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Abstract: Freely available satellite imagery improves the research and production of land-cover
products at the global scale or over large areas. The integration of land-cover products is a process of
combining the advantages or characteristics of several products to generate new products and meet
the demand for special needs. This study presents an ontology-based semantic mapping approach
for integration land-cover products using hybrid ontology with EAGLE (EIONET Action Group
on Land monitoring in Europe) matrix elements as the shared vocabulary, linking and comparing
concepts from multiple local ontologies. Ontology mapping based on term, attribute and instance is
combined to obtain the semantic similarity between heterogeneous land-cover products and realise
the integration on a schema level. Moreover, through the collection and interpretation of ground
verification points, the local accuracy of the source product is evaluated using the index Kriging
method. Two integration models are developed that combine semantic similarity and local accuracy.
Taking NLCD (National Land Cover Database) and FROM-GLC-Seg (Finer Resolution Observation
and Monitoring-Global Land Cover-Segmentation) as source products and the second-level class
refinement of GlobeLand30 land-cover product as an example, the forest class is subdivided into
broad-leaf, coniferous and mixed forest. Results show that the highest accuracies of the second class
are 82.6%, 72.0% and 60.0%, respectively, for broad-leaf, coniferous and mixed forest.

Keywords: integration; land cover; ontologies; local accuracy

1. Introduction

Modern geoscience is a typical data-intensive science. With the advent of the big
data era, the value of geoscience data and the thinking and methods of data processing
and analysis need to be re-examined in order to make efficient use of these resources [1].
Land-cover data, one of the big data of geosciences, are an important foundation to
support scientific research. Global land-cover (GLC) products are important basic data for
international initiatives, such as the United Nations Framework Convention on Climate
Change, Sustainable Development Goals and the Kyoto Protocol, as well as for monitoring
environmental change and global change research by governments and the scientific
community [2]. Since the 1980s, 1 km to 10 m resolution of global, continental, regional and
national land-cover products with different classification systems and product accuracies
have been developed [3–12]. With the development in recent years of open satellite archives
and cloud computing platforms such as the Google Earth engine [13], the number of land-
cover data sources and the amount of generated data have increased continuously. In a
review of global aquatic land-cover products [14], the statistical results show that about
50% (16 out of 33) of the datasets reviewed were produced after 2014. To date, there are
six existing global 30 m resolution impervious products [15]. GlobeLand30 has launched
three global land-cover products with 30 m resolution in the nominal years 2000, 2010 and
2020 (http://www.globeland30.org) (accessed on 28 May 2021). FROM-GLC launched a
10 m resolution product FROM-GLC10 (http://data.ess.tsinghua.edu.cn) (accessed on 28
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May 2021). The Global Land Cover Facility and the Land Cover Climate Change Initiative
projects provide GLC maps on an annual basis [16]. Herold et al. [16] summarise the
trends in available global land-cover maps with respect to spatial, thematic and temporal
properties. The future development trend is close to achieving real-time access to land-
cover products. This has, in turn, led to the production of integrated or fusion maps
based on exploiting the strengths of individual land-cover maps. Integration is a method
for generating new land-cover products. Land-cover data reconstruction of multi-source
data integration merges various sources of data through a certain mathematical algorithm.
Integration aims to gather the advantages of each product by quantifying the advantages
and disadvantages of each data source [17]. In the past decade or so, various methods of
land-cover integration have been proposed [18–25].

To realise the integration of land-cover data, we should consider the characteristics of
four aspects of land-cover products: thematic or semantic (i.e., land-cover types), spatial
(i.e., spatial resolution), temporal (i.e., temporal frequency) and accuracy (including spatial,
temporal and attribute accuracy, though only attribute accuracy is considered here). Gen-
erally speaking, the integration of land-cover products selects the source products with a
similar time period and spatial resolution. Thus, these two factors are not considered in
this study.

Remote sensing-based products, such as land-cover maps, are usually produced
independently for specific case studies or research projects by using different classification
systems and image processing methods. Accordingly, there are numerous classification
systems that often overlap or correlate in content semantics, resulting in heterogeneity and
the difficulty of information interaction between them. An internationally accepted land-
cover classification system does not really exist; however, there are major classifications
and legends that in the past have played a major role in land-cover mapping areas. The
most famous and widely applied is the Anderson land-use and land-cover classification
system [26]; another widely applied system is the Coordination of Information on the
Environment (CORINE) system [27]. For users, the semantic differences between land-
cover categories cannot be distinguished based only on the class name or definition.
The heterogeneity of land-cover semantics is shown in the comparison of land-cover
products at different times to extract changes and the integration of multiple products with
different semantics [28]. For example, when we study the change of land cover in the past
15 years, we face different versions of land-cover products, with later products possibly
containing more categories. If the relationship between these categories and previous
product categories is not clear, then the degree of change cannot be correctly assessed.
Literature [22] found that GlobeLand30 showed a trend of overexpression of grassland
when integrating the land-cover products GlobCover 2009, CCI-LC, MODIS-2010 and
GlobeLand30 in Africa. This finding was mainly confused by the heterogeneity of ground
features and the inconsistency of the classification system. Herold et al. [29] showed that
due to the different semantics of forest types for different land-cover products, the range of
forests on the result map is very different.

The LCCS (land-cover classification system) of the United Nations Environment
Programme/Food and Agriculture Organization [30] is a step towards a globally unified
land-cover classification system. The design of the LCCS is divided into two main stages.
In the initial dichotomy phase, eight main types of land cover are defined. Then in the
module hierarchy phase, each class is defined by a different number of classifiers, which
are further defined by combining them with attributes. Attributes include two aspects:
environmental attributes (e.g., climate, terrain, altitude, soil, lithology and erosion), which
affect land cover but are not inherent characteristics, and specific technical attributes, which
can be freely added to the land-cover category. Therefore, the focus is no longer on the class
name, but a group of classifiers is used to define the class. Semantic information contained
in the land-cover type can be more clearly expressed in the process of defining the class.
GLC2000, GlobCover and CCI land-cover maps are all adopted LCCS.
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For most earth surface monitoring programmes, information on land cover and land
use is often mixed. To improve the flexibility of the surface monitoring system and adapt
to current and future surface monitoring plans of different scales, it is necessary to clearly
distinguish between land cover and land use to describe the landscape. Representatives
from 27 European countries’ national authorities on land monitoring have launched the
Harmonized European Land Monitoring Project, which aims to improve the maturity of
European land monitoring. The concept of future European integrated land monitoring
system is based on the EAGLE concept as a tool for semantic translation and data integra-
tion between datasets and terms [31]. EAGLE is an object-oriented data model following
the bottom-up approach. It can be used as a semantic translation tool between different
classification systems and a data model to analyse class definitions and find semantic
gaps, overlaps and inconsistencies. The EAGLE matrix decomposes the land-cover class
definition into components, attributes and characteristics instead of classifying them. The
three parts are land-cover components (LCCs), land-use attributes (LUAs) and further
characteristics (CH). The abstractions of real-world landscapes related to land-cover mod-
elling are represented as LCCs, which are equivalent to the components of a land-cover
category. Defining the barcode value of each item in the EAGLE matrix is equivalent to
deconstructing the semantic information contained in the land-cover type. With the LCCs
as the basis, a land unit or a land-cover class can then be further specified by attaching a
land-use-related attribute in the LUA block and attaching more detailed characteristics
with matrix elements from the CH block.

Zhu et al. [25] carried out a detailed review on the integration methods of land
cover. Traditional data fusion technology such as voting method [31], Dempster–Shafer
theory [32] and probability theory [33] and their principles lack effective fusion ways for
land-cover data with different classification systems. Previous studies seldom considered
semantics. Several early studies directly compared and transformed each legend during
integration [34,35]. The number of categories in the integration result can only be the
same as the one with the least number of categories in the source product. The source
product with more categories can only merge categories according to the source product
with less categories [20–22,36]. Xu et al. [24] used a state probability vector to represent the
probability that each legend belonged to the International Geosphere Biosphere Programme
type. The acquisition of state probability is based on subjective definitions and references
to other literature. Some studies took semantic translation into account. Perez-Hoyosa
et al. [19] used LCCS as the medium to calculate overlapping matrices and similarity
parameters. Zhu et al. [25] used the EAGLE matrix of semantic translation to subdivide the
GlobeLand30 (2010) forest class into coniferous, broad-leaf and mixed forests.

