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Abstract: The purpose of the paper is to extend the general theory of translation to texts written in
the same language and show some possible applications. The main result shows that the mutual
mathematical relationships of texts in a language have been saved or lost in translating them into
another language and consequently texts have been mathematically distorted. To make objective
comparisons, we have defined a “likeness index”—based on probability and communication theory
of noisy binary digital channels-and have shown that it can reveal similarities and differences of
texts. We have applied the extended theory to the New Testament translations and have assessed
how much the mutual mathematical relationships present in the original Greek texts have been saved
or lost in 36 languages. To avoid the inaccuracy, due to the small sample size from which the input
data (regression lines) are calculated, we have adopted a “renormalization” based on Monte Carlo
simulations whose results we consider as “experimental”. In general, we have found that in many
languages/translations the original linguistic relationships have been lost and texts mathematically
distorted. The theory can be applied to texts translated by machines. Because the theory deals with
linear regression lines, the concepts of signal-to-noise-ratio and likenss index can be applied any time
a scientific/technical problem involves two or more linear regression lines, therefore it is not limited
to linguistic variables but it is universal.

Keywords: greek; deep-language; likeness index; linguistic variables; machine translation; modern
languages; new testament; regression lines; signal-to-noise-ratio; translation

1. Introduction

Language is a fundamental and essential part of a community because it carries
values and knowledge used in the practice and transmission of intangible highly regarded
cultural heritage. Language can communicate-across space and time-personal and intimate
thoughts, stories and knowledge through literary and scientific texts. After the mythical
Tower of Babel, humans speak many different languages which require translation to
be understood. In this introductory Section we first review the general features of the
statistical theory of language translation [1]-which we wish to extend -, then we recall
the large literature on machine translation and anticipate purpose and outline of the
present paper.

1.1. General Features of the Statistical Theory of Language Translation

In a recent paper [1], we have proposed a unifying statistical theory of translation,
based on communication theory, which involves linguistic stochastic variables some of
which never considered before. Its main mathematical properties have emerged by study-
ing the translation of New Testament texts from Greek to Latin and to other 35 modern
languages, and also translations of modern novels. To study the chaotic data that emerge,
the theory models the translation of a text from one language (the reference, or input,
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language) to another language (output), as a complex communication channel-made of
several parallel channels-affected by “noise”. The input language is the “signal”, the output
language is a “replica” of the input language, but largely perturbed by noise, indispensable,
however, for conveying the meaning of the input language to the readers of the output
language. We have found that the parallel channels are differently affected by translation
noise, as the noise-to-signal ratio and channel capacities show [1].

The linguistic deep-language variables considered by the statistical theory of language
translation are [1,2]: Total number of words W, sentences S, interpunctions I; number
of words ny, sentences ng, and interpunctions nj, per chapter; number of characters
per word Cp, words per sentence Pr, words per interpunctions Ip, interpunctions per
sentence Mr. In Appendix A we list all mathematical symbols mentioned in the theory and
their meaning.

All linguistic channels are differently affected by “translation noise”. The more ideal
channel is the word channel , a finding that says humans seem to express the same meaning
with a number of words-i.e., finite strings of abstract signs (characters)-which cannot vary
so much, even if some languages do not share a common ancestor. On the contrary, the
number of sentences, and especially their length in words, i.e., Pr, are treated more freely
by translators.

A common underlying statistical structure, governing human textual/verbal com-
munication channel seems to emerge. The main result is that the statistical and linguistic
characteristics of a text, and its translations into other languages, depend not only on
the particular language-mainly through the number of words and sentences and their
linear relationship-but also on the particular translation, because the output text is very
much matched to the reading abilities (readability index, also defined and discussed
in [1] for all languages studied) and short-term memory capacity of the intended readers.
These conclusions seem to be everlasting because applicable also to ancient Roman and
Greek readers.

