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Abstract: Yield prediction for tomatoes in greenhouses is an important basis for making production
plans, and yield prediction accuracy directly affects economic benefits. To improve the prediction
accuracy of tomato yield in Chinese-style solar greenhouses (CSGs), a wavelet neural network
(WNN) model optimized by a genetic algorithm (GA-WNN) is applied. Eight variables are selected
as input parameters and the tomato yield is the prediction output. The GA is adopted to optimize
the initial weights, thresholds, and translation factors of the WNN. The experiment results show
that the mean relative errors (MREs) of the GA-WNN model, WNN model, and backpropagation
(BP) neural network model are 0.0067, 0.0104, and 0.0242, respectively. The results root mean square
errors (RMSEs) are 1.725, 2.520, and 5.548, respectively. The EC values are 0.9960, 0.9935, and 0.9868,
respectively. Therefore, the GA-WNN model has a higher prediction precision and a better fitting
ability compared with the BP and the WNN prediction models. The research of this paper is useful
from both theoretical and technical perspectives for quantitative tomato yield prediction in the CSGs.

Keywords: Chinese-style solar greenhouse; tomato yield prediction; backpropagation neural net-
work; wavelet neural network; genetic algorithm

1. Introduction

Tomatoes represent enormous economic value for producers across the world, and
they also offer numerous health benefits for consumers [1]. Tomatoes are one of the main
crops that are cultivated in Chinese-style solar greenhouses (CSGs) in China. In 2016,
China became one of the world’s leading produce sources, and Chinese tomato production
accounted for 7% of the world’s production [2]. In order to adapt to the supply and demand
relationship in the global tomato market, an accurate production forecasting model which
can adjust the cost input according to the market demand is required. Furthermore, such
a model can provide an important theoretical and technical basis for the quantitative
prediction of tomato yields in CSGs.

The application of artificial neural networks (ANNs) to prediction models has received
considerable attention in various fields. The advantage of an ANN is that it does not need
to know functional relationships in advance, allowing the development of models based on
the intrinsic relationships between variables [3]. ANNs use a nonlinear mapping structure
basis of the human brain for support learning. Their powerful processing ability was
proven with various real-world applications [4]. The soft sensing of ANN techniques was
widely applied to develop models for predicting different crop indicators, such as yield,
growth, and other biophysical processes [5,6]. Salazar et al. used a Levenberg–Marquardt
algorithm with ANN to train and verify weights and perform bias adjustment and the ideal
fresh fruit production result was obtained [7]. An ANN model was established to predict
eight regression factors for pepper fruit yields by employing a large number of genotypes,
and the results indicate that ANN with an 8:10:1 architecture achieved high accuracy [8].
BP neural networks are also widely applied in the field of yield forecasting. The approach
combined thermal camera technology with a BP neural network prediction model that
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was used to predict winter wheat yields and was accurate enough to meet production
requirements [9]. Another wheat yields predictive model that used two remotely-sensed
variables based on the BP neural network was constructed for the Guanzhong Plain,
China [10]. Coke yield was predicted by a BP neural network combined with industrial
production data [11].

However, BP neural networks cannot converge to a global minimum. Furthermore,
they sometimes have slow convergence speeds. To avoid the shortcomings of falling into
a local minimum with gradient descent learning algorithms, a wavelet neural network
with a faster convergence speed was proposed [12,13]. The WNN model was established
for forecasting basin sediment yield [14]. The results show that the hybrid model, com-
pared with the traditional BP model, has high accuracy for the simulation of the basin
sediment yield. The application of precise fertilization based on a WNN increased maize
production, reducing production costs and agricultural pollution simultaneously [15].
A genetic algorithm [16] combined with a WNN has better robustness and a better function
approximation ability. A traffic prediction model was proposed based on a WNN that
was optimized by a genetic algorithm [17]. A predictive model for the entry percentage
into expressway service areas based on the analysis of explanatory variables was con-
structed using a WNN and genetic algorithm [18]. It reflected that the GA-WNN model
had an excellent fitting ability and a better prediction precision.

In the process of agricultural greenhouse production, tomato yields are affected
by the interactions of various factors. The relationships between ambient parameters,
fertilizers, and yields are very complicated. It is difficult to quantify the strongly non-linear
characteristic with the traditional analytic method. Inspired by [18], the main objective
here is to apply a GA-WNN model for the prediction of tomato yields in CSGs. The main
contributions of this paper are summarized as follows:

(1) In this paper, a basic model of yield prediction was applied to describe the non-linear
relationship between tomato yield and environmental factors and eight variables
are selected as input parameters for the yield predictive model. However, the pa-
rameters cannot accurately acquire in the basic model of yield prediction. Therefore,
the accuracy of the basic model of yield prediction is difficult to meet actual needs.

