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Abstract: Currently, analyzing the microscopic image of cotton fiber cross-section is the most accurate
and effective way to measure its grade of maturity and then evaluate the quality of cotton samples.
However, existing methods cannot extract the edge of the cross-section intact, which will affect the
measurement accuracy of maturity grade. In this paper, a new edge detection algorithm that is
based on the RCF convolutional neural network (CNN) is proposed. For the microscopic image
dataset of the cotton fiber cross-section constructed in this paper, the original RCF was firstly
used to extract the edge of the cotton fiber cross-section in the image. After analyzing the output
images of RCF in each convolution stage, the following two conclusions are drawn: (1) the shallow
layers contain a lot of important edge information of the cotton fiber cross-section; (2) because
the size of the cotton fiber cross-section in the image is relatively small and the receptive field of
the convolutional layer gradually increases with the deepening of the number of layers, the edge
information detected by the deeper layers becomes increasingly coarse. In view of the above two
points, the following improvements are proposed in this paper: (1) modify the network supervision
model and loss calculation structure; (2) the dilated convolution in the deeper layers is removed;
therefore, the receptive field in the deeper layers is reduced to adapt to the detection of small objects.
The experimental results show that the proposed method can effectively improve the accuracy of
edge extraction of cotton fiber cross-section.

Keywords: cotton fiber; cross-section; maturity measurement; edge extraction; deep neural network

1. Introduction

Cotton is one of the most important crops in the world. It is widely used in industrial
production and daily life because of its wide planting range, large yield, and low production
cost. Being affected by varieties, planting environment, climate, weather, and other factors,
the physical and chemical properties of cotton fibers will be different, which directly affects
the quality of cotton and cotton products [1–4]. Evaluating the quality of cotton objectively
and accurately is of great significance for making full use of cotton with different quality,
designing optimal production processes, and improving the quality of cotton products.
At present, many different indicators using for detecting the quality of cotton fiber have
been presented, in which the maturity of cotton fibers is most important because it is closely
related to color, strength, toughness, dyeability, and hygroscopicity of cotton. Therefore,
detecting the maturity of cotton fiber has become the most important method of evaluating
the quality of cotton [5].

Currently, the methods of detecting the maturity of cotton fiber include indirect detecting
methods and direct detecting methods. Indirect detecting methods include sensory detection,
polarized light-detecting, and airflow instrument detecting, etc. [6–8]. Direct detecting meth-
ods mainly include FIAS (Fiber Image Analysis System), cotton fibers cavity/wall contrasting,
longitudinal morphology analyzing, and cross-section analyzing [2,9,10]. The direct detection
method is more accurate than the indirect detection method in general, and the cross-section
analysis that is based on microscopic image processing of cotton fibers is widely used and the
most accurate direct detecting method.
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The cotton fiber cross-section analyzing method requires making the cross-sectional
microscopic slide of the cotton sample firstly [11]. Subsequently, the microscopic image
of the cotton fibers’ cross-sections is captured by microscope and CCD camera, and the
maturity of each cotton fiber is analyzed by image processing method. Finally, the quality
of the cotton sample is evaluated according to the statistical indicators of all the cotton
fiber maturity. To analyze the cotton fiber maturity through a microscopic image of their
cross-sections, it is necessary to extract the edge and features of the image area of each
cotton fiber cross-section. From features of edge and image area, the growth status and
maturity of the cotton fiber can be calculated. However, low contrast and high background
noise are the main characteristics of microscopic image of cotton fiber cross-section, so
it is difficult to extract an accurate edge using the traditional global threshold and local
threshold image segmentation methods, as well as edge detection operators, such as Canny,
Prewitt, Sobel, etc. Besides, the following problems may occur in the process of microscopic
slide making and image capturing: (1) the cross-section of cotton fiber is scratched and
damaged by the blade in the process of making the slide; (2) parts of the edge of the
cross-section are a blur for uneven illumination or inaccurate microscope focusing; (3)
some cross-sections of cotton fiber adhere to each other; and, (4) there are impurities in
slides. Figure 1 shows the microscopic image, and the rectangular areas that are noted by
1–4 indicate four types of problems discussed above, respectively. Among them, problem
(3) is more serious, because the number of cross-sections adhered to each other is usually
large (about 44.6% in Figure 1). Extracting the edges of those cross-sections accurately may
effectively improve the accuracy of evaluating their maturity.

