.

3. Proposed Approach
3.1. Network Design Strategy

In this study, the architecture of MobileFaceNet [15] was used as the benchmark to
build our lightweight CNN for face recognition. The specific network architecture is shown
in Table 1. The bottleneck in this approach is the inverted residual structure, which has a
linear constraint introduced in MobileNetV2 [25], and expansion factors are much smaller
than those in MobileNetV2 [16,25]. The inverted residual structure consists of a sequence
of 1 × 1, 3 × 3, 1 × 1 convolution kernels and a shortcut that adds the input feature map
to the output feature map. Because the change in the number of channels through this
structure is the opposite to that of the residual structure, it is called the inverted residual
structure. In addition, PReLU [38] is used as the activation function, and we perform batch
normalization [39] during training. The basic components of the bottlenecks are depthwise
separable convolutions, which can extract features of each channel separately. However,
the key information contained in each channel is not the same. If it is simply processed in
a unified manner, it is inevitable that some important information will be ignored. Thus,
we introduced the channel attention mechanism to improve the architecture and propose
three structures based on the “Squeeze-and-Excitation” (SE) block [28].

Table 1. MobileFaceNet [15] architecture. Each line describes an operator composed of convolutional
kernels and the operators in the table are executed from top to bottom in the process of network
inference. The “Input” column corresponds to the size of the input feature map, which is calculated
by the operators of the previous layer; the columns of t, c, n, and s correspond to the parameters
of each operator. The parameter t is the expansion factor, the parameter c is the number of output
channels, the parameter n represents the number of repetitions, and the parameter s represents stride,
which means the sliding step of the convolution kernel, and can be used to down-sample the input
feature map.

Input Operator t c n s

112 × 112 × 3 conv3 × 3 - 64 1 2
56 × 56 × 64 depthwise conv3 × 3 - 64 1 1
56 × 56 × 64 bottleneck 2 64 5 2
28 × 28 × 64 bottleneck 4 128 1 2
14 × 14 × 128 bottleneck 2 128 6 1
14 × 14 × 128 bottleneck 4 128 1 2

7 × 7 × 128 bottleneck 2 128 2 1
7 × 7 × 128 conv1 × 1 - 512 1 1
7 ×7 × 512 linear GDConv7 × 7 - 512 1 1
1 × 1 × 512 linear conv1 × 1 - 128 1 1

The composition of the SE block is shown in Figure 3, and its process includes three
main parts. Firstly, the input feature map is passed through a squeeze operation, which
utilizes a layer of global average pooling to compress the input into a 1 × 1 × C tensor
such as a channel descriptor. Then, an excitation operation follows, which utilizes two
fully connected layers and activation functions to learn the relevance of different channels
and generate the attention weights of each channel, and the values of those weights are
between (0,1). Finally, the scale operation multiplies the original input feature map with
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the corresponding excitation weights, and adjusts the weights of different feature maps
according to the degree of dependence, thereby enhancing the attention to the key channels.

Combining the depthwise separable convolution with the SE block, we propose three
structures: the depthwise SE (DSE) module, depthwise separable SE (DSSE) module, and
linear SE (LSE) module, as shown in Figure 3. Because a 1× 1 filter can maintain the existing
size of the feature map and simultaneously control the number of output channels using
the number of filters, it is often used to expand or reduce the number of channels. The DSE
module first expands the number of channels of the input feature map through a 1× 1 filter,
then utilizes a depthwise convolution to extract features of each channel. After the features
are obtained, they are input into the SE block to enhance the channel-domain attention.
The DSSE module puts the SE block behind the 1 × 1 filter used to reduce the number of
channels and integrate the features; that is, after completing the operation of depthwise
separable convolution, the channel attention is enhanced. The DSE module focuses more
on the distribution of the weights of the separate channel information, whereas the DSSE
module pays attention to the overall features after the operation of depthwise separable
convolution. In addition, the two structures shown in Figure 3 are used when the stride
is equal to 1, and if the stride is 2, the shortcut is removed. The LSE module is composed
of a 1 × 1 filter without non-linear activation and an SE block, and is utilized at the end
of the entire network to realize the channel-domain attention enhancement of the finally
obtained features.
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We applied these structures to a lightweight convolutional neural network for face
recognition. This architecture is constructed primarily by stacking a collection of improved
bottlenecks. The DSE module and the DSSE module can be directly used as the bottlenecks,
and the LSE is set at the end of the network. We compared and analyzed the performance
of these modules. Specific experiments and results can be seen in Section 4.