(2) To the best of the author’s knowledge, the GA-WNN model has not been used for
tomato yield forecasting so far. This model takes advantage of the automatic search
ability and probability optimization ability in the global space of the genetic algorithm.
In this paper, GA optimizes the dilation and translation factor, thresholds, and the ini-
tial weight of the wavelet neural network. Then, in the prediction of tomato yield, this
model can obtain the optimal network dilation factor, translation factor and weight.
The accuracy of the models was reflected by the MRE, RMSE, EC, the predicted
average and the predicted standard deviation. The results of the simulations show
that the GA-WNN model is more robust and offers a better function approximation
ability, which is useful from theoretical and technical perspectives for quantitative
tomato yield prediction in CSGs.

2. Materials

The test site considered here is located in the scientific research and experimental
base of the Shenyang Agricultural University in Liaoning Province, China (41.48◦ N,
123.24◦ E, 42 m a.s.l.). The region is characterized by a temperate continental monsoon
climate. The annual sunshine is about 2800 h, the average annual rainfall is between 600
and 800 mm, the annual average temperature is 6.20 to 9.70 ◦C, and the average frost-
free period is 155 to 180 days. The experiment was carried out in a Liaoshen Type III
solar greenhouse built in an east–west orientation. The greenhouse was 60 m long and
12 m wide [19]. The heights of the northern wall and northern roof were 3 and 5.5 m,
respectively. The cover on the southern roof was made from a 0.00012-m-thick polyvinyl
chloride (PVC) film [20], and a rainproof quilt was used to maintain the temperature in
the greenhouse. The percentages of sand, silt, and clay in the test soil were 37.6%, 40.7%,
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and 21.3%, respectively. The water field capacity was 0.26 g/cm3. Some nutrients in the soil
are shown in Table 1. The experimental tomato cultivar was “Fenguan No. 1”, which was
planted at spacings of 40 × 40 cm, with 35 plants in each row.

Table 1. The part of the nutrients in the experimental soil.

Nitrogen
(g/kg)

Phosphorus
(g/kg)

Potassium
(g/kg)

Available
Phosphorus

(mg/kg)

Available
Potassium

(mg/kg)

Available
Nitrogen
(mg/kg)

Organic
Matter

Content (g/kg)

0.87 1.58 20.78 35.20 48.94 97.55 13.73

3. Basic Model of Yield Prediction

The growth and development of greenhouse tomatoes are related to varieties and
environmental factors. Therefore, when establishing a basic model of yield prediction, it
is necessary to consider the interaction of various growth stages and the role of related
influencing factors at each stage. In [21], a basic model of yield prediction was established
in crop growth. The calculation process is as Equation (1).

DVR =
dDVP

dt
=

1
DS

= f (K)· f (T)· f (D)· f (EC)· f (∆T) (1)

where f (K)—Basic development function. The calculation equation is f (K) = e−k.
K—Basic development coefficient. According to the K value, it can be distinguished

whether the crops are early- or late-maturing varieties.
DVR—Development rate. Development time is expressed as the reciprocal of DVR value.
DVP—Developmental process. When the DVP value is an integer, it means that

the current growth and development stage has just ended, otherwise it means the transition
period between the two stages. According to the DVP value, the date and time of each
growth stage of the crop can be obtained.

DVP(i + 1) = DVP(i) + DVR× ∆T (2)

where i indicates that the crop is growing at stage i.
dDVP/dt—Growth rate.
DS—Completion time of specific growth stage.
f (T)—Influence function of temperature factor.
f (∆T)—Influence function of the temperature difference between day and night.
f (D)—Influence function of lighting time.
f (EC)—The influence function of water, fertilizer and seeding depth. The calculation

equation of f (EC) is f (EC) = f (EU)× f (EW)× f (ECT).
f (EU)—Influence function of fertilizer factor.
f (EW)—Influence function of the moisture factor.
f (ECT)—Influence function of seeding depth factor.
During the establishment of the mechanism model, it is necessary to determine

the functions based on the actual data collected and the interrelationship between each
growth stage. The above analysis fully considers the effects of light, moisture, effective
accumulated temperature and fertilizer effect on the growth stage of the tomatoes. When
the CO2 concentration is suitable for tomato growth, the nonlinear model of tomato growth
and development is expressed by Equation (3).