Semantic formal knowledge representation is the basis of integration earth observation
data, big data computing, mining and visualisation. With the continuous development of
science and technology and the continuous accumulation of data, knowledge engineering
in the new era has emerged. Ontologies, semantic network and knowledge graph have been
the carriers of different knowledge engineering in recent years. As knowledge management
models, they have been widely used in the field of artificial intelligence and knowledge
engineering and play important roles in knowledge sharing, knowledge reasoning and
intelligent assistance strategies [37].

Any appropriate solution of the semantic heterogeneity problem has to formally spec-
ify the meaning of the terminology used by each classification system. In this regard, the
computer can infer a translation automatically between the different system terminolo-
gies. Ontology technology has always been the focus in the consistent representation and
modelling of semantic information. Ontology is a clear formal specification of a shared
conceptual model [38], which can clearly explain the concepts of a defined domain and
the relationship between concepts. Semantic interoperability refers to the capability of
two or more systems or components to communicate well and use the exchanged informa-
tion. It can ensure that heterogeneous systems use the same specification to analyse and
process data. Geospatial ontology can express conceptual domain knowledge in the form
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of machine understanding and is used in semantic modelling, semantic interoperability,
knowledge sharing and information retrieval services [1,39]. Geographic ontology is a theo-
retical system covering philosophy, the World Wide Web, artificial intelligence, geographic
information and other multidisciplinary and interdisciplinary systems. Many international
institutions are committed to the research and application of geographic ontology, and there
have been some commercial and free ontology libraries, such as WordNet (http://wordnet.
princeton.edu) (accessed on 28 May 2021), GEONAMES (http://www.geonames.org) (ac-
cessed on 28 May 2021) and Semantic Web for Earth and Environmental Terminology
(http://bioportal.bioontology.org/ontologies/sweet) (accessed on 28 May 2021). Zhu and
Pan conducted a detailed review of geospatial ontology [1].

The core problem of ontology-based integration is mapping generation. When differ-
ent ontologies describe related or intersecting domains, there is a mismatch in the model
level of ontologies. Visser et al. [40] divided the mismatch on the ontology model layer into
conceptual mismatch and interpretation mismatch. The way to solve ontology heterogene-
ity is through ontology integration or ontology mapping. Ontology integration merges
multiple ontologies into a large ontology while ontology mapping finds the mapping
rules between ontologies. Since ontology is composed of concepts, relations, instances
and axioms, the mapping between ontologies should be based on these basic components.
Given that concept is the most basic component of ontology, the mapping between het-
erogeneous ontology concepts is the most basic mapping. There will be heterogeneous
instances between different ontologies, so the mapping relationship between heterogeneous
instances needs to be established. Through mapping, we can express the equal, different,
is-a, include, overlap, part-of, opposed and other relations between ontology concepts.

The mapping between ontologies can be established manually, but it is time-consuming.
It can also be built automatically or semi-automatically. To establish the mapping between
ontologies, different researchers have formed many mapping discovery methods from
different perspectives. These include term-based ontology mapping, structure-based map-
ping, instance-based mapping and synthesis methods [37]. Term-based ontology mapping
starts from ontology terms, compares the names, labels or annotations related to ontology
components and finds the heterogeneity between ontologies. Among term-based ontology
mapping, the semantic correlation of external resources such as dictionaries is used to find
the mapping of terms. For example, WordNet [41] can be used to determine whether two
term are synonymous or hyponymic. Research shows that it is difficult to get satisfac-
tory results using only term-based mapping, so term-based mapping and structure-based
mapping are often used together. The structure-based approach analyses the structural
similarity between heterogeneous ontologies and finds possible mapping rules. The at-
tributes and relationships of ontologies can be used to calculate the similarity between
ontology components because there is greater similarity between concepts with the same
attributes [42]. According to Wang [37], most ontology mapping work based on terms and
structure can only find the equivalence and inclusion relationship between simple concepts.
This kind of method is based on intuitive ideas, lacks a theoretical basis, narrows the scope
of application and often has unsatisfactory results. Instance-based ontology mapping
usually finds a semantic association between heterogeneous ontologies by comparing the
extension of concepts. Compared with the methods based on term and structure, the
method based on instance achieves good results in quality, type and mapping complexity.
Most instance methods require heterogeneous ontologies to have the same set of instances.
Some methods use the manual annotation of instances, and some use machine learning,
where the mapping results are affected by the accuracy of machine learning. Different
mapping methods have their own advantages and disadvantages. To get better results, this
paper combines different mapping methods to make up for their shortcomings and absorb
the advantages of each method.

Ontology mapping needs to use certain algorithms, such as calculating the similarity
between concepts, finding the relationship between heterogeneous ontologies and then
establishing mapping rules according to these relationships. Similarity calculation is the

http://wordnet.princeton.edu
http://wordnet.princeton.edu
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http://bioportal.bioontology.org/ontologies/sweet
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key of ontology mapping. Ahlqvist [43] summarised five methods to measure semantic
similarity in land cover, and used a semantic similarity matrix to predict the degree of
confusion between types and extracted subtle changes of land surface.

In remote sensing community ontologies still has not been widely used as in GIS.
Arvor et al. [44] summarised the main applications of ontology in geographic object-
based image analysis, especially for data discovery, automatic image interpolation, data
interoperability, work flow management and data publication. They also considered that
ontology-based data integration (OBDI) can enhance the ability to link remote sensing
to other scientific disciplines, such as ecology, biology and urbanism. In the HarmonISA
project [45], the semantic of the CORINE catalogue and Austrian Realraumanalyse land-
use classification were encoded in ontologies. Building on this semantic representation, a
semantic similarity algorithm is presented that makes it possible to automatically calculate
the semantic similarity between two concepts from two ontologies. From the results of this
semantic similarity comparison, the semantically most similar concepts for two ontologies
can be determined. These concepts are then used to translate data from one schema into
the other schema.

In addition to the semantic issues, the accuracy of the source product also needs to be
considered in the integration of land-cover products. Products with high accuracy are more
reliable and take a high weight in the integration model. However, the overall accuracy
does not reflect a specific pixel location where source data classification is reliable. Some
studies [22,23,25] use spatial correlation or called local accuracy instead of overall accuracy
in the land-cover map integration and achieve better results.

According to the characteristics of integration heterogeneous land-cover data sources,
this paper puts forward a technical scheme of introducing semantic interoperability into
land-cover data. Based on ontology construction, this scheme introduces similarity de-
tection to solve the problem of heterogeneous data integration. The main contents are as
follows: 1. Domain ontology construction method. This study establishes a shared vocabu-
lary containing general LCCs and attributes and several local ontologies to extract structure
information from different heterogeneous data sources. It then fuses local ontologies by
semantic mapping between data through the shared global vocabulary. 2. The algorithm
of semantic mapping of the land-cover ontologies is conducted by multiple similarities
independently and then the results are aggregated. The stability of the aggregated result
is more robust. 3. The integration method of this study is divided into two steps, namely
schema level and data level. The first step is the integration of the classification system
semantic among different source land-cover products. The result is the semantic similarity
of different land-cover product classification systems. Based on the semantic similarity, the
second step integrates the data by introducing the spatial correlation information of the
source product and using the fuzzy membership method.