1.2. Machine Translation and Its Vast Literature

Since the 1950s, automatic approaches to text translation have been developed and
nowadays have reached a level at which machine translations are of practical use. However,
as machine translation is becoming very popular, its quality is also becoming increasingly
more critical and human evaluation and consequent intervention are often necessary for
arriving at an acceptable text quality. Of course, human evaluation can only be done by
experts, therefore it is an expensive and time-consuming activity. To avoid this cost, it is
necessary to develop mathematical algorhitms which approximate human judgment [3].

The theory [1], which we extend, and its findings are quite different from those
discussed in the literature marked by the same paradigm. For example, References [4-8]
report results not based on mathematical analysis of texts, as we do. When a mathematical
approach is used, as in References [9-19], most of these studies neither concern the aspects
of Shannon’s Communication Theory [20], nor the fundamental connection which some
linguistic variables have with reader’s reading ability and short-term memory capacity,
considered instead in [1,2]. In fact, these studies are mainly concerned with machine
translations, not with human response. References [21-37] are a small sample of the vast
literature on machine translation.

1.3. Purpose and Outilne of the Present Paper

In the present paper we extend the general theory of translation-reported in Section 11
of [1]-to texts written in the same language and show some possible applications. It
does not deal with machine-translation. Our main purpose is to show how the mutual
mathematical relationships of texts in a language are saved or lost in translating them into
another language. To make objective comparisons, we define a “likeness index”, based on
probability and communication theory of noisy digital channels.
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The be specific, in the present paper the extended theory is applied to the New
Testament translations mentioned above (all details on the source of the original Greek
and translated texts can be found in [1]), by studying how much the mutual mathematical
relationships present in the original Greek texts have been saved or lost in translation. In
general, we have found that in many languages/translations the original relationships
have been lost and consequently texts are mathematically distorted.

Although the New Testament is translated by humans-actually teams of experts of
ancient Greek for conveying a shared meaning of these important texts of universal human
heritage-the theory here extended can be also applied to texts translated by machines.
However, only texts of signficant length should be used because the theory is based on
linear regression lines, therefore it must process large texts to get reliable statistical results.
In other words, the theory should not be applied to texts made of only few sentences.

After this Introduction, Section 2 reviews and extends the theory to texts written in the
same language; Section 3 shows in the vectors plane-a very useful graphical tool-the large
differences found in translating the gospel according to Matthew—our reference text-into
all other languages; Section 4, to be specific, applies the extended theory to the linguistic
”sentence channel”-there defined-; Section 5 reports, for the sentences channel, the results
obtained with a Monte Carlo simulation, useful to apply the theory conservatively; Section 6
investigates channels with reduced texts, with interesting results which may be used to
further distinguish different texts; Section 7 applies the theory of noisy binary digital
communication channels to linguistic channels and defines and applies a suitably defined
likeness index. Section 8 applies the likeness index to modern and classical translations
of Matthew, or to versions of the same novel. Finally, Section 9 reports some concluding
remarks and outlines future work.

Appendix A lists mathematical symbols and their meaning; Appendix B discusses the
variability of linear regression line parameters which justifies the Monte Carlo simulations;
Appendix C summarizes the theory of minimum probability of error in binary decisions
applied in Sections 7 and 8.

2. Review and Extension of the Statistical Theory of Language Translation to Texts
Written in the Same Language

In [1], we have shown that the same linguistic variable in a text and in its translation-
e.g., the number of words per chapter ny-are linearly linked by a regression line, and that
the general theory of language translation can assume any language as reference, not only
Greek, as shown in Section 11 of [1].