DVR = dDVP
dt = 1

DS = f (K)· f (T)· f (D)· f (EC)· f (∆T)
= f (K)· f (TP)· f (TQ)· f (DG)· f (DC)· f (CO2)· f (ECT)

= e−k·
(

T−Tmin
T0−Tmin

)P
·
(

Tmax−T
Tmax−T0

)Q
·
(

D−Dmin
D0−Dmin

)G

·
(

Dmax−D
Dmax−D0

)C
·
(

1− e−τ(CO2−LCO2 )
)
· f (ECT)

(3)
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T—Average temperature of tomato’s current growth stage.
Tmin—Lower temperature limit for tomato development.
Tmax—Upper temperature limit for tomato development.
D—Average length of each day.
Dmax—The longest day of the current tomato growth stage.
Dmin—The shortest day of the current tomato growth stage.
P, Q—The influence index of temperature on the tomato growth process.
G, C—The influence index of light intensity on the tomato growth process.
f (ECT)—The relationship between sowing depth and germination rate.
CO2—Average CO2 concentration in the greenhouse.
LCO2—Critical value of CO2 concentration.
τ—CO2 concentration factor.
The key influencing factors for the yield prediction model were found by the growth

model, i.e., the ambient temperature, humidity, irrigation amount, nitrogen fertilizer,
phosphorus fertilizer, potassium fertilizer, CO2 concentration, and light intensity. It should
be noted that the crop growth model is not suitable for the tomato yield prediction model.
The main reason is that the parameters of the growth model cannot accurately acquire.
Furthermore, critical factors such as P, Q and τ can only be obtained by practice and
experiment. Therefore, the degree of accuracy for the yield prediction using a crop growth
model cannot meet actual demand.

4. Methodology
4.1. BP Neural Network

BP neural network is a multi-layer feedforward network, which can be trained using an
error backpropagation learning algorithm. BP neural network has the advantages of strong
nonlinear mapping ability, high precision, and better versatility. The BP neural network
contains an input signal layer X, a hidden layer Y and an output layer Z. The weight
between the input layer and the hidden layer is ν. The weight from the hidden layer to
the output layer is ω [22]. The f (x) functions are S-type functions that have continuously
differentiable properties. The value of the training sample is assigned to vector group
X, and the vector groups Y and Z are calculated from vector group X. The output layer
equations are given by Equations (4) and (5):

yk = f

(
m

∑
j=0

ωjk·zj

)
, k = 1, 2, · · · , l (4)

zj = f

(
n

∑
i=0

vij·xi

)
, j = 1, 2, · · · , m (5)

It can obtain the maximum number of iterations by adjusting the weight of each layer.
Then, calculate the network layer output error. The total output error is recorded as per
Equation (6):

Emax =

√√√√√ 1
p

p

∑
p=1

√√√√ l

∑
k=1

(
dp

k − yp
k

)2
(6)

If Emax is less than the set value, the training will end. If Emax is greater than the set
value, the training will continue.

4.2. Wavelet Neural Network

In the wavelet neural network model, the major advantages of the WNN model lie in
its excellent performance in non-stationary signal analysis and non-linear mapping [23]. It
can effectively solve the problem of BP neural network easily falling into local minimal
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and slow convergence speed. In the WNN model, the mother wavelet function is shown in
Equation (7).

g(x) = cos(1.75x) exp
(
− x2

2

)
(7)

The wavelet basis function is obtained by the dilation factor and translation factor of
the parent wavelet function as shown in Equation (8):

gaj ,bj(x) =
1√∣∣aj
∣∣ g
(

x− bj

aj

)
(8)

where aj and bj are dilation factor and translation factor in the No. j node in the hidden
layer. By adjusting the weight, dilation factor, and translation factor of the model many
times, the prediction accuracy and stability were improved to realize a better prediction
ability. The output layer equations are given by Equation (9):

yk =
m

∑
j

ωjkg

[
∑n

i=1 vijxi − bj

aj

]
(9)

By modifying and adjusting the parameters in the above equations, the model found
higher prediction accuracy.

4.3. GA-WNN

In the GA-WNN model, GA can optimize the dilation and translation factor, thresh-
olds, and the initial weight of the wavelet neural network. It can provide optimal dilation
and translation factor, thresholds, and the initial weight for the model. These are based on
that GA is used to adopt a random search method that can directly operate on the structural
object. This method uses a probabilistic optimization method to realize automatic search in
the global space [24]. The GA-WNN model of yield prediction is presented as follows:

(1) Coding: Firstly, groups of chromosomes are generated randomly. Secondly, these
chromosomes correspond to the dilation and translation factor, the connection weight,
and the neuron threshold of the wavelet neural network. Thirdly, the crossover and
mutation probability are initialized, respectively. Subsequently, the initial population
number and the total genetic algebra are given in advance, respectively.