2. Method
2.1. Integration on the Schema Level
2.1.1. Ontology-Based Data Integration Approach Selection

Ontologies capture implicit knowledge across heterogeneous data sources and create
semantic interoperability between them. Ekaputra et al. [42] conducted a literature analysis
on OBDI applications and highlighted four OBDI variants: single-ontology approaches,
multiple-ontology approaches, hybrid approaches and Global-as-View ontology approach.
Different OBDI strategies determine how these ontologies relate to one another. In land-
cover map integration, choosing the most appropriate OBDI variant and the particular
suitable technologies is a key problem. Single-ontology OBDI only defines a global ontology
and transforms each source data to the global ontology. Maintaining the global ontology
is difficult when the source data changes. For multiple-ontology OBDI, each integrated
data source will define a local ontology, and the purpose of integration is to align these
ontologies with one another using semantic mappings. The disadvantage of this approach is
the semantic mappings among involved ontologies are difficult to define and maintain due
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to varying granularities of the local ontologies. Different land-cover data also have different
understandings of the domain knowledge. Therefore, such mapping between ontologies is
very difficult to define. The hybrid method is similar to the multi-ontology method. Each
information source has its own source ontology. However, to facilitate the comparison of
local ontologies, a shared global vocabulary or ontology is established at the upper level.
All ontologies are built according to the shared vocabulary or ontology. In this way, the
comparison between concepts becomes simple, and the source data ontology is connected
through the shared vocabulary or ontology. The advantage of the hybrid structure is that it
is very convenient to add new sources without modifying the shared vocabulary [10,11].

This study involves multiple land-cover products, where each data source has different
semantics for land-cover concepts, and the addition of data sources is considered important
or necessary in the future. Therefore, this paper uses a hybrid method to construct the
ontologies. For each source land-cover data, a corresponding ontology is established. The
EAGLE concept mentioned above is used as the shared global vocabulary because it is
independent of any specific land-cover taxonomy. The mapping definitions between these
local ontologies become easy because they all follow the EAGLE elements to define the
components and properties of each category. This hybrid approach can take into account
the openness, dynamics and interoperability of the system. The OBDI structure of this
study is shown in Figure 1. Three land-cover products, including GlobeLand30, NLCD
and FROM-GLC-Seg, are used as examples.
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Protégé is used as the ontology development tool. It is a free and open-source ontol-
ogy development tool developed by Stanford University and has strong scalability [16].
It provides a graphical and interactive ontology design environment, which can help
knowledge engineers and domain experts construct ontology more conveniently. Protégé
supports web ontology description language (OWL), RDF (s), XML, DAML + oil and other
ontology languages [2]. Ontology description language is a kind of language used to
build ontology, which enables users to write clear and formal specification descriptions
for domain models [3]. The present paper mainly uses OWL, which is characterised by
formal semantics [4].

2.1.2. Construction of a Global Vocabulary

Figure 1 illustrates the three blocks of the EAGLE matrix. From top to bottom, the
grain size is gradually refined to meet the requirements of the definition of different scales of
land-cover types. These components, attributes and characteristics can be selected arbitrarily
according to the definition of the type of land-cover products when designing the local
ontologies. Moreover, to enable the task of land-cover map integration, the EAGLE matrix
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specific modules can be extended and customised in terms of adding attributes and axioms
to enable the identification of design inconsistencies. The system architecture is depicted in
Figure 2, which describes the main components and the relations between them.
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Figure 2. Three parts in the EAGLE Matrix: (a) land-cover components (LCCs); (b) land-use attributes (LUAs); (c) further
characteristics (CH).

2.1.3. Local Ontologies

Local ontology is used to describe the conceptual model of each data source. Firstly,
we need to make a comprehensive analysis of the required data sources by considering
the terms of each data source and the hierarchical relationship between each class. The
hierarchical structure of concepts in the corresponding local ontology establishes a reference
to the data source classification system. Secondly, each local ontology land-cover concept
is decomposed into the global vocabulary–EAGLE matrix to express the attributes and
relationships clearly. To comply with the shared vocabulary, each category’s semantic
needs to be analysed.

For example, the land-cover products involved in this study as a case study include
GlobeLand30, NLCD and FROM-GLC-Seg. The classes in the land-cover product usually
employ a hierarchical structure. Therefore, the ontologies of each source land-cover data
consist of concepts that are also arranged in a hierarchical structure mimicking the arrange-
ment of the classification system. Thus, when the land-cover categories are encoded in
ontologies, the categories become concepts.

Figure 3 illustrates a specific example of a coniferous forest in the local ontology
of FROM-GLC-Seg. Each concept in the local ontology is specifically referenced for the
corresponding definition of its legend.



Information 2021, 12, 236 8 of 30

Information 2021, 12, x FOR PEER REVIEW 8 of 31 
 

 

employ a hierarchical structure. Therefore, the ontologies of each source land-cover data 
consist of concepts that are also arranged in a hierarchical structure mimicking the ar-
rangement of the classification system. Thus, when the land-cover categories are encoded 
in ontologies, the categories become concepts. 

Figure 3 illustrates a specific example of a coniferous forest in the local ontology of 
FROM-GLC-Seg. Each concept in the local ontology is specifically referenced for the cor-
responding definition of its legend. 

 
Figure 3. Coniferous forest in the local ontology of FROM-GLC-Seg. 

In Figure 3, the rectangle represents the concept, the ellipse represents the attribute, 
the thick black arrow represents the inheritance relationship, the thin black arrow repre-
sents the attribute relationship and the words on the line represent the name of the rela-
tionship. In FROM-GLC-Seg, coniferous forest is defined as areas where trees are more 
than 3 m high and forest coverage is more than 15.0%, and the corresponding attributes 
include leaf type, tree height, mosaic or not and so on. Other EAGLE matrix elements have 
nothing to do with the semantics of the definition of a coniferous forest are not shown 
here. Coniferous forest is a subclass of forest in FROM-GLC-Seg, which has the compo-
nents ‘tree’ related to biology/vegetation-woody plant—tree in the global vocabulary–EA-
GLE LCCs block.  

GlobeLand30 has 10 first-level land cover types. The specific definition of each cate-
gory is referenced from the web site (http://www.globeland30.org) (accessed on 28 May 
2021). As this study will take the second-level refinement of forest type as an example, the 
forest first-level is divided into coniferous forest, broad-leaf forest and mixed forest. The 
GlobeLand30 land-cover ontology is shown in Figure 4. The first column is the 
Globeland30 land-cover concepts and the hierarchical relationship between them. The sec-
ond column present the data attributes of the concepts. The third column lists some re-
strictions of the attribute. For example, for the crown coverage, its annotation is >=30 and 
<=100. The definition field and value field of specific attributes can be set on the corre-
sponding attributes. Which global vocabulary elements are needed to define the semantics 
of each land-cover type must be analysed by experts according to their definition, and the 
semantics of each land-cover category need to be decomposed. 

Figure 3. Coniferous forest in the local ontology of FROM-GLC-Seg.

In Figure 3, the rectangle represents the concept, the ellipse represents the attribute, the
thick black arrow represents the inheritance relationship, the thin black arrow represents
the attribute relationship and the words on the line represent the name of the relationship.
In FROM-GLC-Seg, coniferous forest is defined as areas where trees are more than 3 m high
and forest coverage is more than 15.0%, and the corresponding attributes include leaf type,
tree height, mosaic or not and so on. Other EAGLE matrix elements have nothing to do
with the semantics of the definition of a coniferous forest are not shown here. Coniferous
forest is a subclass of forest in FROM-GLC-Seg, which has the components ‘tree’ related to
biology/vegetation-woody plant—tree in the global vocabulary–EAGLE LCCs block.

GlobeLand30 has 10 first-level land cover types. The specific definition of each
category is referenced from the web site (http://www.globeland30.org) (accessed on 28
May 2021). As this study will take the second-level refinement of forest type as an example,
the forest first-level is divided into coniferous forest, broad-leaf forest and mixed forest.
The GlobeLand30 land-cover ontology is shown in Figure 4. The first column is the
Globeland30 land-cover concepts and the hierarchical relationship between them. The
second column present the data attributes of the concepts. The third column lists some
restrictions of the attribute. For example, for the crown coverage, its annotation is >30
and 6100. The definition field and value field of specific attributes can be set on the
corresponding attributes. Which global vocabulary elements are needed to define the
semantics of each land-cover type must be analysed by experts according to their definition,
and the semantics of each land-cover category need to be decomposed.

The NLCD classification system merged existing schemes, including the NOAA
Coastal Change Analysis Program (C-CAP) classification protocol and the Anderson system.
NLCD 2011 has 8 first classes and 16 s classes [46]. NLCD land-cover ontology is shown
in Figure 5.