We have also shown (see Section 4 of [2]) that two linguistic variables-e.g., the number
of sentences ng and the number of words nyy in a text- are also linearly linked by regression
lines. This is a general feature and is found also in New Testament texts. For example,
if we consider the regression line linking ng to ny in a reference text (e.g., the gospel
according to Matthew, Mt) and that found in another text written in the same language
(e.g., the gospel according to Mark, Mk), it is possible to link ng s to ng px with another
regression line without explicitly calculating its parameters from the samples, because the
mathematical problem has the same structure of the theory developed in Section 11 of [1].
In other words, the theory here extended allows us to assess whether the mathematical
relationships between any two deep-language variables present in some texts (e.g., New
Testament Greek texts) have been saved or lost in translation. The theory does not consider
the meaning of texts.

Now, we first define the mathematical problem in general terms and extend the theory,
and then we assess the sensitivity of the signal-to-noise ratio of a linguistic channel to
input parameters.
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2.1. Mathematical Theory

In a text, an independent (reference) variable x (e.g., ny ) and a dependent variable y
(e.g., ng) can be related by the regression line:

y = mx (1)

with m its slope, with correlation coefficient r [2].

Now, let us consider two different texts Y, and Yj, written in the same language,
e.g., the gospels of Matthew and Mark. For these texts, we can write more general
linear relationships:

Y = mpX + 1y
yj = mix+n;

2

with correlation coefficients rx and 7/, respectively.

The linear model Equation (1) connects x and y only on the average (through m),
while the linear model, Equation (2), introduces additive “noise” through the stochastic
variables 1y and n;, with zero mean value [1]. The noise is due to the correlation coefficient
|r| # 1, not considered in Equation (1).

With the extended theory, we can compare two texts by eliminating x. In other words,
in the example just mentioned, we can compare the number of sentences in any couple
of texts-for an equal number of words-by considering not only average relationships,
i.e., Equation (1), but also their correlation, Equation (2). We refer to this communication
channel as the “sentences channel”.

By eliminating x, from Equation (2) we get the linear relationship between, now,
the input number of sentences in text Yj (reference) and the output number of sentences
in text Y}:

_m mj
Yi = Ve T ®G)

Compared to the new reference text Yy, the slope m is given by:
m = m;/my 4)

The noise source that produces the new correlation coefficient is given by:

m;

]
= —— i 5
n knk—l—n] ®)

The “regression noise-to-signal ratio”, R,;, due to |m| # 1, of the new channel is given
by [1]:
Ry = (m—1)° (6)

The regression signal-to-noise ratio is given by:
I'm = 1/Ry (7)
The unknown correlation coefficient r between y; and y; is given by [38]:
r = cos|arcos(r;) — arcos(ry) | 8)

The “correlation noise-to-signal ratio”, R,, due to |r| < 1, from text Y to text Yjis
given by [1]:
1-72 ,

R, = 2 m 9)

The signal-to-noise ratio due to the correlation noise is given by:

I, = 1/R, (10)
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Because the two noise sources are disjoint, the total noise-to-signal ratio of the channel
connecting text Y} to text Y}, for a given stochastic variable, is given by [1]:

2
1—r 2

R = (m—1)7>+ e (11)

Notice that the noise-to-signal ratio can be represented graphically [1]. The total
signal-to-noise ratio is given by:

I =1/R (12)
Of course, we expect, and it is so in the following, that no channel can yield |r| = 1
and |m| = 1, a case referred to as the ideal channel, unless a text is compared with itself

(self-comparison, self-channel). In practice, we always find |[r| < 1 and |m| # 1. The
slope m measures the multiplicative “bias” of the dependent variable compared to the
independent variable; the correlation coefficient measures how “precise” the linear best
fit is.

In conclusion, the slope m is the source of the regression noise-because |m| # 1—;
the correlation coefficient r is the source of the correlation noise-because |r| < 1—, as
discussed in [1] for translation channels. But now the theory refers to texts written in the
same language.

2.2. Sensitivity of the Signal-to-Noise Ratio to Input Parameters

According to [1], the signal-to-noise ratio I effectively describes linguistic channels
because it can be used to estimate the minimum capacity (in bits per event) by assuming a
Gaussian channel [20].