3.2. Training Pattern

To further improve the performance of the lightweight model constructed in this
study, we propose a novel training pattern for face recognition tasks in this section by
means of knowledge distillation [34], combined with the additive angular margin loss
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function. Generally, large and complex neural networks have stronger capabilities in
feature extraction and fitting than small and simple neural networks, and knowledge
distillation can transfer knowledge between them. This often uses a large neural network
as a teacher network and a small network as a student network. In the training process
of the student network, the relevant features extracted by the teacher network are used to
guide the training process, which can be called the teacher–student training mode. Using
the teacher–student training pattern, the strong feature extraction ability and superior
recognition performance of the deep CNN can be transferred to the lightweight CNN. In
this manner, we can achieve model compression and improve the feature extraction ability
of the student network.

Knowledge distillation can define the loss function by the difference between the
logits obtained in the last layer of the network and the targets to guide the training of the
model. There are two types of targets for training the student network: one is the label of
the input, also called the hard target, which is a fixed value, and for which information
entropy is low; the other is the output obtained by the softmax layer of the teacher network,
called the soft target, which is a variable value learned by the teacher network learning
and contains more information between different classes than the hard target.

We use the additive angular margin loss function introduced in ArcFace [14] as the
objective function of hard targets, which is modified by softmax loss. Softmax loss is widely
used in face recognition tasks, and it can be presented as:

L1 = − 1
N

N

∑
i=1

log
eWT

yi
xi+byi

∑n
j=1 eWT

j xi+bj
(1)

where Wx + b is the output of the fully connected layer, W is the weights, b is the bias,
N is the batch size, n is the number of classes, xi represents the feature vector of the i-th
sample, and its label is yi. For convenience, the bias term is set to 0, and the inner product
of weights and the input features is expressed in the form of cosine:

WT
j xi = ‖Wj‖‖xi‖ cos θj

where θj represents the angle between weights and features. Then the ArcFace loss normal-
izes weights and features through L2 norm, and then multiplies a scale factor to control
the magnitude of the output. To ensure the model learns distinguishing features, ArcFace
introduces an additive angle margin to further restrict the training process. The final loss
of hard targets is presented as follows:

Lhard = − 1
N

N

∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) + ∑n
j=1,j 6=yi

es cos θj
(2)

where N is the batch size, s is the scale factor, n is the number of classes, yi represents the
label of the i-th sample, θj represents the angle between weights and features, and m is the
angle margin, that is, the penalty.

In addition, the objective function of soft targets uses the additive angular margin to
guide the training process. Firstly, we input the images into the teacher network to extract
the feature embedding, and then input the embedding into the fully connected layer and
learn the weight parameters during training. The inner product of weights and features
is transformed into a cosine form, and weights and features are both regularized by L2
normalization. The scale factor and the angle margin are also introduced. We utilize the
logits of the teacher network to build the loss of soft targets. After features extracted by
the teacher network pass through the fully connected layer expressed in cosine form, the
logits of different classes are obtained. Then, we add an angle margin to the logits related
to the ground truth. In this manner, we can obtain a discriminative relationship between
the output of the teacher network and the label. Furthermore, the mean square error (MSE)
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is used to measure the difference of logits between the teacher network and the student
network. The loss function of soft targets is defined as follows:

Lsoft =


1
N

N
∑

i=1

(
scos

(
θt

yi
+m)− scosθs

j

)2
, j =yi

1
N

N
∑

i=1

(
scosθt

j−scosθs
j

)2
, j 6= yi

, j ∈ [1, n] (3)

where θt
j and θs

j represents the angles between the weights of the fully connected layer and
the features extracted by the teacher network and the student network respectively, and
the meaning of the other variables is the same as for the loss of hard targets. Finally, the
total loss function is the weighted average of soft and hard objective functions, which is
defined as follows:

L = αLhard + (1− α)Lso f t (4)

where α is a hyper-parameter that can adjust the proportion between soft and hard objec-
tive functions.

