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Abstract: Linear complexity is an important criterion to characterize the unpredictability of pseudo-
random sequences, and large linear complexity corresponds to high cryptographic strength. Pseudo-
random Sequences with a large linear complexity property are of importance in many domains. In
this paper, based on the theory of inverse Gray mapping, two classes of new generalized cyclotomic
quaternary sequences with period pq are constructed, where pq is a product of two large distinct
primes. In addition, we give the linear complexity over the residue class ring Z4 via the Hamming
weights of their Fourier spectral sequence. The results show that these two kinds of sequences have
large linear complexity.

Keywords: stream ciphers; finite field; quaternary sequence; Fourier spectral sequence; linear complexity

1. Introduction

Pseudo-random sequences with large linear complexity and low nontrivial autocor-
relation values are widely applied in spread spectrum communication, radar navigation,
cryptography, code division multiple access, especially stream cipher. The linear com-
plexity of a sequence is defined as the smallest order of linear feedback shift register
that can generate the whole sequence. According to the Berlekamp–Massey algorithm, a
large linear complexity should be no less than a half of the period of the sequence [1,2].
Binary sequences with good pseudo-random properties have been studied in depth in
recent decades [2]. Compared with binary sequences, quaternary sequences have a higher
transmission rate, and a code element can represent more bits of information. Moreover,
quaternary sequences have important applications in the four-phase spread spectrum
system [3]. Therefore, quaternary sequences are attracting more and more researchers to
consider them. Most references have concentrated on the linear complexity of quaternary
sequences over F4 [4–7]. However, there has been less attention to the linear complexity of
sequences over Z4 due to the phenomenon of zero divisors in Z4 [8].

Inverse Gray mapping is one of the main methods for constructing quaternary se-
quences [9]. Given two arbitrary binary sequences of equal length, a unique quaternary
sequence can be determined by inverse Gray mapping. Kim et al. constructed a class of
quaternary sequences with period 2p over Z4 by the use of a Legendre sequence pair. They
analyzed the autocorrelation properties and the linear complexity of these sequences [10,11].
Yang et al. defined a class of quaternary sequence on Z4 by using the Whiteman generalized
cyclotomic binary sequence pair and calculated the autocorrelation values [12]. Li et al. an-
alyzed the linear complexity of the sequence which was constructed in [12] by considering
the weights of Fourier spectral sequence of the sequence [13,14]. Wang et al. established a
class of quaternary sequence on Z4 based on the balanced Whiteman generalized cyclo-
tomic binary sequence pair and gave the linear complexity of the sequence [15]. Wei et al.
introduced the quaternary sequence on Z4 based on the Ding generalized cyclotomic binary
sequence pair and discussed the linear complexity of the sequence [16,17]. The quaternary
sequences mentioned above all are constructed by selecting two homogeneous binary
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sequences. It is necessary to confirm whether the quaternary sequences constructed by
binary sequences with greater distinction have large linear complexity.

First, this paper proposes a new class of quaternary sequences with period pq based on
the Whiteman generalized cyclotomic binary sequence and the Ding generalized cyclotomic
binary sequence, which can be denoted by the first class of the generalized cyclotomic
quaternary sequence. Second, this paper proposes a new class of quaternary sequences
with period pq based on the Ding generalized cyclotomic binary sequence and the new
Ding generalized cyclotomic binary sequence [17,18], which can be denoted by the second
class of the generalized cyclotomic quaternary sequence. Moreover, the linear complexity
of the two quaternary sequences is computed by considering the Hamming weight of their
Fourier spectral sequences.