In this paper we use I to assess whether the New Testament translated texts have
saved or lost their mutual mathematical relationships present in the original Greek texts,
therefore it is useful to show its sensitivity to the input parameters m and . Because of the
large range expected, we express I in decibels (dB), therefore we study I';5 = 10 x logqol.

Figure 1 shows I'yp as a function of m, for fixed values of |r| (left panel) and I';jp as a
function of 7, for fixed values of m (right panel). We can notice some interesting features

1. As|r| =1, T 5 — co, when m = 1. In this region, I';5 changes vary rapidly as small
variations in r give very large variations in I';p (left panel).
2. Asr 20.95, for the values of m shown, I'yp is practically a constant (right panel).

Theoretical SNR
T

Theoretical SNR
30 T T

SNR (dB)

0 I I I I I
095 0.955 096 0.985 0.97 0875 0.98 0.985 0.99 0.995 1

Correlation r

Slope m

Figure 1. (Left panel): Signal-to-noise ratio I';5 (SNR) as a function of line slope |m| for fixed values
of the correlation coefficient |r|. (Right panel): Signal-to-noise ratio I';z (SNR) as a function of
correlation coefficient |r|, for fixed values of the line slope |m|.
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These features do affect the “self-noise” present in “self-channels” and the “cross-noise”
present in “cross-channels” discussed in Sections 4 and 5.

Before studying, in depth, a particular linguistic channel (namely the “sentences
channel”) in Section 4, let us recall the graphical representation of deep-language variables
as vectors in the vector plane, by applying it to Matthew.

3. Vector Analysis of Translations Based on Deep-Language Variables

Independently of the different parallel channels (one for each variable), the correlation
noise (|r| < 1) in most cases is larger than the regression noise (m # 1), therefore indi-
cating that every translation tries as much as possible to be not biased, i.e., to approach
|m| = 1, but it cannot avoid to be decorrelated (|r| < 1), with correlation coefficients which
approximately decrease in the regression lines related to characters, words, sentences,
interpunctions and to Pr, Ip, Mr and Cp.

If different translations of a New Testament text into the same language can be mathe-
matically quite different, this is always found for different languages [1], as we explicitly
show now for Matthew by using a graphical tool developed in [2], namely the vector plane.

The vector plane is a useful graphical tool for synthetically comparing different literary
texts. As it can be noticed in Figure 18 of [39], for most Tew Testament texts the vector
plane allows to assess how much different texts are mathematically similar, by considering
the four deep-language variables Cp, Pr, Ip, MF not explictly controlled by authors when
writing. It considers the following six vectors of components x and y, given by the average

— — — —
values of the variables: Ry = (Cp, Pr), R» = (Mg, Pr), R3s = (Ip,Pr), Ry = (Cp, Mp),

— —
Rs = (Ip,Mp), R¢ = (Ip,Cp) and their resulting vector, of coordinates xg and yg,
given by:
— 6
R = ) R (13)
k=1

Table 1 reports the average values of Cp, Pr, Ip, M found in Matthew in the indicated
languages. Figure 2 shows the vector plane reporting xg and yr of Equation (13), and

Figure 3 shows the distance d = \/ (xr — Xrc)* + (yr — yrg)? of a translation from
the Greek Matthew (xgg, yrg), for each language. Latin, as it was found in [1], is the
translation closest to the original Greek. From these figures we can see that all translations
are mathematically quite diverse from the original Greek text and show a large variability,
as in [1]. Similar results can be found for other New Testament texts, here not considered

for brevity.