The implementation of the proposed training pattern is shown in Figure 4. We first
input face images into the complex and deep teacher network, and the simple and shallow
student network, and obtain the related embedding after feature extraction. Then, the
embedding is input into the ArcFace classifier head with the additive angle margin, and
the logits are obtained. The logits of the teacher network are used as the soft targets, and
we compute the MSE between the soft targets and the logits of the student network. In
addition, the labels of input images are taken as the hard targets, and we compute the
softmax loss between the hard targets and the logits of the student network. The weighted
average of soft and hard loss functions is the final loss, and forms the basis of the back
propagation of the gradients and the parameter update of the student network. In the
inference of face recognition, only the trained student model is used, which greatly reduces
parameters and calculations.
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network and the lightweight student network, separately, and the related embedding after feature extraction is obtained.
Then, the embedding is input into the ArcFace classifier head with the additive angle margin, and the logits are obtained.
We compute the MSE between the soft targets and the logits of the student network, and compute the softmax loss between
the hard targets and the student logits. The weighted average of soft and hard loss functions is the final loss, and forms the
basis of the back propagation of the gradients and the parameter update of the student network.

In addition, the student network used here is the lightweight CNN based on Mobile-
FaceNet, and the teacher network is SE-ResNet50-IR [14], which is modified by ResNet [18]
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and stacked with improved residual (IR) units. There are 50 stacking units with the SE
block in the architecture. Figure 5 shows the structure of the units.
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4. Experiments and Analysis

In this section, we first introduce the datasets, evaluation metric, and the details of the
training settings, then describe the performance of the baseline model, and compare and
analyze the experimental results of the proposed methods.

4.1. Datasets and Evaluation Metric

We organize and list commonly used face datasets in Table 2. The face images or videos
contained in these datasets were collected under unconstrained conditions, including data
of different postures, ages, expressions, and lighting conditions, which are representative
and universal. We employed MS1MV2 introduced in ArcFace [14] for training, which is
refined from the MS-Celeb-1M [40] (MS1M) dataset. The MS1MV2 dataset contains 5.8M
images from 85K identities. In addition, all face images in the dataset were detected and
aligned through MTCNN [41], and the aligned faces were uniformly cropped to the size of
112 × 112. To accelerate the data reading process, we stored datasets in the form of MXNet
IndexedRecord.

Table 2. Commonly used face datasets.

Datasets ids Images/Videos Type

CASIA-WebFace [42] 10K 0.5M train
MS-Celeb-1M [40] 100K 10M train

VGGFace [8] 2.6K 2.6M train
VGGFace2 [9] 9.1K 3.3M train and test

LFW [2] 5749 13,233 test
CPLFW [43] 5749 11,652 test
CALFW [44] 5749 12,174 test
CFP-FP [45] 500 7000 test
Aged [46] 568 16,488 test
YTF [47] 1595 3425 test

MegaFace [48] 690K 1M test
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To effectively verify the stability of the algorithm, the test sets used in this paper
involve many aspects, including the following: (1) LFW [2], composed of 13,233 images
from 5749 identities with different poses and expressions, containing 6000 face pairs, is an
early classic face dataset, and has become an evaluation benchmark of face recognition
tasks under unconstrained conditions. In the testing process, the accuracy is obtained
by comparing face pairs and determining whether they belong to the same person; (2)
CALFW [44] (Cross-Age LFW), is a cross-age dataset from LFW, containing 6000 pairs of
frontal faces; (3) CPLFW [43] (Cross-Pose LFW) is a cross-pose dataset from LFW and also
contains 6000 face pairs; (4) CFP-FP is composed of 7000 front-profile (FP) face pairs from
the CFP [45] dataset. CFP is composed of 7000 images from 500 identities, and each identity
has 10 frontal images and 4 profile images. These data are divided into 10 parts, each
consisting of 350 pairs from the same identity and 350 pairs from different identities; (5)
CFP-FF contains 7000 front-front (FF) face pairs from CFP [45]; (6) AgeDB-30 is composed
of the data with an age gap of 30 in the AgeDB [46] dataset, including 6000 face pairs; (7)
VGG2-FP consists of 5000 front-profile (FP) face pairs from the VGGFace2 [9] dataset.