Z chromosomes Ri (i = 1, 2, · · · , Z) were randomly generated to represent the ini-
tial population P and each chromosome Ri was encoded with a real number. The corre-
sponding relation is shown by Equation (10):

Ri =
{

v11, v12, · · · , vij, ω11, ω12, · · ·ωjk, a1, a2, · · · , aj, b1, b2, · · · , bj, γ1, γ2, · · · , γj

}
(10)

where vij is the weights between the input layer and the hidden layer. Moreover, ωjk is
the connection weight between the hidden layer and the output layer. aj and bj are the dila-
tion and translation factors, respectively. γk is the threshold value in the output layer.

(2) Setting fitness function: Use a wavelet neural network to calculate the error function
value of the input sample. Calculate the fitness value of the chromosome correspond-
ing to the reciprocal of the error. Then, sequence the fitness value respectively.

In this paper, the fitness value is calculated by Equations (11) and (12):

f (Ri) =
1

E(Ri)
(11)

E(Ri) = −
S

∑
s=1

K

∑
k=1

[es
klncs

k + (1− es
k) ln(1− cs

k)] (12)
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where E(Ri) is the error function, S is the number of input samples, es
k is the expected

output value of sample s (1, 2, 3, · · · , S) corresponding to the ith node, and es
k represents

its actual value.
Sort the fitness value of each individual in ascending order. Probability Pi of the ith

the individual was calculated by the Equations (13) and (14):

Pi = t(1− q)h−1 (13)

t =
q

1− (1− q)z (14)

where q stands for the odds of choosing the best individual, h is the quantity of individual
fitness values.

(3) Selection: The formula for calculating the cumulative selection probability of the chro-

mosome is qi =
i

∑
1

pi. rj(j = 1, 2, · · · , Z) is a random ascending sequence in the in-

terval of 0–1, When qi−1 < rj < qi, the chromosome corresponds to the maximum
fitness function value. Then, inherit this value directly to the next generation.

(4) Cross-mutation: Set crossover probability pc and mutation probability pm. If the per-
formance of the training data is not good, we should return the selection process.

(5) Decoding: Decode the final result where the values are the optimal initial weight,
threshold and translation factor of the wavelet neural network prediction model.

The GA-WNN construction process is shown in Figure 1.
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5. Results and Analysis
5.1. Evaluation Parameters

We adopted the mean relative error (MRE), the evaluation index (EC), and root mean
square error (RMSE) as evaluation parameters. In this paper, the MRE, EC, and RMSE
values were used to verify the validity of the tomato yield prediction model.

In the evaluation of the greenhouse tomato yield prediction model, the absolute
error was obtained by subtracting the actual measured value from the predicted yield for
the current year according to Equation (15):

εi = |x∗i − x1| (15)
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The relative error is defined as the ratio of the absolute error of the measurement to
the actual measurement. The average relative error is taken as the mean relative error
(MRE), which can reflect the percentage of prediction error in the total error. MRE is
calculated as Equation (16):

MRE =
1
n

n

∑
i=1

∣∣∣∣ εi
xi

∣∣∣∣ (16)

The RMSE is obtained by averaging the sum of the squares of all errors and performing
a square root operation (Equation (17)):

RMSE =

√
1
n

n

∑
i=1

(εi)
2 (17)

EC is obtained by the predicted value and actual measurement value in Equation (18).
When the EC value is greater than 0.95, the predictions are considered satisfactory predic-
tions [25].

EC = 1−

√
∑n

i=1
(

x1 − x∗i
)2√

∑n
i=1 x∗i

2 +
√

∑n
i=1 xi

2
(18)

where εi is the absolute error, x∗i is the predicted value, xi is the actual measurement value,
the unit is t/hm2, and n is the sample number.

5.2. Collection and Processing of Historical Data

The experimental data were obtained from the Shenyang Agricultural University
Scientific Research Base. The experimental data included ambient parameter data and
the data regarding tomato production in the greenhouse from March 2010 to December
2018 (Table 2). The ambient parameter data include temperature, light intensity, humidity,
and CO2 concentration data. The CSGs use automatic water and fertilizer machines for
fertilization and irrigation.