2. Preliminaries

Suppose that S = {Si} is a sequence over Fr with period N, where r is an odd prime,
Fr is the finite field with r elements, and N divides rm − 1 (m ≥ 1, m is a positive integer).
The linear complexity LC(S) of the sequence S is the smallest positive integer L satisfying

si + c1si−1 + · · ·+ cL−1si−L+1 + cLsi−L = 0, f or L ≤ i ≤ N. (1)

where the coefficients c1, c2, · · · cL ∈ Fr. The generating polynomial of S is defined by

s(x) =
N−1

∑
i=0

sixi ∈ Fr[x] (2)

Definition 1. [1] Let θ be an element inFrm of order N. Then the discrete Fourier Transform of S is
defined as

Ak =
N−1

∑
t=0

S(t) θtk, 0 ≤ k ≤ N − 1 (3)

The inverse formula of Equation (1) is given by

S(t) =
1
N

N−1

∑
t=0

Akθ−tk, 0 ≤ t ≤ N − 1 (4)

where Ak is called a Fourier spectrum of the sequence S. Note that A = {Ak} is called a
Fourier spectrum sequence with period N of S.

Lemma 1. [1]
N−1
∑

i=0
θdi =

{
0, i f d ≡ 0 (modN)

N, otherelse
.

Lemma 2. [14] LetA = {Ak} be the Fourier spectrum sequence of S. Then the linear complexity
of S is given by

LC(S) = |{k|Ak 6= 0, 0 ≤ k ≤ N − 1}| (5)

The linear complexity of S is further derived as

LC(S) = N − |{k|Ak 6= 0, 0 ≤ k ≤ N − 1}| (6)

Definition 2. Leta(t) andb(t) be a binary sequence with period N. Let ψ[x, y] be the inverse
Gray mapping defined by

ψ[a(t), b(t)] =


0, i f (a, b) = (0, 0)
1, i f (a, b) = (0, 1)
2, i f (a, b) = (1, 1)
3, i f (a, b) = (1, 0)

. (7)
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Definition 3. Indicator functions Ip(t) and Iq(t) are defined as

Ip(t) =

{
1, i f t ≡ 0 (modp),

0, otherwise.
Iq(t) =

{
1, i f t ≡ 0 (modq),

0, otherwise.
. (8)

Definition 4. The quadratic characters ηp(t) and ηq(t) are defined as

ηp(t) =


0, t ≡ 0(modp)

1, t ∈ QRp
−1, t ∈ NQRp

ηq(t) =


0, t ≡ 0(modq)

1, t ∈ QRp
−1, t ∈ NQRp

(9)

where QRp and NQRp are the sets of quadratic residues and quadratic non-residues in the set of
integers modulo p, respectively; By symmetry, QRp and NQRp are defined similarly.

3. The Linear Complexity of the First Class of Generalized Cyclotomic
Quaternary Sequences

Let p and q be two distinct odd primes and set N = pq. Define that
P = {p, 2p, 3p, · · · (q− 1)p}, Q = {q, 2q, 3q, · · · (p− 1)q}, then the residue ring
ZN = {0} ∪ P∪Q∪ Z∗N , where Z∗N denotes the set of all invertible elements in ZN . Accord-
ing to the Chinese remainder theorem, we can get ZN ∼= Zp × Zq, t 7→ (t1, t2) for ∀t ∈ ZN ,
where t = t1(modp), t = t2(modq).

The two generalized cyclotomic binary sequences are presented as follows.

S1(t) =


1, t ∈ P
0, t ∈ {0} ∪Q
1−ηp(t)ηq(t)

2 , t ∈ Z∗N

S2(t) =


1, t ∈ P
0, t ∈ {0} ∪Q
1−ηq(t)

2 , t ∈ Z∗N

(10)

where S1(t) is the Whiteman generalized cyclotomic binary sequences of order two with
period pq [17], S2(t) is the Ding generalized cyclotomic binary sequences of order two with
period pq [2]. Then, the first class of the generalized cyclotomic quaternary sequence can be
expressed by S′(t) = ψ[S1(t), S2(t)]. Clearly that the sequence S′(t) is different from those
in references [12,15,16]. Moreover, when t ranges over Z∗N , every element in S′(t) takes on
the same times.

The linear complexity of a periodic sequence can be determined by counting the
number of nonzero coefficients of its discrete Fourier transform, which is defined over a
finite field [11]. Therefore, a proper field should be found for the linear representation [11].