4.2. Implementation Details

To improve GPU utilization and accelerate the training process, we used the Data-
Parallel function of Pytorch to implement single-host multi-GPU training, and two graphics
cards were used during each training process. In addition, we used the DataLoader func-
tion of MXNet to read the IndexedRecord format datasets to speed up the entire training
process. Furthermore, all images for training were faces of uniform size obtained by face
detection and alignment. Before they were input into the network, they were randomly
horizontally flipped and normalized into [−1,1].

During the training stage, we adopted the stochastic gradient descent (SGD) optimizer.
The momentum parameter was set to 0.9, which allows accumulation of the gradient of past
steps to determine the direction of gradient descent and accelerate the network learning
process. According to the memory of the graphics cards, the batch size was set to 256 and
the dimension of the output embedding was 512. The learning rate was initialized to 0.1,
and we set three milestones. The learning rate was divided by 10 at 8, 12, and 14 epochs
and the training stage was stopped at 16 epochs. The last batch of images that could not
be evenly distributed was processed in a “rollover” method, which means the remaining
samples are transferred to the next training epoch.

4.3. Experimental Results

We constructed the face recognition model with the architecture shown in Table 1, and
used it as the baseline. We used the ArcFace loss [14] to supervise the training process,
where the scale factor was set to 64 and the angle margin was 0.5. We trained our network
from scratch. To verify the training effect of the model, during training, the k-fold cross-
validation result on LFW [2] was calculated. As shown in Figure 6, the curves in red and
blue represent how the loss and accuracy of the baseline changed during training stage. It
can be seen that the loss experiences three large drops at the milestones where the learning
rate changes, and the decline in other places is relatively flat. In the process of reducing
the loss through gradient backpropagation, a local minimum may occur. When the decline
becomes slow, it is likely that the local minimum is encountered. We set three milestones
and divided the learning rate by 10 at 8, 12, and 14 epochs. Because the batch size was
set to 256 and the training set contains 5,822,653 face images, the number of steps for one
training epoch was about 22,745. Therefore, when the number of steps was approximately
180,000, 280,000 and 320,000, the learning rate changed, resulting in the sudden drops of
loss. In addition, the accuracy rate constantly approached 1 as the training progressed.
Figure 7 shows how the best threshold of the baseline changed on LFW during training,
and that the best threshold constantly changed. After calculation, the average of these
thresholds was about 1.485, and the standard deviation was about 0.023. Accuracy of the
baseline on each test set is shown in Table 3. The baseline occupied 4.8 MB memory and the
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accuracy achieved on LFW reached 99.47%. Figure 8 from left to right shows the Receiver
Operating Characteristic (ROC) curve of the baseline on LFW, AgeDB-30, and CFP-FP, the
performance is consistent with the accuracy rate and was best on LFW.
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Table 3. The test results of the baseline. The data in the columns of LFW, AgeDB-30, VGG2-FP, CALFW, CPLFW, CFP-FF,
and CFP-FP represent the accuracy of the model on different test sets. These test sets are described in detail in Section 4.1.