Figure 1. Microscopic image of cotton fiber cross-section (part).

Some scholars have presented different edge detecting methods for the cotton fiber
cross-section. B. Xu used the local dynamic threshold segmentation method to detect
the edge of cotton fiber cross-section [12]. Yan Wan designed a double-threshold image
segmentation method, in which the advantages of global threshold and local threshold are
comprehensively utilized. Xiaowen Guo used the adaptive threshold image segmentation
method to detect the edge of the cross-section [11]. Quande Wang used the per-pixel
adaptive dynamic threshold image segmentation method to extract the edge of cross-
sections, and the Couple-Contour Model (CCM) is designed to describe the features of the
cotton fiber cross-section that can be used to remove the wrong parts of edge extracted
and repair defects on edge [13]. The performance of the above methods is good when
the quality of the image is great enough. However, it is difficult to extract accurate and
complete edges under conditions, such as if the edge of the cross-section is damaged, local
blur, or adhered to each other, which will affect the accuracy of quality evaluating for
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cotton sample. Besides, it is necessary to analyze and calculate the maturity of cotton fibers
in the cotton samples to be tested as more as possible in order to improve the accuracy of
quality evaluating of cotton sample. However, an increased number of cotton fibers will
further increase the opportunity that cross-sections have adhered to each other in the slide.
Therefore, it is vital to study and design a better edge extracting method to improve the
detection accuracy of cotton quality.

With the development of computer hardware and a great improvement in computing
power, deep learning (DL) has been successfully applied in image edge extraction, image
segmentation [14,15], image classification [16,17], object detection [18,19], tracking, etc.
When compared with the traditional edge detecting methods, the deep neural network can
learn stable image features with high distinguishing ability, different levels, and different
scales that are beneficial for edge detecting. At present, edge detection methods that are
based on deep neural network include Deepedge [20], N4-Fields [21], HED [22], RCF [23],
etc. Among those methods, RCF has the best performance on the typical datasets for edge
detecting testing, such as BSDS500, NYUD, and Multicue.

In this paper, we propose an edge information extraction method that is based on RCF.
We first adopted the standard RCF for training and detection, according to the characteris-
tics of the cotton fiber cross-section in the microscopic image. After analyzing the output
images of RCF in each convolution stage, we draw the following two conclusions: (1) the
shallow convolution layers of CNN learn the image features related to the edge of the
cross-section of cotton fiber; (2) with the increase of the receptive field, the edge features
learned from the deeper convolution layers become more and more coarse. Therefore,
for the edge extraction of the cotton fiber cross-section, this paper makes the following two
modifications to RCF: (1) modify the network supervision model and loss calculation struc-
ture; (2) the dilated convolution in the last convolution stage in RCF is removed. From the
experimental results, the method that is presented in this paper can more accurately extract
the edge of cross-sections, and it can especially improve the accuracy of edge extracting for
cross-sections adhered to each other.

This article is structured, as follows. In Section 2, we introduce the method of maturity
calculation and quality evaluation of cotton fiber samples. In Section 3, we present the
modified RCF. Section 4 presents the Experimental Results and Discussion. Section 5
presents the Conclusions.

2. Process of Evaluating Maturity of Cotton Fiber by Image Analyzing

Each cotton fiber has an inner cavity, and the cotton fiber with higher maturity has
a smaller inner cavity generally. Figure 2 shows microscopic image of a single cotton
fiber cross-section. In Figure 2, (a) is microscopic image of a cotton fiber cross-section.
(b) represents the edges that are used for maturity evaluating: the red line is the outer
edge of the cross-section (denoted by Lo) and the green line is the edge of the inner cavity
(denoted by Li).