Let θ be a primitive pq-th root of unity in Frm where r ≥ 5 is the odd prime which is
not equal to p or q and Frm is the splitting field of xpq − 1. Suppose that α = θq, β = θp is
the pth and qth primitive root of unity in the field Frm , respectively.

According to the definitions of indicator function and quadratic character, the se-
quences S1(t) and S2(t) can be expressed as

S1(t) =
1
2
[
1− ηp(t1)ηq(t2) + Ip(t1)− Iq(t2)− Ip(t1)Iq(t2)

]
(11)

S2(t) =
1
2
{

1−
[
1− Ip(t1)

][
1− Iq(t2)

]
ηq(t2) + Ip(t1)− Iq(t2)− Ip(t1)Iq(t2)

}
(12)

Then we can derive the representation of S′(t)

S′(t) = ψ[S1(t), S2(t)] = 3S1(t) + S2(t)− 2S1(t)S2(t) = 1
2
[
3− 2ηp(t1)ηq(t2)

+Ip(t1)− 3Iq(t2)− Ip(t1)Iq(t2)− ηp(t1)η
2
q(t2)− Iq(t2)ηp(t1)ηq(t2)+

Ip(t1)ηp(t1)ηq(t2)− Ip(t1)Iq(t2)ηp(t1)ηq(t2) + Ip(t1)ηp(t1)η
2
q(t2)−

Ip(t1)Iq(t2)ηp(t1)η
2
q(t2)+Iq(t2)ηp(t1)η

2
q(t2)

] (13)
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Note that the representation holds for r ≥ 5.
The term of Fourier spectral sequence A′ = (A′k) of sequence S′(t) is defined by

A′ =
N−1
∑

t=0
S′(t)θtk = 1

2

[
3

N−1
∑

t=0
θtk − 2

N−1
∑

t=0
ηp(t1)ηq(t2)θ

tk +
N−1
∑

t=0
Ip(t1)θ

tk

−3
N−1
∑

t=0
Iq(t2)θ

tk−
N−1
∑

t=0
Ip(t1)Iq(t2)θ

tk −
N−1
∑

t=0
ηp(t1)η

2
q(t2)θ

tk
(14)

Lemma 3. [6] Let θ be such a primitive pqth root of unity over Frm , then

N−1

∑
t∈ZN

θi = 0,
N−1

∑
t∈pZ∗q

θi = −1(modr),
N−1

∑
t∈qZ∗p

θi = −1(modr). (15)

Lemma 4. [13]

N−1

∑
t=0

ηp(t1)ηq(t2)θ
tk =

{
0, k ∈ {0} ∪ pZ∗q ∪ qZ∗p

±
(
Sp − SNp

)(
Sq − SNq

)
, k ∈ Z∗N , ηp(k)ηq(k) = ±1

(16)

where Sp = ∑i∈QRp αi, SNp = ∑i∈NQRp αi; Sq = ∑i∈QRq βi, SNq = ∑i∈NQRq βi.

Lemma 5. [13]
N−1

∑
t=0

Ip(t1)θ
tk =

{
q(modr), k ∈ {0} ∪ qZ∗p
0, k ∈ Z∗N ∪ pZ∗q

(17)

N−1

∑
t=0

Iq(t2)θ
tk =

{
p(modr), k ∈ {0} ∪ pZ∗q
0, k ∈ Z∗N ∪ qZ∗p

. (18)

Lemma 6. [13]
N−1

∑
t=0

Ip(t1)Iq(t2)θ
tk = 1, 0 ≤ k ≤ N − 1. (19)

Lemma 7.