Based mainly on the end-component analysis and the potential of only six bands of
spectral data from TM and ETM+ imagery, the classification scheme of FROM-GLC-Seg
has a two-level hierarchy involving 10 first-level classes and 27 s-level classes [47]. The
land-cover ontology of FROM-GLC-Seg is shown in Figure 6.

http://www.globeland30.org
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2.1.4. Ontology Mapping-Similarity Calculation

Through ontology mapping of land cover, we can get all kinds of relationships among
the land-cover concepts between ontologies. In this study, the ultimate goal is to fuse
different land-cover products to generate a new land-cover product. The ontologies are
used to evaluate the semantic similarity between land-cover categories (concepts) from
different products (local ontology). The method of hybrid similarity calculation is adopted.
Firstly, using the hybrid ontology model established above, the attribute similarity between
different ontology concepts can be calculated by using the elements in the shared global
vocabulary EAGLE matrix. In addition, the mapping of ontology terms can be obtained by
comparing terms with external resources, such as dictionaries. Instance-based mapping
is also used to calculate the similarity between concepts. Weighted synthesis of the three
similarities is used to get the comprehensive semantic mapping results.
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Ontology Mapping Based on Term

In this paper, the similarity of term is divided into definition similarity and lexical
similarity. In the calculation of definition similarity, the widely used Wu-Palmer [48]
algorithm based on definition distance is used, which is based on WordNet [41]. WordNet
is a large lexical database of English, which not only includes the definition of words but
also labels the semantic relations among words. On the contrary, the groupings of words in
a thesaurus follow meaning similarity.

Firstly, the term definition in WordNet of each pair of concepts between two ontolo-
gies are segmented, that is, stemmed to get the two word sets {Ai = |i = 1, 2..., n} and{

Bj = |j = 1, 2..., n
}

. The corpus of the current study only contained nouns and adverbs,
and so according to the rule that the parts of speech of words can be derived from each
other [49], the adjective can be replaced with a noun with a similar meaning by searching
its synonyms in WordNet.

The similarity of two words from word Sets A and B is calculated according to the
Wu-Palmer algorithm [48] as Formula (1).

Sim
(

Ai, Bj
)
=

2× depth
((

Ai, Bj
))

depth(Ai)+depth
(

Bj
) (1)

where depth
(

Ai, Bj
)

is the nearest common ancestor of words Ai and Bj, with depth(Ai)
and depth

(
Bj
)

representing the depths of words Ai and Bj in the WordNet semantic tree,
respectively. Find the largest similarity value between each word in the B set and A set,
and then the average is the definition similarity of the term as in Formula (2):

Simde f inition(A, B) =
n

∑
j=1

Sim
(

A, Bj
)
/n (2)

Lexical similarity is also considered and the calculation formula [50] is as follows

Simlexical(A, B) = Max(0,
(

1− 2× trans(A, B)
|token(A)|+ |token(B)|

)
) (3)
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where |token(A)| and |token(B)| are the number of words in Terms A and B, respectively,
and lexical similarity is the minimum number of editing operations (insert, delete and
replace) required to convert Term A to Term B.

After the definition similarity and lexical similarity are calculated, the weighted
average is combined to obtain the similarity of the ontology terms Simterm(A, B). In this
way, the term similarity between each pair of concepts between two ontologies can be
calculated to form a similarity matrix.

Similarity Calculation Method Based on Attributes

In local ontology, the semantic attribute of each land-cover concept is expressed by
some EAGLE elements from LCCs, LUAs and CH blocks in the global vocabularies. The
theoretical basis for calculating concept similarity based on attributes is as follows: if
two concepts have similar attributes, then the two concepts are similar; if the value of
attributes is similar, then the attributes are also similar. The calculation effect depends on
the completeness, adequacy and accuracy of decomposing the ontology attributes.

Attributes includes attribute name, attribute type and attribute value. There are
different types of land-cover attributes, including character type, numerical type, interval
type, and Boolean type. It is only meaningful to calculate attribute similarity between the
same attribute types.

(1) Numerical attribute types are commonly used in land-cover ontology. Similarity
calculation can be completed by a mathematical comparison. If the attribute values are the
same [51], then the similarity value is 1. The formula is:

sim
(

pim , pjn
)
=

 1, pim = pjn

1− |pim−pjn |
Max(pim ,pjn)

, pim 6= pjn
(4)

where pim , pjn represent the same global vocabulary but of two ontologies. Max
(

pim , pjn
)

is the maximum value of pim , pjn .
(2) Interval-type attribute values are common, such as canopy coverage, which is

generally a range. If there is no intersection between an interval-type attribute of two
different land-cover concepts, then the similarity is 0; if the interval range is exactly the
same, then the similarity is 1. Similarity can be calculated by Formula (5).

sim
(

pim , pjn
)
=

pim ∩ pjn∣∣max(pim , pjn)−min(pjn , pjn)
∣∣ (5)

where max(pim , pjn) refers to the maximum value of the range, and min(pjn , pjn) refers to
the minimum value of the range. represents the overlapping value of the interval length.

(3) Boolean attribute values are rare in land-cover concepts, and the similarity calcula-
tion method can refer to Formula (6). For the similarity calculation of Boolean type, they
belong to the ‘Yes or No’ relationship, and the semantic similarity is calculated as follows:

sim
(

pim , pjn
)
=

{
0, pim 6= pjn
1, pim = pjn

(6)

Then, the attribute similarity between concepts is obtained by Formula (7), which is a
weighted sum of all the attributes and components of the share global vocabulary.

Simattribute(A, B) =
n

∑
k=1

wkSim
(

pim, pjn
)

(7)

where pim , pjn are the components and attribute of concepts A and B from two different
local ontologies i and j, respectively; and wk ∈ [0, 1] is the weight of the kth attribute or
components. The sum of wk is 1.



Information 2021, 12, 236 12 of 30

Instance-Based Ontology Mapping

Instance-based ontology mapping method finds the semantic association between
heterogeneous ontologies by comparing the extension of concepts, that is, ontology in-
stances. The 1:1 mapping relationship between ontologies is found with reference to the
idea of GLUE [50]. The similarity calculation is based on the joint probability distribution
between concepts, and the measure of probability distribution is used to judge the sim-
ilarity between concepts. The joint probability distribution between Concepts A and B
includes P(A, B), P

(
A, B

)
, P
(

A, B
)
, and P

(
A, B

)
. Take P

(
A, B

)
for example; it represents

the random selection of an instance from all instances, where the probability of belongs to
B but not to A. In this study, the method of calculating the instance similarity is to use the
land-cover sample points, count the above four joint probabilities between Concepts A and
B and then calculate the similarity according to the following formula:

SIMinstance(A, B) =
P(A ∩ B)
P(A ∪ B)

=
P(A, B)

P(A, B) + P
(

A, B
)
+ P

(
A, B

) (8)

SIMinstance(A, B) represents the instance-based mapping similarity. For example, to
obtain the mapping relationship between the two heterogeneous ontology concepts of
deciduous forest (represented by A) in NLCD and broad-leaf forest (represented by B) in
GlobeLand30, a certain number of sample points should be selected for instance-based
similarity calculation. The proportion of the sample points of deciduous forest in NLCD
but not of broad-leaf forest in GlobeLand30 to the total sample points is counted, that
is, P

(
A, B

)
. The proportion of sample points that are not deciduous forest in NLCD but

broad-leaf forest in GlobeLand30 to the total sample points is counted, that is, P
(

A, B
)
,

and the instance similarity of Concepts A and B can be calculated according to Formula (7).
When A and B are completely unrelated, the similarity is 0. When A and B are equivalent
concepts, the similarity is 1. Instance-based similarity is more likely to be the result of
real data feedback. Compared with the result of term and attribute similarity, it directly
examines the similarity of land-cover data itself. However, because it is manually verified,
the selection of verification points and the error of manual recognition will also affect the
subsequent integration results.