120 Matthew

5L o o TS R S X Greek AFinnish Serbian A Cebuano
1ol : ° A | X Latin VvV German Slovack  [>Tagalog
Esperanto < Icelandic < Ukrainian <I Chichewa
10l Oy 0vy P - 7 | O ltalian D>Norwegian £ Hungarian >Luganda
o g5 SR O NN RN B ASpanish < Swedish Estonian  Somali
"w. & . . vPoruguese Bugarian Abanian < Haitian

a5l ﬁ | <l French Czech Armenian [>Nahuatl

80 ke L S SHSSINNE MA—— — b >Romanian Croatian O Welsh

7l f ‘ 7 ' | O Danish Polish O Basque

o ‘ ; ‘ ‘ ‘ . ‘ O English Russian O Hebrew

80 90 100 110 120 130 140 150 160

xR

Figure 2. (Left panel): Vector plane xg and yr of all languages concerning Matthew; for Greek
xR ~ 121; yr ~ 115. (Right panel): Graphical symbols referring to the indicated languages.
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Table 1. Average values of Cp (characters per word), Pr (words per sentence), Ip (words per inter-
punction), MF (interpunctions, or number of Ip, per sentence) in Matthew, in the indicated languages.

Language Family Gy Pr Ip Mg
1. Greek Hellenic 4.896 20.270 7.182 2.825
2. Latin Italic 5.132 17.450 5.051 3.465
3. Esperanto Constructed 4.468 19.586 4.798 4.083
4. French Romance 4.170 17.917 7.468 2.404
5. Italian Romance 4.281 17.534 5.982 2.931
6. Portuguese Romance 4.445 14.302 5.292 2.709
7. Romanian Romance 4.283 16.495 6.493 2.542
8. Spanish Romance 4.246 17.605 6.091 2.903
9. Danish Germanic 4.123 14.266 5.838 2.449
10. English Germanic 4.031 17.774 6.947 2.578
11. Finnish Germanic 5.844 15.509 4784 3.248
12. German Germanic 4.646 16.403 5.805 2.830
13. Icelandic Germanic 4.381 14.363 5.331 2.706
14. Norwegian Germanic 4.073 15.377 7.474 2.062
15. Swedish Germanic 4.202 15.045 7.513 2.012
16. Bulgarian Balto-Slavic 4.375 14.284 5.522 2.590
17. Czech Balto-Slavic 4.519 12.326 4.755 2.605
18. Croatian Balto-Slavic 4.379 13.674 5.307 2.585
19. Polish Balto-Slavic 5.088 11.486 4.531 2.536
20. Russian Balto-Slavic 4.665 18.185 4.107 4.426
21. Serbian Balto-Slavic 4.196 13.943 5.614 2.484
22. Slovak Balto-Slavic 4.635 12.330 4912 2.512
23. Ukrainian Balto-Slavic 4.590 13.891 4.696 2.960
24. Estonian Uralic 4.847 15.411 5.199 2.969
25. Hungarian Uralic 5.287 15.347 4.013 3.832
26. Albanian Albanian 4.032 21.013 6.434 3.287
27. Armenian Armenian 4.487 15.316 5.625 2.7261
28. Welsh Celtic 4.071 21.863 5.603 3.911
29. Basque Isolate 4.671 15.702 4.672 3.365
30. Hebrew Semitic 4.125 11.261 5.359 2.103
31. Cebuano Austronesian 4.695 15.464 8.351 1.862
32. Tagalog Austronesian 4.779 16.584 7.664 2.168
33. Chichewa Niger-Congo 6.084 12.464 6.067 2.071
34. Luganda Niger-Congo 6.236 12.543 5.599 2.254
35. Somali Afro-Asiatic 5.308 17.137 6.003 2.872
36. Haitian French Creole 3.343 14.351 6.181 2.326
37. Nahuatl Uto-Aztecan 6.699 13.725 6.197 2.228
Distance from Greek
50 T T
45
a
40 R
35 B
g 30+ . b =
% 25 > 4B o
020 d
a
151 5 R
10 B
50 o
OO @ t"! 10 15 20 2‘5 3b 35 40

Language

Figure 3. Distance d from Matthew according to the language indicated in abscissa. The order of
languages is the same as in Table 1. Greek (language no.1)isatd = 0; Latin (2) atd = 5; English (10)
atd = 25, etc.
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It is interesting to notice that, in any language family (Table 1), d varies in a range
of approximately 7 dB. Some translations in some language families practically coincide,
e.g., Italian, French and Spanish, or Icelandic, Norwegian and Swedish.