Figure 2. Cross-section and edge of cotton fiber. (a) Microscopic image of a cotton fiber cross-section.
(b) Edge of cross-section.
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Let A (·) and P (·) denote functions to calculate the area and perimeter of the image
region enclosed by an edge, respectively, then the maturity of the cotton fiber, as denoted by
θ, can be calculated according to its outer edge Lo and inner edge Li [24] by Formula (1) :

θ =
4π(A(Lo)− A(Li))

P2(Lo)
(1)

Through manual analysis and statistics, in general, the θ value of cotton fiber with
higher maturity is greater than 0.6; cotton fiber with low maturity is between 0.3 to 0.6;
and, dead cotton fiber is less than 0.3 [11].

However, the quality of microscopic imaging and damage in slide making may result
in being inner edge broken, or even disappeared, as shown in Figure 3. Therefore, after ex-
tracting the outer edge, it needs to process an inner edge: if there is no inner edge found,
the skeleton of the region enclosed by the outer edge extracted as the inner edge; if the
inner edge is broken, then multiple fragments of the inner edge are connected with lines to
form whole inner edge [13]. Figure 3 shows the processing results.

Figure 3. Processing of inner edge of cross-section.(a) Cross-section without inner edge. (b) Normal
cross-section. (c) Cross-section with multiple fragments of the inner edge.

If the number of cotton fibers in a cotton sample under test is denoted by N, the set of
their maturity calculated by Formula (1) is denoted by {θ0, θ1, . . . , θN−1}, and its mean and
standard deviation are denoted by µ and σ, respectively, then the skewness Sθ(Θ) of it can
be calculated by Formula (2):

Sθ(Θ) =
1
N

[
N−1

∑
i=0

(
θi − µ

σ

)3
]

(2)

−Sθ(Θ) can be used to describe the statistical characteristic of maturity distribution
in the cotton sample under test: If the proportion of cotton fibers with high maturity is
relatively large,−Sθ(Θ) is positive; Conversely, if the proportion of cotton fibers with low
maturity is relatively large, then −Sθ(Θ) is negative. Figure 4 is the maturity distribution
curve of five cotton samples with different quality (the range of maturity θ is discretized
into ten equal intervals, and proportions of cotton fibers where maturity is in every interval
are calculated). Table 1 [11] shows the characteristic of the maturity distribution curve,
skewness, and quality of cotton sample of five cottons samples. It can be seen, from Figure 4
and Table 1, that skewness can significantly distinguish the cotton samples with different
qualities. Therefore, after calculating the maturity of all cross-sections, the quality of cotton
samples can be evaluated by calculating the skewness of maturity of all cross-sections.
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Figure 4. Maturity distribution curves of five cotton samples with different quality.

Table 1. Relation among−Sθ(Θ), characteristic of maturity distribution curve, quality of cotton sample.

−Sθ(Θ) Characteristic of Quality of Cotton Sample Maturity Distribution Curve

[0.3, 1.0] Sharp right inclining Excellent
[0.1, 0.3) Right inclining Good
[−0.1, 0.1) Approximate normal distribution Normal
[−0.3,−0.1) Left inclining Poor
[−1.0,−0.3) Sharp left inclining Bad

3. Edge Detection of Cotton Fiber Cross-Section Based on Modified Rcf
3.1. Rcf Architecture

Because the VGG network has a strong ability of image characteristic extraction,
and the network structure is simple and easy to modify, RCF uses VGG as the backbone
network of edge detection. Figure 5 shows the RCF network architecture, and the specific
changes of RCF to VGG can refer to reference [23].

Figure 5. RCF network architecture.

Figure 6 is an example of edge detection of cotton fiber cross-section using RCF,
and Figure 7 is the output feature map of each stage of RCF. It can be seen from Figure 7
that: (1) the shallow layers extracts a large number of edge details, but it also contains
part of the non-edge information, with the deepening of the network layers, the non-
edge information is gradually removed (Figure 7a–c). (2) In the deeper layers of the
RCF, dilated convolution is used to enlarge the receptive field, so the output becomes
coarse (Figure 7d,e).