Table 2. Ambient parameters and production data.

Year
Ambient

Temperature
(◦C)

Ambient
Humidity

(RH%)

Irrigation
× 103

(m3·hm−2)

Nitrogen
Fertilizer
× 102

(kg·hm−2)

Phosphate
Fertilizer
× 102

(kg·hm−2)

Potassium
Fertilizer
×

102/(kg·hm−2)

CO2
Concentration
× 103 (ppm)

Light
Intensity
× 104 (lx)

Total
Tomato

Yield
(t·hm−2)

2010 21.83 72.95 2.11 4.05 1.89 1.96 1.01 2.54 214.578
2011 22.61 71.27 2.08 3.64 1.90 1.98 0.99 2.49 209.853
2012 25.61 74.93 2.00 3.87 1.97 1.92 1.32 2.58 213.005
2013 22.97 71.92 2.08 3.79 1.98 1.83 1.30 2.30 206.417
2014 24.96 72.61 2.10 3.45 1.82 1.86 1.27 2.23 209.231
2015 21.98 70.46 2.07 3.70 1.83 1.81 1.19 2.41 214.159
2016 22.52 72.17 2.04 3.87 1.88 1.87 0.94 2.65 212.929
2017 23.58 74.65 2.07 4.04 1.81 1.92 1.38 2.47 214.598
2018 24.72 73.79 2.06 3.68 1.91 1.98 1.06 2.32 213.508

In the experiment, tomatoes generally were harvested four to six times during the grow-
ing season. Tomato yield data could be obtained for past years by accumulating the produc-
tion data for each harvest in the last year. However, some abnormal data were generated in
the measurement process because of the ambient parameter data, which seriously affects
the prediction accuracy when establishing the greenhouse tomato yield prediction model.
It was necessary to preprocess the collected raw ambient parameter data to ensure better
prediction accuracy. There were certain rules for performing data preprocessing which are
given are as follows:

(1) During the measurement of the ambient parameter data, it should be noted that some
data may exceed normal values or not match the current environmental conditions
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due to the improper use of measuring instruments or incorrect sensor settings. Incor-
rect data should be eliminated and new data should be used via linear interpolation
instead of the incorrect data.

(2) In order to ensure model prediction accuracy and function convergence speed, the data
need to be normalized to finally obtain input data for the prediction model [26,27].
A linear function conversion method was used to normalize the data (Equation (19)):

x∗i =
xi − xmin

xmax − xmin
, i = 1, 2, 3 · · · (19)

where xi is the measured value of the instrument, xmax and xmin are the maximum
and minimum values of the same parameter data, and x∗i is the normalized value.
Through the above formula, the data were normalized to values within the range of
0–1. In this way, the dynamic range of the data was reduced and the model prediction
accuracy was improved.

5.3. Analysis of BP Neural Network Model and Results

In BP neural network model, the neurons in the input layer are the eight feature
parameters, i.e., the ambient temperature, humidity, irrigation amount, nitrogen fertilizer,
phosphorus fertilizer, potassium fertilizer, CO2 concentration, and light intensity and
the neuron in the output layer is the tomato yield. The momentum coefficient of the BP
neural network model herein was set to 0.85, the learning rate η was set to 0.09, the maxi-
mum training time was set to 1000, and the maximum allowable error was set to 0.01. In
this model, if the number of hidden layer nodes is small, the prediction accuracy will be
reduced. If the number of nodes is too large, then the training speed of the model will slow
down. The number of hidden layer nodes can be obtained by continuous trial and training.
The method for judging the number of hidden layer nodes is given by Equation (20):

L =
√
(M + N) + A (20)

where L is the quantity of nodes in the hidden layer, M is the quantity of nodes in the input
layer, N is the quantity of nodes in the output layer, and A is any constant from 0 to
10. The optimal quantity of hidden layer nodes was obtained by training the network
repeatedly. The results are shown in Table 3. The yield prediction results are shown in
Figure 2.

Table 3. Influence of the node number in different hidden layers on the network prediction error.