Because it is cumbersome to consider all New Testament texts studied in [1] to assess
whether, within a language, the mathematical mutual relationships of the original Greek
texts are saved or lost, in the following we use only Matthew as reference text in any
language. From the large spread shown in Figure 1, we can imagine the even large spread
likely found in studying all langauges, a topic, however, deeply studied in [1].

In conclusion, the results reported below, by assuming Matthew as reference text, are
sufficient for giving a reliable answer to the issues mentioned in the Introduction.

In other words, for the purpose of being specific in deriving the full characteristics of
the extended theory, it is sufficient to consider only Matthew and its translations, to show
how a text is mathematically related, within the same language, to other texts, namely, in
the following, the gospel according to Mark (Mk), Luke (Lk) and John (Jh), and to Acts (Ac)
and Apocalypse (Revelation) (Ap).

Moreover, of the many linguistic channels linking two texts, for brevity we consider
the channel that links their sentences, discussed in the next section.

4. The Sentences Channel and Its Theoretical Signal-to-Noise Ratio

“Translation” can also refer-as discussed in Section 2- to the case in which a text is
compared to another text both written in the same language. We can investigate, for in-
stance, how the number of sentences in text Y is “translated” into the number of sentences
in text Y; for the same number of words. This comparison can be done, of course, by
considering average values and regression lines, but now the theory allows us to con-
sider also the correlation coefficient-i.e., the noise defined in Equation (5)-and provides
insight because it models linguistic channels according to parameters of communication
theory, such as the signal-to-noise ratio (and possibly channel minimum capacity [1]).
For our study of the several linguistic channels we consider, for illustration, only the
sentences channel.

Let us consider the Greek texts of the New Testament, and let us compare Matthew, in
turn, to Mark, Luke, John, Acts and Apocalypse.

Notice that in any translation, all texts have been worked as detailed in [1]. For each
chapter, we have counted words, sentences and interpunctions (full-stops, question marks,
exclamation marks, commas, colons, semicolons) after deleting all extraneous characters
added to the original text by translators/commentators, such as titles, footnotes et cetera.
At the end of this lengthy and laborious work, only the original text was left to be studied.
Of course, it is not required to understand any of the translation languages—the theory
does not consider meaning-because the process consists in just counting characters and
sequences of characters. In the end, for example, in any language, Matthew is made of
28 chapters, therefore all regression lines, or any other data processing, are always based
on 28 couples of data.

According to Section 2, to apply the theory to the sentences channel, we need to
know the slope and the correlation coefficient of the regression line between the number of
sentences per chapter (dependent variable) and the number of samples of another variable
(independent variable) for each text. As independent variable, we consider the number
of words per chapter, therefore the input parameters refer to the regression line between
sentences (y;) and words (xx). By eliminating words, the theory compares sentences for
equal number of words, i.e., studies the sentences channel.

For example, Table 2 shows the regression parameters found in the original Greek texts.
Notice that we have maintained 4 decimal digits because some values differ only from the
third digit. For example, on the average, for 100 words we find 0.0508 x 100 = 5.08 sentences
in Matthew, 0.0499 x 100 = 4.99 sentences in Luke (the text closest to Matthew when consid-
ering all deep-language variables, as reported in [39]) and only 0.0338 x 100 = 3.38 sentences
in Apocalypse.
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Table 2. Line slope (sentences per word) and correlation coefficient of the regression line between
words (independent variable) and sentences (dependent variable) in the indicated New Testament
Greek texts. We have reported 4 decimal digits because some values differ only from the third digit.