Information 2021, 12, 196 6 of 15

Figure 6. Edge detection of microscopic image of cotton fiber cross-section using RCF. (a) is the
original image. (b) is the true edge of the manual annotation. (c) is output image of RCF. (d) is the
edge of cross-sections image that is obtained by Non-Maximum Suppression (NMS).

Figure 7. Output image of each stage in RCF.

3.2. Optimization of Deep Supervision Network Structure

The RCF deep neural network calculates the loss value at each stage of VGG backbone
network for deep supervised learning, as shown in Figure 8a. For the cotton fiber cross-
section microscopic image I with width and height W and H, respectively, let ω be the
weight set of RCF deep neural network. Xk

(w,h) is the feature vector at position (w, h) in
the output feature map of stage k (where 1 ≤ k ≤ K, K is the total number of stages
in RCF network, K = 5). Yk

(w,h) is the probability that position (w, h) is a true edge pixel.
Subsequently, the loss value in stage K during RCF network training can be calculated by
Formula (3):

l
(

Xk
(w,h); ω

)
=


α · log

(
1− P

(
Xk
(w,h); ω

))
if yk

(w,h) = 0
0 if 0 < yi ≤ η

β · log
(

Xk
(w,h); ω

)
otherwise

(3)

where α = λ · |Y+|
|Y+ |+|Y− | , β = λ · |Y−|

|Y+ |+|Y− | , Y+ and Y− are the positive and negative sample
sets, respectively, and the super parameter λ is used to reconcile the number difference
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between positive and negative samples. Therefore, the total loss value of the whole deep
neural network is calculated, as follows,

L(ω, K) = ∑
0≤w≤W−1
0≤h≤H−1

(
K

∑
k=1

l
(

Xk
(w,h); ω

)
+ l
(

Xfuse
i ; ω

))
(4)

By analyzing the microscopic image of cotton fiber cross-section, it can be seen that
the edge width of the cross-section is relatively consistent, so the deep supervised learning
with too many levels may lead to the deterioration of the edge detection performance of the
trained RCF deep neural network. Let the number of stages be set to K′, and the test error of
RCF edge detection deep neural network trained with L(ω, K′) loss function is e(L(ω, K′)).
Using RCF for the edge detection of cotton fiber cross-section, the optimal deep supervision
level number Kopt can be obtained by solving the following optimization problem,

Kopt = min
K′<K

e
(

L
(
ω, K′

))
(5)

The solution of the above equation is very time-consuming, so we directly determine
Kopt through experimental tests. Figure 8b–e presents the network structure after adjusting
the deep supervision network structure of RCF to determine Kopt in this paper, (b) only
calculates the loss after the fusion of output feature maps of each stage for network training,
(c)∼(e) only calculate the loss of the output feature graphs of the first two, the first three,
and the last two stages for network training. The training and test in the dataset constructed
in this paper show that shallow supervision (Dsn12) has the best edge detection, whcih is,
(c) in Figure 8 represents the optimal RCF deep neural network structure.

Figure 8. RCF networks with different Deeply-Supervised Structure.

3.3. Multi-Scale Edge Detection and Fusion of Image Pyramid

The image pyramid is a multi-scale image representation method, and Figure 9
presents the schematic diagram of the fusion of multi-scale edge detection results cross-
sectional microscopic image of cotton fiber. In the edge detection task of cross-sectional
microscopic image of cotton fiber, the quality of edge detection can be improved by fusion
of the results of network edge detection at different scales. For the microscopic image
I of the cross-section of cotton fiber with width and height W and H, the image in the
layer l(0 ≤ l ≤ (L− 1)) of the image pyramid is denoted as Pyl(I), the width and height
of Pyl(I) are 2−l ∗W and 2−l ∗ H, and the forward prediction result of Pyl(I) is denoted
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as P
(

Pyl(I); ω
)

, for any 0 ≤ w ≤
(

2−l ∗W − 1
)

, 0 ≤ h ≤
(

2−l ∗ H − 1
)