Model Train_acc LFW AgeDB-30 VGG2-FP CALFW CPLFW CFP-FF CFP-FP Size

baseline 0.9229 0.9947 0.9603 0.9236 0.9522 0.8833 0.9949 0.9269 4.8M
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Combining the improved structures based on the channel attention mechanism pro-
posed in Section 3.1, i.e., the depthwise SE (DSE) module, depthwise separable SE (DSSE)
module, and linear SE (LSE) module, we conducted corresponding experiments of training
and testing. Figures 9 and 10 show the change in loss and accuracy during training after
utilizing different modules in the architecture. In the figures, the blue curve represents
the baseline, the orange represents the model with LSE, the green represents the model
with DSSE, the red represents the model with DSE, the purple represents the model with
DSSE and LSE, and the brown represents the model with DSE and LSE. It can be seen from
Figure 9 that the overall trend of training loss with different modules is consistent with
the baseline. When magnifying the curves at the end, we can see that after utilizing the SE
blocks, the training loss is lower than that of the baseline. Moreover, the model with LSE
has the lowest drop in training loss, whereas the training loss with DSSE and LSE has the
maximum drop. Figure 10 shows that accuracy of each model on LFW is higher than that
of the baseline, and all are above 99%.
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The test results of the models with different SE modules on each test set are shown in
Table 4. According to the average accuracy, the overall recognition effect of the model with
DSSE and LSE is the best, and that of the model with LSE is the worst, and worse than that
of the baseline, whereas other models have the best recognition effect on some test sets.
Because LSE is a linear SE module, the channel attention mechanism is only used in the last
linear layer of the model, and its effect is minimal on the entire network. Therefore, it is
difficult to improve the model using LSE alone. When we combine the model with LSE and
DSSE, it achieves the best average accuracy because the channel attention enhancement is
set after 1 × 1 convolutions. Compared with the model that only uses DSSE, its feature
extraction ability is further improved. The feature map is extracted and integrated through
depthwise separable convolutions or linear 1 × 1 convolutions, and the features contain
deeper semantic information, which is more conducive to the extraction of facial features.
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In addition, the STD column represents the standard deviation value of each model on
different test sets. It can be seen that compared to the baseline, the STD values of our
proposed models are smaller. As introduced in Section 4.1, different test sets contain face
pairs with different attributes, and the standard deviation can reflect the generalization
ability and robustness of the model on these test sets. The smaller the value, the better
the performance.

Table 4. The test results of the models with different SE modules. The data in the columns of LFW, AgeDB-30, VGG2-FP,
CALFW, CPLFW, CFP-FF, and CFP-FP represent the accuracy of the model on different test sets. These test sets are described
in detail in Section 4.1. Bold is to highlight the optimal value of each column, making it more obvious and impressive.

Model Train_acc LFW AgeDB-30 VGG2-FP CALFW CPLFW CFP-FF CFP-FP Average STD

baseline 0.9229 0.9947 0.9603 0.9236 0.9522 0.8833 0.9949 0.9269 0.9480 0.0404
ours_LSE 0.9237 0.9957 0.9607 0.9188 0.9547 0.8852 0.9950 0.9247 0.9478 0.0409

ours_DSSE 0.9369 0.9943 0.9662 0.9228 0.9527 0.8942 0.9946 0.9419 0.9524 0.0368
ours_DSE 0.9354 0.9950 0.9652 0.9252 0.9547 0.8952 0.9953 0.9384 0.9527 0.0366

ours_DSSE+LSE 0.9371 0.9953 0.9675 0.9308 0.9545 0.8932 0.9946 0.9429 0.9541 0.0363
ours_DSE+LSE 0.9300 0.9940 0.9603 0.9254 0.9550 0.8900 0.9950 0.9333 0.9504 0.0378

On the basis of the above experiments, we conducted experiments with the teacher–
student training pattern proposed in Section 3.2. In the proposed pattern, when the weight
parameter α is set to 0.5, the losses of the soft and hard targets are at the same level, and
the training effect is best. Figures 11 and 12 show, respectively, the curves of the loss and
accuracy of the model with different SE modules during the training stage in the teacher–
student training pattern. In the figures, the blue curve represents the baseline, the orange
curve represents the baseline in the proposed training pattern, and other curves represent
the models with different modules in the proposed training pattern. As Figure 11 shows,
the decline of training loss in the teacher–student training pattern is significantly greater
than that of the baseline, which indicates that the teacher–student training pattern proposed
in this paper introduces supervision information from the teacher network and speeds up
the convergence of the student network. In addition, when zooming in on the curves at the
end, it can be seen that the loss of models in the teacher–student training pattern is lower
than that of the baseline. The loss decline of the baseline in the teacher–student training
pattern is the smallest, and the decline of the model with LSE in the proposed training
pattern is second, where the model with DSE in the teacher–student training pattern has
the maximum loss drop. It can be seen in Figure 12 that the accuracy of each model on
LFW is higher than that of the baseline, and they are all above 99%. Moreover, the model
with DSE and LSE in the teacher–student training pattern can achieve the highest accuracy
on LFW.