N−1

∑
t=0

ηp(t1)η
2
q(t2)θ

tk =


0, k = 0
±
(
Sp − SNp

)
, k ∈ Z∗N

0, k ∈ pZ∗q
±
(
Sp − SNp

)
∗ (q− 1)(modr), k ∈ qZ∗p

. (20)

Proof. By Chinese Remainder Theorem, we know t = qq−1
p t1 + pp−1

q t2(modpq), where
q−1

p represents the inverse element of q(modp), and p−1
q represents the inverse element of

p(modq). Then

N−1
∑

t=0
ηp(t1)η

2
q(t2)θ

tk = ∑
t1∈Z∗p

ηp(t1)θ
kqq−1

p t1 ∑
t2∈Z∗q

η2
q(t2)θ

kpp−1
q t2

= ∑
t2∈Z∗q

βkt2

(
∑

t1∈QRp

αkt1 − ∑
t1∈NQRp

αkt1

) (21)

Note that p - q−1
p , then θqq−1

p is the pth primitive root of unity, denoted as α. Similarly,

θpp−1
q is the qth primitive root of unity, denoted as β.
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If k = 0,
N−1
∑

t=0
ηp(t1)η

2
q(t2)θ

tk = (q− 1) · 0(modr) = 0.

If k ∈ pZ∗q ,
N−1
∑

t=0
ηp(t1)η

2
q(t2)θ

tk = 0 ∗ (−1)(modr) = 0.

If k ∈ qZ∗p,
N−1
∑

t=0
ηp(t1)η

2
q(t2)θ

tk = ±
(
Sp − SNp

)
∗ (q− 1)(modr).

If k ∈ Z∗N and k(modp) ∈ QRp,
N−1
∑

t=0
ηp(t1)η

2
q(t2)θ

tk= −
(
Sp − SNp

)
.

If k ∈ Z∗N and k(modp) ∈ NQRp,
N−1
∑

t=0
ηp(t1)η

2
q(t2)θ

tk =
(
Sp − SNp

)
. �

Lemma 8. Let
(
Sp − SNp

)
= δ and

(
Sp − SNp

)
= ξ. Then

A′k =



(3p+1)(q−1)
2 , i f k = 0

−2δξ−(1±δ)
2 , i f k ∈ Z∗N , ηp(k)ηq(k) = 1

2δξ−(1±δ)
2 , i f k ∈ Z∗N , ηp(k)ηq(k) = −1

−(3p+1)
2 , i f k ∈ pZ∗q

(q−1)(1±δ)
2 , i f k ∈ qZ∗p

(22)

Proof. The proof is omitted because A′ can be easily obtained by the lemmas 3–7. �

Lemma 9. [13] Sp ∈ Fr if and only if r ∈ QRp; Sq ∈ Fr if and only if r ∈ QRq.

Theorem 1. Suppose that r ≥ 5 , the linear complexity of the generalized cyclotomic quaternary
sequence S′(t) with period pq is calculated as follows.

(1)
If r satisfies one of two cases: ηp(r)ηq(r) = −1; ηp(r)ηq(r) = 1 and±2δξ 6= (1± δ)(modr).
Then

LC
(
S′
)
=


pq, i f r - (3p + 1), r - (q− 1), r - (1± δ)
pq− p + 1, i f r - (3p + 1), r - (q− 1), r|(1± δ)
pq− p, i f r - (3p + 1), r|(q− 1)
pq− q, i f r|(3p + 1), r - (q− 1), r - (1± δ)
pq− p− q + 1, otherwise.

(23)

(2)
If r satisfies one of two cases: ηp(r)ηq(r) = 1 and −2δξ = (1± δ)(modr); ηp(r)ηq(r) = 1
and 2δξ = (1± δ)(modr). Then

LC(S′) =


(pq + p + q− 1)/2, i f r - (3p + 1), r - (q− 1), r - (1± δ)
(pq− p + q + 1)/2, i f r - (3p + 1), r - (q− 1), r|(1± δ)
(pq− p + q− 1)/2, i f r - (3p + 1), r|(q− 1)
(pq + p− q− 1)/2, i f r|(3p + 1), r - (q− 1), r - (1± δ)
(pq− p− q + 1)/2, otherwise.