, the forward

predicted value of the pixel at position (w, h) in image Pyl(I) is P
(

Pyl
(w,h)(I); ω

)
. Subse-

quently, the fusion result Pfuse
(

I(w,h); ω
)

of multi-scale edge detection at position (w, h)
in the microscopic image I of cotton fiber cross-section is calculated according to the
following formula,

Pfuse
(

I(w,h); ω
)
=

L−1

∑
l=0

P

(
Pyl(
|2−l
∗w|,|2−l∗h |)

(I); ω

)
(6)

in this paper, L = 3, the experimental results show that using an image pyramid to realize
multi-scale fusion prediction can effectively improve the performance of edge detection.

Figure 9. The schematic diagram of multi-scale edge detection and fusion of image pyramid.

4. Experimental Results And Discussion
4.1. Construct of the Experimental Dataset

The images used in this paper are captured through a 12-megapixel digital camera and
a 20× objective lens on a light microscope (Olympus CH30). The phenomenon of “multi-
focus” in microscope-focused imaging leads to local blurring in the collected microscopic
images. Therefore, in the experiment, multi-focus microscopic image fusion is used to
obtain clearer and complete images.

A total of 30 original images of cross-sectional microscopic images of cotton fiber
with 4272 × 2848 resolution were collected from different cotton samples [12], and a
total of 720 microscopic images of cotton cross-sectional with 427 × 320 resolution were
generated by the random cutting method. All of the cross-sectional microscopic images
of cotton fiber in the dataset are manually labeled with the edge-based semi-automatic
image annotation tool ByLable that was developed by Xuebin Qin et al. [25]. Subsequently,
the dataset containing 7200 cross-sectional microscopic images of cotton fiber was generated
by data enhancement methods, such as scale scaling, image rotation, and mirror image.
Among them, 5200 images were used for training, and 2000 images were used for testing.

4.2. Software and Hardware Equipment

In the experiment, the edge detection method of cotton cross-sectional is realized by
the caffe platform. ImageNet pre-trains the VGG-16 backbone network, and the stochastic
gradient descent (SGD) method is selected for network training [26]. The hyper-parameters
are set, as follows: the initial learning rate is 1 × 10−6, the learning rate change index is
0.1, the momentum and weight attenuation are set to 0.9 and 0.0002, respectively, and the
maximum number of iterations is set to 40,000. The server CPU for deep neural network
training and testing is Intel (R) Core (TM) i7-8700K CPU @ 3.20 GHz, with 32 GB memory.
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It is equipped with two NVIDIA GeForce GTX 1080Ti graphics cards and it enables cuDNN
(NVIDIA CUDA® Deep Neural Network library) acceleration.

4.3. Influence Test and Analysis of Dilated Convolution on Edge Detection

The original RCF and network RCF-NoDila (RCF network without dilated convolu-
tion) are tested on the well-known BSDS500 benchmark and the dataset constructed in this
paper, and Table 2 shows the test results. From the experimental results on the BSDS500
benchmark, the dilated convolution makes the ODS value and AP value of the network
increase to some extent. However, the ODS value and AP value on the microscopic image
dataset of cotton fiber cross-section constructed in this paper are reduced, and it can be
seen from Figure 10 that the edge detection performance without dilated convolution is
better (the area that is shown in the red box in Figure 10). At the same time, some non-
edge noises in the image are suppressed (the area is shown in the green box in Figure 10).
The experimental results show that, for different types of datasets, the network structure
should be adjusted appropriately according to the image characteristics.

Table 2. Comparison of edge detection results of dilated convolution on different datasets.

Method
BSDS500l Our Dataset

ODS AP ODS AP

RCF 0.806 0.816 0.878 0.874
RCF-NoDila 0.803 0.812 0.879 0.880

Figure 10. The influence of dilated convolution on different datasets. (a) The original image. (b) RCF.
(c) RCF-NoDila.