Synthesis of Mapping Methods

For each pair of concepts that need to be mapped, the results of each similarity
calculation, including term, attribute and instance, are accumulated. To emphasise reliable
similarity and reduce the influence of unreliable similarity, the weighted sum method is
used. The comprehensive semantic similarity Sim(A, B) is as follows:

Sim(A, B) = ωtermSimterm(A, B) + ωattributeSimattribute(A, B) + ωinstanceSiminstance (9)

where ωterm + ωattribute + ωinstance = 1. The setting of weights needs to be determined by
domain experts according to the reliability of each similarity.

The comprehensive semantic similarity as well as the term, attribute and instance
similarity calculation result is a matrix, and each value in the matrix is the similarity value
of each pair of concepts.

Table 1 shows the similarity matrix. Take NLCD and FROM-GLC-Seg as the source
data and GlobeLand30 as the fusion target data as an example; only forest-related types
are listed.
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Table 1. Similarity matrix.

Source Product
Globeland30

Broadleaf Forest Coniferous
Forest

Broadleaf
Coniferous

Mixed Forest

NLCD2011
deciduous forest SN

11 SN
12 SN

13

evergreen forest SN
21 SN

22 SN
23

deciduous evergreen mixed forest SN
31 SN

32 SN
33

FROM-GLC-Seg
broadleaf forest SF

11 SF
12 SF

13

coniferous forest SF
21 SF

22 SF
23

broadleaf coniferous mixed forest SF
31 SF

32 SF
33

2.2. Integration on the Data Level
2.2.1. Using Geostatistics to Obtain the Local Accuracy Map of Source Data

The accuracy of land-cover products is usually expressed by the overall accuracy
of statistical sampling, but the overall accuracy cannot reflect the spatial variability of
map accuracy, and the distribution of classification error on the map is not uniform. With
the availability of reused reference sample data [22], geo-wiki, Flickr photo sharing and
other volunteer-based reference data, the number of reference sample sites has increased
significantly, and the spatial variability of large-scale land-cover map accuracy can be
simulated by using combined reference datasets.

To evaluate local accuracy, the spatial correspondence between the source data and
the reference dataset is coded with the indicator. If the class of the reference sample point
matches the class of the source data, indicator code 1 is assigned to the sample point.
Otherwise, the sample point indicator code will be 0. Next, the spatial autocorrelation of
the indexes is analysed by using the semivariogram. Indicator Kriging method is used to
create a local accuracy map for each source data. The local accuracy result is described
between 0 and 1, which represents the correct local probability of a specific image. The
detailed process can be found in references [22].

2.2.2. Land-Cover Data Integration

In this study, land-cover data are not transformed from its initial format into to
actionable intelligence information, such as the standard triple model of RDFs. Ontology-
based integration is only carried out on the semantic level as presented above.

The final integration model of land-cover products considers the similarity of the
schema layer between different local ontologies and the local accuracy of each source
product and combines the two to get the result. Two kinds of integration models are
considered in this study as listed below.

Integration Model I

Integration Model I considers two factors: semantic similarity and local accuracy. The
model is as Formula (10).

gy = (Ak(x), B(x))×U(Ck(x)) (10)

where x represents a pixel in the land-cover map. gy(x) represents the possibility that
x belongs to class y. y ∈ (n1, n2, n3, · · · nk) and ni are the categories in target land-cover
product. Simk(Ak(x), B(y)) represents the comprehensive similarity of pixel x’s category
in a land-cover product k with the class y in the target product, which is calculated by
Formula 8. U(Ck(x)) is the local accuracy of pixel x on the land-cover product k. k is the
number of source land-cover products.
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To describe the probability that pixel x belongs to which category in the target legend,
Formula (11) indicates that when the maximum value is taken, the y class is the final class.

G(x) = axy∈Ωgy(x) (11)

Integration Model I considers the influence of each source data, adds the influence of
each of source data and finally compares the probability result of each type in the target
legend, which is a way of fuzzy set.

Integration Model II

In integration model I shown in Formula (10), the results of several source data are
summed up. In this way, the effect of semantic similarity or local accuracy of a source
product may be diluted. To highlight the semantic similarity between each source product
and the target product as well as the local accuracy of the source product, integration Model
II does not use the form of summation but takes the maximum value. The integration
model is expressed in Formulas (12) and (13).

Take Table 1 as an example. Here the comprehensive semantic similarity matrix
mentioned in Section 2.1.4 is expressed as Matrix M. For a pixel x in the target land-cover
map (i.e., GlobeLand30 product), if its category in NLCD2011 is deciduous forest and in
FROM-GLC-Seg is broad-leaf forest, then the maximum values among SN

11, SN
12 and SN

13 and
the maximum values of SF

11, SF
12 and SF

13 will be extracted, respectively, as in Formula (12).

SimMax
k (x) = Max

(
Simk(Ak(x), B(y))

)
(12)

where y ∈ (n1, n2, n3) and n1 is broad-leaf forest, n2 is coniferous forest and n3 is mixed
forest. k = 1, 2 here represents NLCD2011 and FROM-GLC-Seg, the two-source land-cover
products. Simk(Ak(x), B(y)) is the comprehensive semantic similarity between the class of
pixel x in a source land-cover product and the class (y) in the target land-cover product.
SimMax

k (x) is the result of taking the maximum. This step can get the maximum similarity
of each source data with target data.

Then, SimMax
k (x) is multiplied with the product k local accuracy of pixel x using

Formula (13), and the final result of fusion can be obtained.

G(x) = Max(SimMax
k (x)·U(Ck(x))) (13)

where U(Ck(x)) represents the local accuracy of pixel x of k product k. In Formula (13), the
maximum value of the two values is selected as the final forest type.

In the integration Model II, firstly, the results of the comprehensive semantic similarity
itself are compared and then the comparison results are multiplied by the local accuracy so
that the effect of comprehensive semantic similarity and local accuracy on the integration
result can be maximised. We will compare the effectiveness of the two models through
experiments in the next section.

3. Results
3.1. Data
3.1.1. Source Land-Cover Data

In this study, the land cover data used in Zhu et.al [25] is adopted as an example.
Three 30 m resolution land cover products, namely NLCD 2011, FROM-GLC-Seg and
GlobeLand30, are selected as a case study. Integration NLCD and FROM-GLC-Seg forest
second-level categories to subdivide GlobeLand30 (2010) forest first class into coniferous,
broad-leaf and mixed forests, is for testing the integration method. The conterminous
United States region is adopted as the research area. The data source is the products close
to year 2010 to reduce the product differences caused by time differences.

GlobeLand30 is a global land-cover product with 10 main categories, including cul-
tivated land, forest, grassland, shrubland, wetland, water body, tundra, artificial surface,



Information 2021, 12, 236 15 of 30

barren land and permanent snow and ice. The average accuracy of 80.0% for full classes or
one single class is achieved by third-party researchers from more than 10 countries through
a sample-based validation or a comparison with existing data [10]. The second-level
classification of products is still under development.

In GlobeLand30, the areas with more than 30% forest coverage are defined as forest
types. The forest map of the study area is shown in Figure 7. According to the nomenclature
of GlobeLand30, the second level includes broad-leaf forest, coniferous forest and mixed
forest. The specific definitions are shown in Table 2.
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Table 2. Forest second level categories and definition of products.

Product Name First Level Second Level Definition

Globeland30 Forest
Broad-leaf forest

The forest with broadleaf tree species is built in groups, with a crown
covering more than 30.0% of the land, and the height of the tree is more

than 5 m high.

Coniferous forest
The general name of various forest plant communities composed of

coniferous tree species, the crown coverage of more than 30.0% of the
land, the height of the tree is more than 5 m.

Mixed forest Conifers and broadleaf trees do not cover more than 60.0% of the total
vegetation cover.

NLCD 2011 Forest
Deciduous forest

Areas dominated by trees generally greater than 5 m tall, and greater
than 20.0% of total vegetation cover. More than 75.0% of the tree

species shed foliage simultaneously in response to seasonal change.

Evergreen forest
Areas dominated by trees generally greater than 5 m tall, and greater than

20.0% of total vegetation cover. More than 75.0% of the tree species
maintain their leaves all year. Canopy is never without green foliage.