Learning
Rate

Momentum
Coefficient

Maximum
Allowable Error

Number of Hidden
Layer Nodes

Prediction Error
(%)

0.09 0.85 0.01 3 5.08
0.09 0.85 0.01 4 3.86
0.09 0.85 0.01 5 2.42
0.09 0.85 0.01 6 2.93
0.09 0.85 0.01 7 3.82
0.09 0.85 0.01 8 4.45

As can be seen from Table 3, the optimal quantity of hidden layer nodes was 5.
Through calculation, the absolute error of the test samples in 2016 was 5.6213 t·hm−2 and
the relative error was 2.64%. The absolute error of the 2017 test samples was 7.3607 t·hm−2

and the relative error is 3.43%. The absolute error of the 2018 test samples was 2.562 t·hm−2

and the relative error is 1.20%. The mean relative error (MRE) of the BP neural network
prediction model was 2.42%. Furthermore, in BP neural network model, the average
production was 213.678 t·hm−2, the predicted average result was 208.497 t·hm−2 and
the predicted standard deviation was 1.731. The EC was 0.9868, and the root mean square
error (RMSE) was 5.548. After 607 iterations, the error reached a minimum and the pre-
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diction effect as optimal. However, it was found that the RMSE of the BP neural net-
work prediction model was slightly too high. Therefore, the model accuracy needs to
be improved.
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5.4. Analysis of the WNN Model and Results

In the WNN model, the momentum coefficient was set to 0.85, the learning rate was
set to 0.09, and the maximum allowable error was set to 0.01. The optimal number of
hidden layer nodes can ensure prediction accuracy and the compactness of the struc-
ture. The calculation equations for the number of hidden layer nodes are given as per
Equations (21) and (22):

L < N − 1 (21)

L ≤
√
(M + N) + A (22)

where L is the quantity of nodes in the hidden layer, M is the quantity of nodes in the input
layer, N is the quantity of nodes in the output layer, and A is any constant within the range
of 0–10. The optimal quantity of hidden layer nodes was obtained by training the network
repeatedly (Table 4). The yield prediction results are shown in Figure 3.

Table 4. Influence of different hidden layer node numbers on prediction error.

Learning
Rate

Momentum
Coefficient

Maximum
Allowable Error

Number of
Hidden Layer Nodes

Prediction Error
(%)

0.09 0.85 0.01 3 4.12
0.09 0.85 0.01 4 2.86
0.09 0.85 0.01 5 1.31
0.09 0.85 0.01 6 1.04
0.09 0.85 0.01 7 2.53
0.09 0.85 0.01 8 3.40
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As can be seen from Table 4, the optimal quantity of hidden layer nodes was 6.
Through calculation, the absolute error for the test samples in 2016 was 1.320 t·hm−2

and the relative error was 0.62%. The absolute error for the 2017 test samples was
3.906 t·hm−2 and the relative error was 1.82%. The absolute error for the 2018 test sam-
ples was 1.431 t·hm−2 and the relative error was 0.67%. The mean relative error (MRE)
for the WNN model was 1.04%. Moreover, in the WNN model, the average production
was 213.678 t·hm−2, the predicted average result was 212.419 t·hm−2 and the predicted
standard deviation was 1.794. The EC was 0.9935, and the root mean square error (RMSE)
was 2.520. After 520 iterations, the error reached a minimum and the prediction effect
was optimal. Compared with the BP neural network, the WNN model had better forecast
accuracy, but the RMSE was still higher. Therefore, the model needs further improvement.

5.5. Analysis of the GA-WNN Model and Results

In the GA-WNN model, the size of the initial population was 85, the crossover prob-
ability was 0.5, and the mutation probability was 0.05. The data from 2010 to 2015 were
selected as the training set for the model and the data from 2016 to 2018 were used as
the test set to verify the prediction ability of the model. The size of the initial population
was 85, the crossover probability was 0.5, and the mutation probability was 0.05. The yield
prediction results are shown in Figure 4.



Information 2021, 12, 336 13 of 16

Information 2021, 12, x FOR PEER REVIEW 13 of 17 
 

 

As can be seen from Table 4, the optimal quantity of hidden layer nodes was 6. 
Through calculation, the absolute error for the test samples in 2016 was 1.320 t·hm−2 and 
the relative error was 0.62%. The absolute error for the 2017 test samples was 3.906 t·hm−2 
and the relative error was 1.82%. The absolute error for the 2018 test samples was 1.431 
t·hm−2 and the relative error was 0.67%. The mean relative error (MRE) for the WNN 
model was 1.04%. Moreover, in the WNN model, the average production was 213.678 
t·hm−2, the predicted average result was 212.419 t·hm−2 and the predicted standard devia-
tion was 1.794. The EC was 0.9935, and the root mean square error (RMSE) was 2.520. 
After 520 iterations, the error reached a minimum and the prediction effect was optimal. 
Compared with the BP neural network, the WNN model had better forecast accuracy, but 
the RMSE was still higher. Therefore, the model needs further improvement. 