4.4. Influence Test and Analysis of Deep Supervisory Structure on Edge Detection

The networks in Figure 10, RCF, HED, and traditional Canny edge detection method
are trained and tested on the dataset constructed in this paper in order to analyze the per-
formance differences of different deep supervised network structures (shown in Figure 10)
on the edge detection of microscopic image of cotton fiber cross-section. The ODS, OIS,
and AP values of each method are calculated and the corresponding P-R curves are drawn
for performance comparison and analysis.

Table 3 presents the performance index calculated according to the test results of each
edge detection method. The suffixes NoDsn, Dsn12, Dsn123, and Dsn45 represent the
network structure and loss calculation method that are shown in Figure 8b–e, respectively.
Figure 11 is the P-R curve of each edge detection method. It can be seen from Table 3
and Figure 11 that, for the edge detection of cross-sectional microscopic images of cotton
fiber, simplifying the deep supervision of the network can significantly improve the edge
detection performance of the network. Better results can be obtained by simplifying
supervision of deep neural network appropriately; with shallow supervision (RCF-Dsn12),
the best edge detection effect can be obtained.
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Table 3. Comparison of experimental results of edge detection algorithms.

Method ODS OIS AP

RCF-NoDsn 0.899 0.903 0.828
RCF-Dsn12 o.893 0.897 0.914
RCF-Dsn45 0.885 0.888 0.841
RCF-Dsn123 0.881 0.887 0.899

RCF 0.878 0.882 0.874
HED 0.877 0.879 0.863

Canny 0.439 0.439 0.000

Figure 11. P-R curve of each edge detection algorithm.

4.5. Influence Test and Analysis of Multi-Scale Edge Detection and Fusion of Image Pyramid

In order to test the effectiveness of multi-scale edge detection and fusion of image
pyramid for improving the edge detection performance of microscopic image of cotton
fiber ross-section, the performances of RCF and HED after multi-scale edge detection and
fusion using image pyramid are tested respectively. The P-R curve drawn according to
the test results is shown in Figure 12, and the edge detection performance index is shown
in Table 4. The same color curve in Figure 12 corresponds to the same network structure.
The real line is the P-R curve without image pyramid, and the imaginary line is the P-R
curve with multi-scale edge detection and fusion of image pyramid. For the same kind of
network, the P-R curve that is represented by the dotted line is always above the solid line,
which is, the edge detection ability of the network is greatly improved by using multi-scale
edge detection and fusion of image pyramid, and it can be seen from Table 4 that the
changes of ODS and OIS values of the two algorithms using multi-scale edge detection and
fusion of image pyramid are relatively small, but the AP value is greatly improved.



Information 2021, 12, 196 11 of 15

Figure 12. P-R curve of multi-scale edge detection and fusion of image pyramid.

Table 4. Comparison of multi-scale edge detection and fusion of image pyramid experiments.

Method ODS OIS AP

RCF-MS 0.883 0.884 0.886
RCF 0.878 0.882 0.874

HED-MS 0.878 0.883 0.880
HED 0.877 0.879 0.863

Figure 13 shows the edge detection method of microscopic image of cotton fiber
cross-section with the best performance at present, which is, the edge detection effect of
the adaptive threshold segmentation method in Reference [11] is compared with that of
the method in this paper. From Figure 13, it can be seen that the edge information that is
extracted by the adaptive threshold segmentation is chaotic, and there are many useless
information and edge fracture phenomena, which is also the reason why the method
needs to design the CCM model to remove the error edge information [13]. In contrast,
the cross-sectional edge of cotton that was extracted by the method in this paper is clearer
and more accurate.
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Figure 13. The comparison of edge detection effect between the method in this paper and the
method in reference [11]. The first column is the cross-sectional microscopic images of cotton fiber,
the second column is the manually labeled edge information, the third column is the edge detection
result of the method in this paper, and the fourth column is the edge detection result of the method
in reference [11].