(24)

Proof. (1) If r meets ηp(r)ηq(r) = −1, then δξ ∈ Frm\Fr, when k ∈ Z∗N . That is, ±2δξ −
(1± δ) 6= 0(modr) for k ∈ Z∗N .
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If r meets ηp(r)ηq(r) = 1, then δξ ∈ Fr. We know ±2δξ 6= (1± δ)(modr). Easily,
we get

A′k =


(3p+1)(q−1)

2 , i f k = 0
±2δξ−(1±δ)

2 6= 0, i f k ∈ Z∗N
−(3p+1)

2 , i f k ∈ pZ∗q
(q−1)(1±δ)

2 , i f k ∈ qZ∗p

(25)

The result is clear.
(2) Similar proof is omitted. �

4. The Linear Complexity of the Second Class of Generalized Cyclotomic Quaternary
Sequences

In order to construct cyclic codes, Ding described a new generalized cyclotomy
(V0, V1), which is a new segmentation of the Ding–Helleseth generalized cyclotomy of
order two [2]. By use of this cyclotomic class, Liu et al. constructed a generalized cyclotomic
sequence [19]. Let the symbols and the functions be the same as before. It is easy to see
that this sequence can be expressed as

S3(t) =


1, t ∈ P
0, t ∈ {0} ∪Q
1−ηp(t)

2 , t ∈ Z∗N

(26)

Define the second class of generalized cyclotomic quaternary sequence with period
N = pq as S′′ (t) = ψ[S2(t), S3(t)]. Clearly, the sequence S′′ (t) is different from those in
references [12,15,16]. Moreover, when t ranges over Z∗N , every element in S′′ (t) takes on
the same times.

According to the definitions of indicator function and quadratic character, the se-
quences S3(t) can be expressed as

S3(t) =
1
2
{

1−
[
1− Ip(t1)

][
1− Iq(t2)

]
ηp(t1) + Ip(t1)− Iq(t2)− Ip(t1)Iq(t2)

}
(27)

Then we can derive the representation of S′′ (t)

S′′ (t) = ψ[S2(t), S3(t)] = 3S2(t) + S3(t)− 2S2(t)S3(t)
= 1

2
[
3 + Ip(t1)− 3Iq(t2)− 2ηq(t2) + 2Iq(t2)ηq(t2) + 2Ip(t1)ηq(t2)

−Ip(t1)Iq(t2)− ηp(t1)ηq(t2) + Iq(t2)ηp(t1)ηq(t2) + Ip(t1)ηp(t1)
ηq(t2)− 2Ip(t1)Iq(t2)ηq(t2)− Ip(t1)Iq(t2)ηp(t1)ηq(t2)

] (28)

The term of Fourier spectral sequence A′′ = (A′′ ) of sequence S′′ (t) is defined by

A′′ =
N−1
∑

t=0
S′′ (t)θtk = 1

2

[
3

N−1
∑

t=0
θtk +

N−1
∑

t=0
Ip(t1)θ

tk − 3
N−1
∑

t=0
Iq(t2)θ

tk − 2
N−1
∑

t=0
ηq(t2)θ

tk

+2
N−1
∑

t=0
Ip(t1)ηq(t2)θ

tk −
N−1
∑

t=0
Ip(t1)Iq(t2)θ

tk −
N−1
∑

t=0
ηp(t1)ηq(t2)θ

tk
]

(29)

Lemma 10. [16]
N−1

∑
t=0

ηq(t2)θ
tk =


0, k ∈ {0} ∪ qZ∗p ∪ Z∗N
pξ, k ∈ pZ∗q , k ∈ QRq

−pξ, k ∈ pZ∗q , k ∈ NQRq

. (30)



Information 2021, 12, 193 7 of 9

Lemma 11. [16]

N−1

∑
t=0

Ip(t1)ηq(t2)θ
tk =


0, k ∈ {0} ∪ qZ∗p
ξ, k ∈ Z∗N ∪ pZ∗q , k ∈ QRq

−ξ, k ∈ Z∗N ∪ pZ∗q , k ∈ NQRq

. (31)

Lemma 12. Let 2ξ(p− 1) + (3p + 1) = σ, then

A′′ =



(3p+1)(q−1)
2 , i f k = 0

ξ(2±δ)−1
2 , i f k ∈ Z∗N , ηp(k) = 1

−ξ(2±δ)−1
2 , i f k ∈ Z∗N , ηp(k) = −1

±σ
2 , i f k ∈ pZ∗q

q−1
2 , i f k ∈ qZ∗p

(32)

Proof. The proof is omitted because A′′ can be easily obtained by the lemmas 3–6,
10,11. �

Theorem 2. Suppose that r ≥ 5, the linear complexity of generalized cyclotomic quaternary
sequence S′′ (t) with period pq is calculated as follows.