Mixed forest
Areas dominated by trees generally greater than 5 m tall, and greater

than 20.0% of total vegetation cover. Neither deciduous nor evergreen
species are greater than 75.0% of total tree cover.

FROM-GLC-Seg Forest
Broadleaf

Usually higher reflectivity than conifer species in the near infrared
(NIR) spectral band. Shaded and sunlit sides less contrast. Tree height
is more than 5 m. Tree cover percentage is more than 15.0%. The crown

density is more than 10.0%.

Coniferous
Lower reflectivity than broadleaf trees in the NIR band. Tree height is
more than 5 m. Tree cover percentage is more than 15.0%. The crown

density is more than 10.0%.

Mixed
Neither coniferous nor broadleaf trees dominate in a mixed forest

stand. Tree height is more than 5 m. Tree cover percentage is more than
15.0%. The crown density is more than 10.0%.
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The NLCD is a 30 m resolution U.S. nationwide land-cover product, which includes
Alaska, Hawaii and Puerto Rico; it is developed dominantly by the United States Geological
Survey. Five phase products have been released, such as NLCD1992, NLCD 2001, NLCD
2006, NLCD 2011 and NLCD.2016 [52]. The classification system of NLCD 2011 has eight
first classes and 16 s classes (excluding the four other classes of Alaska) [46]. The forest class
is divided into evergreen, deciduous and mixed forests according to the leaf phenology, as
defined in Table 2. The distribution in the study area is plotted in Figure 7b. The values of user
accuracy of deciduous, evergreen and mixed forests are 76.0%, 76.0% and 29.0%, respectively,
according to the thematic accuracy assessment provided by Wickham et al. [53].

The 30 m resolution land-cover products of FROM-GLC are obtained by classified
remote sensing image through automatic supervised classification. FROM-GLC adopts the
automatic supervised classification method with relatively low accuracy. Subsequently, the
algorithm is improved, and the upgraded product FROM-GLC-Seg is produced with the
overall accuracy raised to 67.1% [47]. The legend system of FROM-GLC-Seg is similar to
that of GlobeLand30, with 10 first classes and 27 s classes. The second class of forests is
divided into broad-leaf, coniferous and mixed forests according to leaf type. The map is
demonstrated in Figure 7c, and the specific definition is presented in Table 2.

NLCD and FROM-GLC-Seg have second-level classes of forest type. However, the
names and semantics of the second-level forest classification are different. NLCD subdi-
vides the forest into deciduous, evergreen and mixed forest according to the leaf phenology.
FROM-GLC-Seg subdivides forest into broad-leaf, coniferous (needle leaf) and mixed forest
according to leaf type.

According to 2002 statistics, the existing forest area of the conterminous United States
is 303,123 million Hm2, accounting for 33% of the total land area, and the forest volume
ranks the fourth in the world [54]. Forests in the United States are mainly distributed in
three areas. Coniferous forests are dominant from the Western Rocky Mountains to the
Pacific coast while pine trees are dominant in the South Atlantic and Gulf Coast. The
eastern part of the Mississippi River is dominated by broad-leaved trees [55].

3.1.2. Reference Data

A large number of evenly distributed ground verification points are needed to evaluate
the local accuracy of source products. The accuracy of the integration results is also
evaluated through the ground verification points. The verification points of land cover
provided by Zhu et al. [25] are used. The total number is 2984, as shown in Figure 8. The
verification points are obtained from two kinds of methods. The first method involves
reusing existing reference sample datasets built for calibrating and validating GLC maps.
The verification points in this paper are collected from the GLC 2000 reference dataset, the
STEP reference dataset, the GLCNMO 2008 dataset, the Geo-Wiki crowdsourced data and
the global validation sample set developed by Tsinghua University [25], as exhibited in
Figure 8a,b. The total number is 1060, where the numbers of broadleaf, coniferous and
mixed forests are 447, 373 and 240, respectively. The second method is visual interpretation,
which is another way to acquire reference sample pixels to increase the number of reference
sample data. Several coniferous and broadleaf forest random sample points (mixed forest
is not included due to the difficulty in interpretation) generated by the ArcGIS 10.1 toolbox
(create random points) are visually interpreted on high-resolution Google Earth images
and added. A total of 1024 coniferous forests and 900 broadleaf points are added to the
reference sample pixel set as presented in Figure 8c.
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To evaluate the local accuracy of NLCD products, the attribute of defoliation of each
reference sample pixel is additionally judged by an expert interpreter. Among them are
828 deciduous, 1825 evergreen and 331 mixed forests.

Owing to the limited number of verification points used to evaluate the local accuracy
of source products, it cannot meet the density requirements of 30 m resolution. To evaluate
the local accuracy reasonably, this study resamples the resolution of all land-cover products
and obtains the data of 300 m resolution.

3.2. Result of Schema-Level Integration
3.2.1. Ontology Mapping Based on Term

The concept from different ontologies involved in this paper includes six subcategories
of forest types: broad-leaf forest, coniferous forest, broad-leaf and coniferous mixed forest,
deciduous forest, evergreen forest and deciduous evergreen mixed forest. The concepts
are translated by using the semantic dictionary WordNet to obtain the specific definition
of each concept in the field, and the specific word set is obtained by word segmentation,
stemming. Table 3 presents the word set obtained after extracting the stem.

Table 4 shows the results of the definition similarity and lexical similarity calculation
between the two kinds of source data, namely NLCD2011 and FROM-GLC-Seg, and the
integrated target data Globeland30, and then averages the result to get the term similarity.
The result column of average value is marked with light green colour, and the maximum
average value of each row is marked with deeper green colour. In the ‘definition’ similarity
column, the similarity between the mixed forest of GlobeLand30 and the forest type of each
product are greater or similar than other forest types. The reason may be that the types
used in this study all belong to the subclass of forest types, and each type is semantically
close and confused with one another. Therefore, it is difficult to make a detailed distinction.
Taking NLCD as an example, because the word set of mixed forest includes all the word
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set of deciduous forest and evergreen forest, it is always similar to or larger than the results
of deciduous forest or coniferous forest.

Table 3. Change detection accuracy of pixel-based Landsat satellite imagery.

Category Name Definition Stem Extraction Result

Broadleaf forest

having relatively
broad rather than

needle like or
scale like leaves

width (broad) (01) leaf (01) forest (01)

Coniferous forest

of or relating to or
part of trees or
shrubs bearing

cones and
evergreen leaves

part (01) tree (01) shrub (01) cone (03) evergreen (01) leaf (01) forest (01)

Deciduous forest
shedding foliage
at the end of the
growing season

shedding (02) foliage (01) end (02) growing (01) season (02) forest (01)

Evergreen forest

a plant having
foliage that
persists and

remains green
throughout

the year

plant (02) foliage (01) green (01) year (01) forest (01)

Mixed forest Composition of
mixed tree species blend (Mixed) (01) tree (01) forest (01)

Note: (01) and (02) represent the meaning interpretation order of the word in WordNet, because a word may have multiple meanings.
When WordNet interprets the meaning of a word, it sorts each meaning. Different sorts represent different meanings, and the hierarchical
relationship of the word in WordNet will change.

Table 4. Results of mapping based on term similarity.

Land Cover
Product Source Product

Globeland30
Broadleaf Forest Coniferous Forest Broadleaf Coniferous

Mixed Forest

definition lexical Average definition lexical Average definition lexical Average

NLCD2011

deciduous forest 0.545 0.500 0.523 0.570 0.647 0.609 0.570 0.412 0.491
evergreen forest 0.680 0.471 0.576 0.722 0.471 0.597 0.762 0.324 0.543

deciduous evergreen
mixed forest 0.540 0.313 0.427 0.576 0.344 0.460 0.657 0.471 0.564

FROM-GLC-Seg

broadleaf forest 1.000 1.000 1.000 0.788 0.412 0.600 1.000 0.500 0.750
coniferous forest 0.655 0.412 0.534 1.000 1.000 1.000 1.000 0.500 0.750

broadleaf coniferous
mixed forest 0.685 0.500 0.593 0.867 0.500 0.684 1.000 1.000 1.000

3.2.2. Ontology Mapping Based on Attributes

In the shared global vocabulary, the forest types in this study mainly include the
following attributes: crown coverage, proportion of tree species, tree height, forest coverage,
leaf type, leaf persistence and whether mosaic or not etc. The EAGLE matrix of these related
LCC, LUA and CH are shown in Table 5. They are listed from top to bottom according to
the hierarchy structure of EAGLE matrix. The first row is LCC, LUA and CH modules; the
second row is the second level division, and so on.
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Table 5. Results of mapping based on term similarity.