5.5. Analysis of the GA-WNN Model and RESULTS 
In the GA-WNN model, the size of the initial population was 85, the crossover prob-

ability was 0.5, and the mutation probability was 0.05. The data from 2010 to 2015 were 
selected as the training set for the model and the data from 2016 to 2018 were used as the 
test set to verify the prediction ability of the model. The size of the initial population was 
85, the crossover probability was 0.5, and the mutation probability was 0.05. The yield 
prediction results are shown in Figure 4. 

 
(a) 

 
(b) 

2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

180

185

190

195

200

205

210

215

220

225
Actual value
Predicted value

2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

0

0.5

1

1.5

2

2.5

3

3.5

Information 2021, 12, x FOR PEER REVIEW 14 of 17 
 

 

 
(c) 

Figure 4. (a) Comparison chart of predicted value and actual value. (b) Error percentage curve. (c) 
GA-WNN training process. 

Through calculation, the absolute error for the test samples in 2016 was 0.298 t·hm−2 
and the relative error was 0.14%. The absolute error for the 2017 test samples was 2.661 
t·hm−2 and the relative error was 1.24%. The absolute error for the 2018 test samples was 
1.324 t·hm−2 and the relative error was 0.62%. The mean relative error (MRE) of the GA-
WNN model was 0.67%. In addition, in the GA-WNN model, the average production was 
213.678 t·hm−2, the predicted average result was 213.133 t·hm−2 and the predicted standard 
deviation was 1.234. The EC was 0.9960, and the root mean square error (RMSE) was 1.725. 
After 340 iterations, the error reached a minimum and the prediction effect was optimal. 
The EC value was the highest with the GA-WNN model among the others considered 
here, which shows that the model can effectively predict greenhouse tomato yields. 

6. Discussion 
This section compares the predicted values produced by the three models with the 

actual values (Figure 5). The MRE, RMSE, EC, and convergent iterations are used to com-
pare and analyze the prediction results from the three models (Table 5). 

 
(a) 

Figure 4. (a) Comparison chart of predicted value and actual value. (b) Error percentage curve.
(c) GA-WNN training process.

Through calculation, the absolute error for the test samples in 2016 was 0.298 t·hm−2

and the relative error was 0.14%. The absolute error for the 2017 test samples was
2.661 t·hm−2 and the relative error was 1.24%. The absolute error for the 2018 test sam-
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ples was 1.324 t·hm−2 and the relative error was 0.62%. The mean relative error (MRE)
of the GA-WNN model was 0.67%. In addition, in the GA-WNN model, the average
production was 213.678 t·hm−2, the predicted average result was 213.133 t·hm−2 and
the predicted standard deviation was 1.234. The EC was 0.9960, and the root mean square
error (RMSE) was 1.725. After 340 iterations, the error reached a minimum and the predic-
tion effect was optimal. The EC value was the highest with the GA-WNN model among
the others considered here, which shows that the model can effectively predict greenhouse
tomato yields.

6. Discussion

This section compares the predicted values produced by the three models with the ac-
tual values (Figure 5). The MRE, RMSE, EC, and convergent iterations are used to compare
and analyze the prediction results from the three models (Table 5).

Information 2021, 12, x FOR PEER REVIEW 14 of 17 
 

 

 
(c) 

Figure 4. (a) Comparison chart of predicted value and actual value. (b) Error percentage curve. (c) 
GA-WNN training process. 

Through calculation, the absolute error for the test samples in 2016 was 0.298 t·hm−2 
and the relative error was 0.14%. The absolute error for the 2017 test samples was 2.661 
t·hm−2 and the relative error was 1.24%. The absolute error for the 2018 test samples was 
1.324 t·hm−2 and the relative error was 0.62%. The mean relative error (MRE) of the GA-
WNN model was 0.67%. In addition, in the GA-WNN model, the average production was 
213.678 t·hm−2, the predicted average result was 213.133 t·hm−2 and the predicted standard 
deviation was 1.234. The EC was 0.9960, and the root mean square error (RMSE) was 1.725. 
After 340 iterations, the error reached a minimum and the prediction effect was optimal. 
The EC value was the highest with the GA-WNN model among the others considered 
here, which shows that the model can effectively predict greenhouse tomato yields. 

6. Discussion 
This section compares the predicted values produced by the three models with the 

actual values (Figure 5). The MRE, RMSE, EC, and convergent iterations are used to com-
pare and analyze the prediction results from the three models (Table 5). 