The test results of the models with different SE modules in the teacher–student training
pattern on each test set are shown in Table 5. According to the average accuracy, the overall
recognition effect of the model with DSE is the best in the training pattern, and that of the
model with LSE is the worst, whereas other models have the best recognition effect on
some test sets. It can be seen that the accuracy of the model trained in the teacher–student
training pattern is improved compared to that of the baseline, so the training pattern
proposed in this paper effectively compresses the knowledge of the teacher network to
the student network, and improves the feature extraction ability of the student network.
In addition, we used SE-ResNet50-IR [14] as the teacher network, which is introduced in
Section 3.2, and the SE blocks are located at the end of each stacking units and act after
3 × 3 convolutions. The model with DSE in the teacher–student training pattern places
the SE blocks after depthwise convolutions composed of 3 × 3 filters. Compared with
other models, the architecture of the model with DSE is more consistent with that of the
teacher model, so it integrates the feature extraction ability of the teacher network to the
greatest extent, and not only inherits the features of the similar structure, but also learns
features extracted by other structures. In addition, the STD column represents the standard
deviation value of each model on different test sets. It can be seen that compared to the



Information 2021, 12, 191 14 of 18

baseline, the STD values of our proposed models are smaller. As introduced in Section 4.1,
different test sets contain face pairs with different attributes, and the standard deviation
can reflect the generalization ability and robustness of the model on these test sets. The
smaller the value, the better the performance.
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Table 5. The test results of the models with different modules in the proposed training pattern. The data in the columns of
LFW, AgeDB-30, VGG2-FP, CALFW, CPLFW, CFP-FF, and CFP-FP represent the accuracy of the model on different test sets.
These test sets are described in detail in Section 4.1. Bold is to highlight the optimal value of each column, making it more
obvious and impressive.

Model Train_Acc LFW AgeDB-30 VGG2-FP CALFW CPLFW CFP-FF CFP-FP Average STD

baseline 0.9229 0.9947 0.9603 0.9236 0.9522 0.8833 0.9949 0.9269 0.9480 0.0404
ours_distill 0.9267 0.9960 0.9625 0.9204 0.9547 0.8883 0.9956 0.9314 0.9498 0.0396

ours_distill+LSE 0.9170 0.9953 0.9677 0.9248 0.9555 0.8862 0.9960 0.9226 0.9497 0.0408
ours_distill+DSSE 0.9329 0.9957 0.9672 0.9274 0.9573 0.8898 0.9949 0.9341 0.9523 0.0383
ours_distill+DSE 0.9441 0.9957 0.9698 0.9326 0.9580 0.8987 0.9946 0.9439 0.9562 0.0347

ours_distill+DSSE+LSE 0.9361 0.9953 0.9698 0.9302 0.9580 0.8938 0.9954 0.9387 0.9545 0.0368
ours_distill+DSE+LSE 0.9367 0.9967 0.9683 0.9304 0.9563 0.8968 0.9960 0.9419 0.9552 0.0360

Table 6 compares the performance indicators of different models involved in this paper,
including the model size, inference time, and the number of parameters and calculations.
The MACs represent the multiply–accumulate operations that contain a multiplication and
an addition, which can be used to measure the computational complexity of the model.
The inference time is measured on the same GPU platform through the Event function of
CUDA. To overcome the randomness of a single sample, we first count the inference time
of 600 samples and then compute the mean and variance. It can be seen in the table that
we improved the performance of the model and increased the number of parameters by
0.15 MB at most, and the inference time only increased by about three milliseconds, whereas
the computational complexity remained almost unchanged. Therefore, we achieved the
research goal of making the model as lightweight as possible while maintaining the recog-
nition accuracy. Because the models based on the teacher–student training pattern are only
different from those obtained in the normal training pattern in terms of the training method,
and the architectures are not changed, the model size and the number of parameters and
calculations are the same as those in the normal training pattern, and the results are not
repeated here. Table 7 compares the performance of the model proposed in this paper
with the state-of-the-art (SOTA) face recognition models, including complex models and
lightweight models. It can be seen that the model proposed is competitive in model size
and recognition accuracy.

Table 6. Performance comparison of different models.

Model Size (MB) MACs (G) Params (M) Speed (ms)

baseline 4.78 0.23 1.20 5.71 ± 0.57
ours_LSE 4.90 0.23 1.23 6.31 ± 0.59

ours_DSSE 4.88 0.23 1.22 8.15 ± 0.69
ours_DSE 5.24 0.23 1.32 8.28 ± 0.84

ours_DSSE+LSE 5.01 0.23 1.26 8.68 ± 0.58
ours_DSE+LSE 5.36 0.23 1.35 8.74 ± 0.94

Table 7. Performance comparison with SOTA models.