Land Cover
Components (LCC)

Land Use
AtTributes/Function

(LUA)
Characteristics (CH)

Biotic/Vegetation Primary Production
Sector Spatial Patterns Land Management (Bio-)Physical Characteristics General

Parameters

Woody Vegetation Forestry Texture Patterns Forest Management
Type Forest History Type Vegetation Characteristics Height

(m)
Cover
(%)

Trees
Short
rota-
tion

Interim
or

long
rota-
tion

Continuous
cover,
selec-
tive
log-
ging

Homogenous

Mixed,
het-
ero-
ge-

neous

Mosaic Scattered
Intensive
mono-
cul-
ture

Regular

Extensive
(se-
lec-
tive
log-

ging)

Endemic,
pri-

mary
ReforestationAfforestationLeaf

form Foliage persistence

Crown
cover
den-
sity
(%)

Percentage
of

Ppecies
(%)

(Integer
value)

(Integer
value)

Broadleaved
trees

Needle-
leaved
trees

Palm
tree

Coniferous/needle
leaved

Broad
leaved Evergreen

Winter
de-

cidu-
ous

Summer
de-

cidu-
ous

(Integer
value)

(Integer
value)
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Attribute types are divided into three types: numerical type, interval type and Boolean
type. Among them, the numerical types are leaf type, leaf persistence and the proportion
of tree species. The interval types are crown coverage, forest coverage and tree height.
Boolean type is whether mosaic or not and ‘tree’ component. The attribute similarity is
calculated according to Formulas (4) to (7). Weights are set to be equal. The result is shown
in Table 6. In Table 6, the maximum value of each row is marked with deeper green colour.

Table 6. Results of mapping based on attributes similarity.

Product
Source Product

Globeland30 Broadleaf
Forest

Coniferous
Forest

Broadleaf
Coniferous

Mixed Forest

NLCD2011

deciduous forest 0.713 0.717 0.634
evergreen forest 0.729 0.734 0.655

deciduous evergreen mixed forest 0.635 0.640 0.791

FROM-GLC-Seg
broadleaf forest 0.892 0.866 0.809
coniferous forest 0.858 0.892 0.809

broadleaf coniferous mixed forest 0.783 0.802 0.975

As can be seen from the above table, there is no obvious difference in the results of
attribute similarity because the example of forest we selected is more challenging. All
the categories belong to a kind of forest. The data attributes of the second-level class of
several forest types are very similar. According to common sense, most of the deciduous
leaves belong to the broad-leaf type, and most of the evergreen forest belongs to coniferous
type. For example, the overlap of deciduous forest in NLCD2011 and broad-leaf forest of
GlobeLand30 is almost equal to that of deciduous forest in NLCD2011 and coniferous forest
of GlobeLand30. However, due to the introduction of the other two kinds of similarity
mapping, the combination of multiple kinds of similarities improves the calculation results
of attribute similarity.

3.2.3. Ontology Mapping Based on Instance

Instance-based similarity is obtained through the statistics of the types of verification
points in different source data. The results are shown in Table 7. FROM-GLC-Seg and
GlobeLand30 have similar type semantics and names, so we get consistent results from
instance-based mapping. Deciduous, evergreen and mixed forests in NLCD all have
the greatest similarity with broad-leaf forest in GlobeLand30. These findings indicate
that no direct connection exists between evergreen, deciduous, broad-leaf and coniferous
forests. Evergreen forest includes evergreen broad-leaf forest and evergreen coniferous
forest. The evergreen broad-leaf forest is mainly distributed in subtropical humid areas,
which make the part of evergreen forest in NLCD considered as broad-leaf forest in
GlobeLand30. Deciduous broad-leaf forest is generally distributed in temperate monsoon
climate regions with cold winter. According to the climate distribution of the United
States, deciduous broad-leaf forest is distributed in the northeast of the United States while
evergreen broad-leaf forest is distributed in the southeast and southwest of the United
States. This distribution leads to the phenomenon that deciduous forest may belong to
broad-leaf or coniferous forest, and evergreen forest may also belong to broad-leaf or
coniferous forest, which has a certain impact on the final results.

Table 7. Result of similarity matrix of ontology mapping based on instance.

Source Product
Globeland30 Broadleaf

Forest
Coniferous

Forest
Broadleaf

Coniferous
Mixed Forest

NLCD2011
deciduous forest 0.737 0.107 0.082
evergreen forest 0.450 0.390 0.096

deciduous evergreen mixed forest 0.455 0.140 0.300

FROM-GLC-Seg
broadleaf forest 0.639 0.077 0.060
coniferous forest 0.215 0.597 0.010

broadleaf coniferous mixed forest 0.297 0.154 0.505
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3.2.4. Synthesis of Mapping Results

The term-based, attribute-based and instance-based mapping methods obtained above
are substituted into Formula (8) for weighted calculation to obtain the final comprehensive
mapping. Weights are set equally. The results are shown in Table 8.

Table 8. Comprehensive mapping result.

Product Name
Source Data

Globeland30 Broadleaf
Forest

Coniferous
Forest

Broadleaf
Coniferous

Mixed Forest

NLCD2011
deciduous forest 0.657 0.478 0.402
evergreen forest 0.585 0.573 0.431

deciduous evergreen mixed forest 0.506 0.413 0.552

FROM-GLC-Seg
broadleaf forest 0.844 0.514 0.540
coniferous forest 0.535 0.830 0.523

broadleaf coniferous mixed forest 0.558 0.547 0.827

The mixed forest category is defined as a mixture of broad-leaf and coniferous or
deciduous and evergreen forest. These kinds of dual definitions make it difficult to fully
capture the semantics of the category. From the final results, it can be seen that through
the comprehensive calculation of term, attribute and instance similarity, the interference of
other forest types to mixed forest is reduced to a certain extent.

3.3. Result of Data Level Integration
3.3.1. Local Accuracy

Three-fourth of the abovementioned 2984 reference sample pixels (i.e., 2238 pixels)
are evenly selected for local accuracy calculation and the remaining one-fourth set is used
for accuracy evaluation. ArcMap 10.1 Geostatistical and Spatial Analyst tools are used to
generate the local accuracy map of each source dataset.

The local accuracy or spatial correspondence maps of NLCD 2011 and FROM-GLC-Seg
products are demonstrated in Figure 9a and b, respectively. The greener the colour, the
higher the probability of the point; whereas, the redder the colour, the lower the probability
of the pixel. The possible low correspondence areas should be the main focus of map
improvement regions.

3.3.2. Integration Results

According to the above calculation results, the pixels corresponding to the Glo-
beLand30 forest pixels are extracted from NLCD2011 and FROM-GLC-Seg and then sub-
stituted into integration Model I and Model II to calculate the probability that each pixel
belongs to each category. Comparing the probability can determine the final category of
each pixel. Finally, the second-level class refinement results of forest types in GlobeLand30
(2010) are shown in Figures 10 and 11.

Figures 10 and 11 show that broad-leaf forests are mainly distributed in most areas of
the eastern part and some marginal areas of the western part. Coniferous forests are mainly
distributed in the western and northeastern parts. The distribution of mixed forest is less
and scattered. For example, the coastal areas of western California, parts of Minnesota and
Michigan in the north central and coniferous forest areas of northeastern Maine are also
mixed with some mixed forests. Some mixed forests are also distributed in Louisiana in
the southeast, Texas in the south central and New Mexico in the southwest.