In a test dataset containing 2000 cross-sectional microscopic images of cotton fiber,
the number of manually labeled cotton fiber cross-sections was 61,472, of which the number
of cross-sections of cotton fiber adhered to each other was 28,461, and the number of cross-
sections of cotton fiber without adhesion was 33,011. Figure 14 presents the comparison of
the number of cross-sections of cotton fiber extracted by the two methods. In reference [11],
99.34% cross-sections of non-adhesion and 62.54% cross-sections of adhesion were successfully
extracted by the method. In this paper, 99.63% cross-sections of non-adhesion and 87.84%
cross-sections of adhesion were successfully extracted by the method. Figure 14 shows that
the two methods are excellent in extracting cross-sectional areas of non-adhesion cotton.
In contrast, the proposed method is more effective in extracting cross-sectional areas of
adhesion cotton, and it can successfully extract nearly 90% of the cross-sectional areas of
adhesion cotton, thus further improving the accuracy of cotton sample quality assessment.

Figure 14. The comparison of edge detection effect between the method in this paper and the method
in reference [11].

The extracted edge information of cotton fiber cross-section is the outer edge.
After extracting the inner edge of each outer edge according to the method that is shown in
Figure 2 and calculating the maturity according to formula (1), the maturity of cotton
samples can be calculated according to formula (2). Figure 15 shows the quality evaluation
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results that were obtained by the method in reference [11] and the method in this paper
after analyzing the cross-sectional microscopic images of cotton fiber of the other 20 cot-
ton samples. The 20 groups of histograms presented in Figure 15 show the maturity of
10 cotton samples calculated according to the results of manual labeling, the edge detection
results of the method in reference [11], and the edge detection results of the method in
this paper. The lines in the line chart show the difference between the maturity of cotton
samples calculated by the two methods and the maturity of cotton samples calculated
according to the manual labeling results. It can be seen, from Figure 15, that the method in
reference [11] has insufficient ability to detect the edge of the cross-sections adhere to each
other, which makes the calculated maturity of cotton sample larger, with an average error
of 0.055. The method in this paper effectively overcomes the above problem, and it makes
the deviation of the calculated maturity of the cotton sample smaller and more accurate,
with an average error of 0.023.

Figure 15. The comparison of evaluation results of cotton fiber quality between method in this paper and method in
Reference [11].

In addition, we also select several widely used image segmentation algorithms to
compare with our method, including super-pixel segmentation method [27,28], watershed
method [29,30], and automatic contour method [31,32]. The corresponding experimental
results are shown in Figure 16. The superpixel segmentation can be used to extract the
external edge information of the region where the cotton fiber cross-section is located;
however, this method cannot extract the cross-section edge of a single cotton fiber cor-
rectly when the cross-section of cotton fiber has adhered to each other or close together.
The watershed segmentation can detect the faint edges of adhered objects in the image;
however, it is susceptible to sharp changes in the edge, leading to false detection and
missed detection. The active contour method is similar to superpixel segmentation and it
can be used to extract the external edge information of the region where the cotton fiber
cross-section is located; however, the edge of cotton fiber cross-section in the image cannot
be extracted intact.
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Figure 16. Comparison of detection results of different algorithms.

5. Conclusions

According to the characteristics of the cross-sectional microscopic image of cotton
fiber, this paper adjusts the network structure and convolution method of the RCF deep
neural network that has achieved the best detection performance on the current typical
edge detection datasets BSDS500, NYUD, and Multicue. The experimental results show
that better detection can be achieved by adjusting the network structure and convolution
method according to the characteristics of the microscopic image of cotton fiber cross-
section. At the same time, this paper uses multi-scale edge detection and the fusion of image
pyramid to further improve the performance of edge detection, so as to ultimately improve
the accuracy of cross-section extraction quantity and cotton sample quality evaluation.

In the future, I think that the following aspects can be further studied: in terms of
technical improvement, it can be combined with object detection, image segmentation,
and other technologies. For example, in combination with object detection, we can first
determine the rectangular region where the cotton fiber cross-section is located and then
perform boundary extraction within the region. In image acquisition, there is also a lot
of research and progress in the technology that is related to macrolide making and image
acquisition, so it is advisable to adopt more advanced technology to obtain higher quality
micro slides and better cameras in order to obtain clear images.
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