Method Training Data Model Size LFW Acc.

HUMAN-Individual [14] - - 97.27%
FaceNet [7] 200 M 30 MB 99.63%
ArcFace [14] 5.8 M 250 MB 99.83%

Light CNN-29 [49] 4 M 50 MB 99.33%
MobileFaceNet [15] 3.8 M 4.0 MB 99.55%

ours_distill+DSE+LSE 5.8 M 5.4 MB 99.67%
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5. Conclusions

In this study, we improved face recognition algorithms based on lightweight CNNs in
terms of the aspects of network architecture and the training pattern. We proposed three
improved structures based on the channel attention mechanism: the depthwise SE module,
depthwise separable SE module, and linear SE module. Compared with the baseline, the
models with improved structure achieved higher accuracy on the test sets, adding only a
small number of parameters and calculations. Combined with the additive angular margin
loss function, we proposed a novel training method for the face recognition task. The
feature extraction ability of the student network was improved with the supervision of the
teacher network. Not only was the convergence of the student network accelerated, but the
recognition accuracy was also improved, while maintaining the lightweight characteristic
of the network. Furthermore, we combined the teacher–student training pattern with the
improved structures, and further improved the performance of the recognition model,
making it more suitable for mobile devices or embedded terminals. Experimental results
showed that the proposed methods are effective.

In future research, methods of pruning and quantization can be used to further com-
press the model. In addition, the algorithm can utilize NAS [27] to ensure the model
autonomously searches for more appropriate structures and learns more representative fea-
tures. Furthermore, because of the particularity of the features of the human face, a special
attention mechanism for face recognition tasks can be designed to improve performance.

Author Contributions: Conceptualization, W.L. and J.C.; methodology, W.L. and J.C.; software, W.L.
and L.Z.; validation, W.L.; formal analysis, W.L.; investigation, W.L.; resources, W.L., L.Z. and J.C.;
data curation, W.L.; writing—original draft preparation, W.L.; writing—review and editing, W.L.,
L.Z. and J.C.; visualization, W.L.; supervision, L.Z. and J.C.; project administration, L.Z. and J.C.;
funding acquisition, L.Z. and J.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by NSFC(U1832217).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. Deepface: Closing the gap to human-level performance in face verification.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014;
pp. 1701–1708.

2. Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled faces in the wild: A database forstudying face recognition in
unconstrained environments. In Proceedings of the Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and
Recognition, Marseille, France, 12–18 October 2008.

3. Sun, Y.; Wang, X.; Tang, X. Deep learning face representation from predicting 10,000 classes. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 1891–1898.

4. Sun, Y.; Wang, X.; Tang, X. Deep learning face representation by joint identification-verification. arXiv 2014, arXiv:1406.4773.
5. Sun, Y.; Wang, X.; Tang, X. Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2892–2900.
6. Sun, Y.; Liang, D.; Wang, X.; Tang, X. Deepid3: Face recognition with very deep neural networks. arXiv 2015, arXiv:1502.00873.
7. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823.
8. Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of the British Machine Vision Conference,

Swansea, UK, 7–10 September 2015.
9. Cao, Q.; Shen, L.; Xie, W.; Parkhi, O.M.; Zisserman, A. Vggface2: A dataset for recognising faces across pose and age. In

Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China,
15–19 May 2018; pp. 67–74.



Information 2021, 12, 191 17 of 18

10. Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In European Conference on
Computer Vision; Springer: Cham, Switzerland, 2016; pp. 499–515.

11. Liu, W.; Wen, Y.; Yu, Z.; Yang, M. Large-margin softmax loss for convolutional neural networks. arXiv 2016, arXiv:1612.02295.
12. Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 212–220.
13. Wang, F.; Cheng, J.; Liu, W.; Liu, H. Additive margin softmax for face verification. IEEE Signal Process. Lett. 2018, 25, 926–930.

[CrossRef]
14. Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4690–4699.
15. Chen, S.; Liu, Y.; Gao, X.; Han, Z. Mobilefacenets: Efficient cnns for accurate real-time face verification on mobile devices. In

Chinese Conference on Biometric Recognition; Springer: Cham, Switzerland, 2018; pp. 428–438.
16. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
17. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Com-puter Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

19. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 4700–4708.

20. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

22. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
6848–6856.

23. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

24. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

25. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520.

26. Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019;
pp. 1314–1324.

27. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search
for mobil. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Korea, 27–28 October
2019; pp. 2820–2828.

28. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

29. Duong, C.N.; Quach, K.G.; Jalata, I.; Le, N.; Luu, K. Mobiface: A lightweight deep learning face recognition on mobile devices. In
Proceedings of the 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), Tampa, FL,
USA, 23–26 September 2019; pp. 1–6.

30. Zhang, J. SeesawFaceNets: Sparse and robust face verification model for mobile platform. arXiv 2019, arXiv:1908.09124.
31. Zhang, J. Seesaw-Net: Convolution Neural Network with Uneven Group Convolution. arXiv 2019, arXiv:1905.03672.
32. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 1251–1258.
33. Wang, M.; Deng, W. Deep face recognition: A survey. arXiv 2018, arXiv:1804.06655.
34. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
35. Feng, Y.; Wang, H.; Hu, H.R.; Yu, L.; Wang, W.; Wang, S. Triplet distillation for deep face recognition. In Proceedings of the 2020

IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab, 25–28 October 2020; pp. 808–812.
36. Karlekar, J.; Feng, J.; Wong, Z.S.; Pranata, S. Deep face recognition model compression via knowledge transfer and distillation.

arXiv 2019, arXiv:1906.00619.
37. Yan, M.; Zhao, M.; Xu, Z.; Zhang, Q.; Wang, G.; Su, Z. Vargfacenet: An efficient variable group convolutional neural network for

lightweight face recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul,
Korea, 27–28 October 2019.

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1026–1034.

http://doi.org/10.1109/LSP.2018.2822810
http://doi.org/10.1145/3065386


Information 2021, 12, 191 18 of 18

39. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

40. Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In European
Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 87–102.

41. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE
Signal Process. Lett. 2016, 23, 1499–1503. [CrossRef]

42. Yi, D.; Lei, Z.; Liao, S.; Li, S. Learning face representation from scratch. arXiv 2014, arXiv:1411.7923.
43. Zheng, T.; Deng, W. Cross-pose lfw: A database for studying cross-pose face recognition in unconstrained environments. Beijing

Univ. Posts Telecommun. Tech. Rep. 2018, 5. Available online: http://www.whdeng.cn/CPLFW/Cross-Pose-LFW.pdf (accessed on
25 April 2021).

44. Zheng, T.; Deng, W.; Hu, J. Cross-age lfw: A database for studying cross-age face recognition in unconstrained environments.
arXiv 2017, arXiv:1708.08197.

45. Sengupta, S.; Chen, J.C.; Castillo, C.; Patel, V.M.; Chellappa, R.; Jacobs, D.W. Frontal to profile face verification in the wild. In
Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–9 March
2016; pp. 1–9.

46. Moschoglou, S.; Papaioannou, A.; Sagonas, C.; Deng, J.; Kotsia, I.; Zafeiriou, S. Agedb: The first manually collected, in-the-wild
age database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI,
USA, 21–26 June 2017; pp. 51–59.

47. Wolf, L.; Hassner, T.; Maoz, I. Face recognition in unconstrained videos with matched background similarity. In Proceedings of
the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 529–534.

48. Kemelmacher-Shlizerman, I.; Seitz, S.M.; Miller, D.; Brossard, E. The megaface benchmark: 1 million faces for recognition at scale.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp.
4873–4882.

49. Wu, X.; He, R.; Sun, Z.; Tan, T. A light cnn for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 2018, 13,
2884–2896. [CrossRef]

http://doi.org/10.1109/LSP.2016.2603342
http://www.whdeng.cn/CPLFW/Cross-Pose-LFW.pdf
http://doi.org/10.1109/TIFS.2018.2833032

	Introduction 
	Related Work 
	Proposed Approach 
	Network Design Strategy 
	Training Pattern 

	Experiments and Analysis 
	Datasets and Evaluation Metric 
	Implementation Details 
	Experimental Results 

	Conclusions 
	References