(1) If r satisfies one of two cases:

ηp(r)ηq(r) = −1; ηp(r)ηq(r) = 1 and ±ξ(2± δ) 6= 1(modr). Then

LC(S′′ ) =



pq, i f r - (3p + 1), r - (q− 1), r - ±σ
pq− q + 1, i f r - (3p + 1), r - (q− 1), r|±σ
pq− p− q + 1, i f r|(q− 1), r|±σ
pq− p, i f r|(q− 1), r - ±σ
pq− 1, i f r|(3p + 1), r - (q− 1), r - ±σ
pq− q, i f r|(3p + 1), r - (q− 1), r|±σ

(33)

(2) If r satisfies cases:

ηp(r)ηq(r) = 1 and ±ξ(2± δ) = 1(modr). Then

LC(S′′ ) =



(pq + p + q− 1/2, i f r - (3p + 1), r - (q− 1), r - ±σ

(pq + p− q + 1)/2, i f r - (3p + 1), r - (q− 1), r|±σ

(pq− p− q + 1)/2, i f r|(q− 1), r|±σ

(pq− p + q− 1)/2, i f r|(q− 1), r - ±σ

(pq + p + q− 3)/2, i f r|(3p + 1), r - (q− 1), r - ±σ

(pq + p− q− 1)/2, i f r|(3p + 1), r - (q− 1), r|±σ

(34)

Proof. (1) If r meets ηp(r)ηq(r) = −1, then δξ ∈ Frm\Fr, when k ∈ Z∗N . That is,±ξ(2± δ) 6=
1(modr) for k ∈ Z∗N

If r meets ηp(r)ηq(r) = 1, then δξ ∈ Fr. So, ±ξ(2± δ) 6= 1(modr). Easily, we get

A′′ =



(3p+1)(q−1)
2 , i f k = 0

±ξ(2±δ)−1
2 6= 0, i f k ∈ Z∗N

±δ
2 , i f k ∈ pZ∗q

q−1
2 , i f k ∈ qZ∗p

(35)

The result is clear.
(2) Similar proof is omitted. �
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5. Conclusions

Pseudorandom sequences with period pq have been taken seriously, as pq is the RSA
modulus, which involves the complex problem of large integer factorization. This paper
constructs two classes of new generalized cyclotomic quaternary sequences with period
pq over Z4 by choosing different kinds of generalized cyclotomic binary sequence pairs,
and investigates the linear complexity respectively by counting the number of nonzero
terms of their Fourier spectral sequence. More quaternary pseudorandom sequences can
be constructed according to this idea. We estimate that most of them have large linear
complexity, and some of them may have low autocorrection.

In view of symmetry, we suppose that p < q. The results show that, the first class
of the generalized cyclotomic quaternary sequence has lower linear complexity only if
ηp(r)ηq(r) = 1, ±2δξ = (1± δ)(modr) and r|(3p + 1) ; the second one has lower linear
complexity only if ηp(r)ηq(r) = 1, ±ξ(2± δ) = 1(modr) and r|±σ . In other cases, the
linear complexity of the two classes of quaternary sequences is greater than half of the
period. Therefore, the two classes of the new sequences in this paper have a large linear
complexity in resisting the attack of the Berlekamp–Massey algorithm. Compared with
references [12,15,16], the linear complexity of the quaternary sequences constructed in this
paper have more values, which make them adapt to more kinds of Linear feedback shift
register with different orders. The next step planned is to study the autocorrelation of the
two classes of the new quaternary sequences.
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