However, there are some differences between the results of the two integration models,
mainly in the distribution area of mixed forest. Compared with the results of integration
Model I, the mixed forest of integration Model II added some new areas. For example, in the
western and northern regions of Florida, there are some new mixed forests compared with
the results of Model I. Some mixed forests are also distributed in Arkansas and Oklahoma.
Compared with the sporadic distribution of Model I, the distribution of Model II is more
intensive, which is similar to the distribution area of mixed forests in our verification point.
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3.4. Accuracy Analysis

Confusion matrix is used to evaluate the accuracy of integration results. The results are
summarised in Tables 9 and 10, which show the accuracy verification results of integration
Models I and II, respectively.
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Table 9. Accuracy evaluation matrix of integration results based on Model I.

Type Overall
Accuracy

User
Accuracy

Commission
Error

Omission
Error

Producer
Accuracy

Broadleaf 0.826 0.174 0.160 0.840
Coniferous 0.720 0.280 0.098 0.902

Mixed 0.483 0.517 0.216 0.784
Sum 0.753

Table 10. Accuracy evaluation matrix of integration results based on Model II.

Type Overall
Accuracy

User
Accuracy

Commission
Error

Omission
Error

Producer
Accuracy

Broadleaf 0.826 0.174 0.148 0.852
Coniferous 0.720 0.280 0.084 0.916

Mixed 0.600 0.400 0.122 0.878
Sum 0.763

As can be seen from Table 9, the values of user accuracy of broad-leaf, coniferous and
mixed forests are 82.6%, 72.0% and 48.3%, respectively. The reason for the low accuracy
of mixed forest is that the semantic concept of mixed forest is fuzzy, making it difficult to
distinguish from broad-leaf and coniferous forest. On the other hand, because the total
number of pixels of mixed forest is relatively small, it is difficult to collect sample points,
which affects the accuracy of judgment.

As can be seen from Table 10, the values of user accuracy of broad-leaf, coniferous
and mixed forests are 82.6%, 72.0% and 60.0%, respectively. Compared with the results
of Model I, the accuracy of broad-leaf and coniferous forest has no change and only the
mapping accuracy is improved, increasing by 1.2% and 1.4%, respectively. However, the
accuracy of the mixed forest is increased by 11.7%, and the overall accuracy is increased
by 1.0%. In addition, some differences can be seen by comparing the number of pixels
of fusion results. The number of broad-leaf, coniferous, and mixed forests of integration
Model I are 18,848,060, 4,657,822 and 125,362, respectively, and the number of broad-leaf,
coniferous and mixed forests of integration Model II are 18,825,065, 4,654,899 and 151,280,
respectively. The number of pixels of broad-leaf and coniferous forests changed little, but
the number of pixels of mixed forest increased by 20.7%.

Compared with Zhu et.al [25] using the same datasets to do the same integration task,
the user accuracy of broad-leaf, coniferous and mixed forests are 79.9%, 69.9%, and 59.3%
of their results. They also considered the local accuracy of the source land cover product
and EAGLE matrix was used to translate the semantics. However, the bar code method
was used to calculate the similarity between different land cover categories. From the
comparison of the accuracy of the results, it can be seen that the ontology based method
can better express the semantic relationship between land cover types and is more suitable
for automatic integration of big data in the future.

4. Discussions

This study chooses the integration of forest categories as an example, which is a very
challenging one. Mixed forest is a special type, and its semantics is relatively vague. For
example, when gathering sample data for land-cover accuracy assessment, a reference
pixel could be labelled a ‘mixed forest’ even though it is very similar to a ‘coniferous
forest’, so a dataset could be almost right even if it classified that object as a ‘coniferous
forest’. Intuitively, a ‘mixed forest’ is much more similar to a ‘coniferous forest’ than to an
‘impervious surface’, so the two forest types would probably be harder to distinguish and
result in some classification confusion. When the semantics of two categories overlap too
much, it would lead to unacceptable error rates in the resulting maps. If the integration
task is other types, then the situation of semantic analysis will be simpler than this study.
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With the use of integration Model II, the accuracy of mixed forest is improved consider-
ably without losing the accuracy of broad-leaf and coniferous forests. Although the number
of mixed forests increased by 20.7%, the transformation from broad-leaf and coniferous
forest to mixed forest was only about 1/10.000 of broad-leaf and coniferous forest and
therefore had little impact on the final accuracy verification. The results should not change
much when the number of pixels in broad-leaf and coniferous forests is almost the same.
The accuracy of mixed forest is improved substantially because by taking the maximum
value in integration Model II, stick out of semantic similarity and local accuracy, is more
effective than Model I in judging the mixed forest type.

Take a real pixel as an example, the pixel is a mixed forest in NLCD2011, and the
local accuracy is 0.793. It is broad-leaf forest in FROM-GLC-Seg, the local accuracy is
0.496. According to the semantic similarity in Table 7, the probability of the pixel be-
longing to broad-leaf forest is 0.506 × 0.793 + 0.844 × 0.496 = 0.820, coniferous forest is
0.413× 0.793 + 0.514× 0.496 = 0.582, and mixed forest is 0.552 × 0.793 + 0.540 × 0.496 = 0.706.
Using integration Model I, the maximum value of 0.820, 0.582 and 0.706 is the final class
of the pixel, that is, broad-leaf forest. However, using the integration model II, we first
extract the result with the highest probability in Table 7. For the data NLCD2011, the
maximum probability of the pixel belonging to mixed forest is 0.552, and for FROM-GLC-
Seg, the maximum probability of the pixel belonging to broad-leaf forest is 0.844. In
integration Model II, the probability of the pixel belonging to mixed forest in NLCD2011
is 0.552 × 0.793 = 0.438, and the probability of the pixel belonging to broad-leaf forest in
FROM-GLC-Seg is 0.844 × 496 = 0.419. Therefore, result shows that the pixel belongs to
mixed forest. It can be seen that the first integration model weakens the function of the
comprehensive semantic similarity. However, in integration Model II, the similarity and
local accuracy can be maximized.

5. Conclusions

This paper uses ontology to express land-cover concept semantics and fuse different
source data through ontology-based integration. The integration model considers two
aspects: the semantic similarity between source data ontologies and target ontology and
the local accuracy of the source data. Semantic mapping between ontologies include term,
attribute and instance mapping. The final semantic mapping is obtained by weighted
average. The local accuracy is obtained by verification sample points and indicator Kriging
method. Two kinds of integration models are used.

In this study, the GlobeLand30 forest is taken as an example and subdivided into
coniferous, broad-leaf and mixed forest by integrating NLCD and FROM-GLC-Seg land-
cover products. The values of user accuracy of broad-leaf, coniferous and mixed forests
are 82.6%, 72.0% and 48.3%, respectively, by integration Model I and 82.6% for broad-leaf,
72.0% for coniferous and 60.0% for mixed forest by integration Model II.

The innovation of this study is that, for the first time, ontology-based integration
method is used in the fusion of remote sensing land-cover products. A shared vocabulary
is constructed by using EAGLE matrix elements, realising the mapping between local
ontologies and obtaining the semantic mapping results.

The method in this paper is limited by the number and distribution of verification
sample points because the instance-based similarity and local accuracy calculations depend
on the verification points. For example, the original data with 30 m resolution in this study
are resampled to 300 m due to the lack of sample points to meet the required sample point
density for local accuracy estimation. This condition is attributed to the total number of
pixels in the experimental area of 30 m resolution, which are approximately more than 2
billion forest pixels. Around two million reference samples are needed to achieve about
0.1% of the number of sample points, which cannot be realised by collecting the existing
verification data. The workload of visual interpretation is also large. Therefore, realising
the integration of high-resolution land cover products using the proposed method in this
paper is difficult. Thus, improving the estimation method of local accuracy is necessary.
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There are also some shortcomings in this study; specifically, the definition of mixed
forest is relatively vague and easy to confuse with other types. The ontology of land-
cover data is mainly the semantic model of land-cover nomenclature; OWL and protégé
respectively provide the language and tools to build the model. However, in order to use
this model in the land-cover intelligent discovery system, other software tools, such as Jena
Open Source Toolkit, are needed to convert OWL documents into models, store them in
the database and use SPARQL or other query languages to realise semantic reasoning.
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