 
(a) 

Information 2021, 12, x FOR PEER REVIEW 15 of 17 
 

 

 
(b) 

Figure 5. (a) Comparison of predicted and measured values. (b) Error percentage curve. 

Table 5. Comparison of the results of the three prediction methods. 

Prediction Method Mean Relative  
Error 

Root Mean Square 
Error EC Convergent  

Iterations 
BP neural network 0.0242 5.548 0.9868 607 

WNN 0.0104 2.520 0.9935 520 
GA-WNN 0.0067 1.725 0.9960 340 

From the above results, it can be seen that the prediction results obtained by the GA-
WNN model were the closest to the actual measured values. The mean relative errors 
(MREs) of the GA-WNN model, WNN model, and BP neural network model were 0.0067, 
0.0104, and 0.0242, respectively. The results indicate that the GA-WNN model has the 
highest prediction accuracy. After 340 iterations, the GA-WNN model had the smallest 
error. The four evaluation indicators for the GA-WNN prediction model were better than 
those for the BP neural network model and WNN model. The experiments show that the 
GA-WNN model is reasonable and feasible for predicting greenhouse tomato yields. 

Three models for predicting tomato yield were discussed here. The GA-WNN model 
integrates the advantages of a genetic algorithm for global searching. Therefore, the 
method had better prediction ability of neural network by GA algorithm. The GA-WNN 
model could quickly and accurately predict tomato yields in CSGs. According to the pre-
diction results for the GA-WNN model, a corresponding management plan for sowing, 
irrigation, and fertilization can be formulated. At the same time, the ambient parameters 
such as the temperature and humidity can be regulated to the best conditions for crop 
growth. 

7. Conclusions 
This study has collected and recorded ambient parameters and yield data during the 

growth of tomatoes in a CSG for nine consecutive years. The main ambient parameters 
affecting the growth and yield of greenhouse tomatoes were determined through a basic 
model of yield prediction. A BP neural network, WNN, and GA-WNN were applied to 
predict greenhouse tomato yields. The results show that the GA-WNN model has a higher 
prediction precision and a better fitting ability compared with the BP and the WNN pre-
diction models. The GA-WNN model has an important role in the reasonable planning of 
crop species and planting plans in CSGs. It also has an important role in the regulation 

Figure 5. (a) Comparison of predicted and measured values. (b) Error percentage curve.



Information 2021, 12, 336 15 of 16

Table 5. Comparison of the results of the three prediction methods.

Prediction Method Mean Relative
Error

Root Mean
Square Error EC Convergent

Iterations

BP neural network 0.0242 5.548 0.9868 607
WNN 0.0104 2.520 0.9935 520

GA-WNN 0.0067 1.725 0.9960 340

From the above results, it can be seen that the prediction results obtained by the GA-
WNN model were the closest to the actual measured values. The mean relative errors
(MREs) of the GA-WNN model, WNN model, and BP neural network model were 0.0067,
0.0104, and 0.0242, respectively. The results indicate that the GA-WNN model has the high-
est prediction accuracy. After 340 iterations, the GA-WNN model had the smallest error.
The four evaluation indicators for the GA-WNN prediction model were better than those for
the BP neural network model and WNN model. The experiments show that the GA-WNN
model is reasonable and feasible for predicting greenhouse tomato yields.

Three models for predicting tomato yield were discussed here. The GA-WNN model
integrates the advantages of a genetic algorithm for global searching. Therefore, the method
had better prediction ability of neural network by GA algorithm. The GA-WNN model
could quickly and accurately predict tomato yields in CSGs. According to the prediction
results for the GA-WNN model, a corresponding management plan for sowing, irrigation,
and fertilization can be formulated. At the same time, the ambient parameters such as
the temperature and humidity can be regulated to the best conditions for crop growth.

7. Conclusions

This study has collected and recorded ambient parameters and yield data during
the growth of tomatoes in a CSG for nine consecutive years. The main ambient parameters
affecting the growth and yield of greenhouse tomatoes were determined through a basic
model of yield prediction. A BP neural network, WNN, and GA-WNN were applied to
predict greenhouse tomato yields. The results show that the GA-WNN model has a higher
prediction precision and a better fitting ability compared with the BP and the WNN pre-
diction models. The GA-WNN model has an important role in the reasonable planning of
crop species and planting plans in CSGs. It also has an important role in the regulation and
management of local tomato supply and demand balances. This model provides a theoreti-
cal basis for the prediction of greenhouse tomato yields and has a high practical application
value. Furthermore, GA-WNN model provides theoretical support and technical guidance
for the prediction of other crop yield.
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