Text Slope Correlation Coefficient
Matthew 0.0508 0.9410
Mark 0.0538 0.8985
Luke 0.0499 0.8975
John 0.0549 0.9181
Acts 0.0413 0.8807
Apocalypse 0.0338 0.8063

Because we always consider Matthew as dependent text, the data of Table 2 can be
used to compare the sentences channel of Matthew with itself (self-channel) and with
the other texts (cross-channels). Mathematically, the input data (reference, independent
data) to the theory are the slope and the correlation coefficient given, in turn, by Mark
(e.g., my = 0.0538 and ry = 0.8985), Luke, John, Acts and Apocalypse, and the dependent
data are always the values of Matthew, therefore mj = 0.0508 and rp = 0.9410. Table 3 re-
ports, for each cross-channel, the values of m—calculated with Equation (4)-and r—calculated
with Equation (8)-and the total signal-to-noise ratio I';5 calculated with Equations (11) and
(12), and the partial values I, ;5 and T', 45, calculated with Equations (6), (7), (9) and (10).

Table 3. Values of m —calculated with Equation (4)-and r —calculated with Equation (8)-and the total
signal-to-noise ratio I'yp calculated with Equations (11) and (12), and the partial values I',, 45 and
I, 4p, calculated with Equations (6) (7), (9) and (10) in the indicated cross-channels.

Channel m P r T4 | 7

Mt vs. Mt (Self) 1 o 1 o o
Mt vs. Mk 0.9442 25.07 0.9940 19.70 18.59
Mtvs. Lk 1.0180 34.88 0.9938 18.86 18.76
Mtvs. Jh 0.9253 22.54 0.9981 24.77 20.50
Mtvs. Ac 1.2300 12.76 0.9890 14.72 10.62
Mt vs. Ap 1.5030 5.97 0.9589 7.04 3.46

For example, according to Table 3, the number of sentences estimated in Matthew is
given by the number of sentences in Luke multiplied by m = 1.0180, with correlation
coefficient r = 0.9938. Therefore, the fraction r> = 0.9876 (98.76%) of the variance of
the sentences in Matthew is due to the regression line, while only 1 —0.9876 = 0.0124
(1.24 %) is due to decorrelation. The large difference between the partial signal-to-noise
ratios I'y, s;p = 34.88.and I', ;5 = 18.86 make the total value I';p = 18.76, practically
determined by I';, because in Equation (11) R, > Ry,.

For the values linked by the regression line (see I, s5), Matthew is closer to Luke than
to Mark (the other synoptic gospel) or to John, but when considering also the correlation
coefficient, a different situation emerges (see I';g) as Matthew is closer to John than to
Mark or Luke, although these differences are small and might be due to the statistical
noise because of the small number of samples (28) in establishing the data of Table 2
(see Section 5).

Let us apply the theory to all languages. Figures 4-6 show how I'yp changes with
language when Matthew is compared to Mark, Luke, Acts and Apocalypse (cross channels;
color key: blue = Mt vs. Mk; red = Mt vs. Lk; magenta = Mt vs. Jh; green = Mt vs. Ac;
black = Mt vs. Ap).
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Figure 4. Sentences cross-channel theoretical signal-to-noise-ratio I'jp in the indicated languages.
Languages are ordered according to Table 1. (Left panel): Matthew versus Mark; (Right panel):
Matthew versus Luke. The magenta line corresponds to Greek (language no.1). In these figures, and
also in the following, the continuous lines serve for guiding eyes.
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Figure 5. Sentences cross-channel theoretical signal-to-noise-ratio I'jp in the indicated languages.
Languages are ordered according to Table 1. (Left panel): Matthew versus John; (Right panel):
Matthew versus Acts. The magenta line corresponds to Greek (language no.1).

We can make the following general remarks:

1.  The signal-to-noise I';5 of both self- and cross-channels depends very much on lan-
guage, with some translations giving significantly larger (more common) or smaller
values than the Greek I';p (language no.1).

2. Only few translations are very similar to Greek, as their I'jp in the cross-channels falls
on the magenta line, especially in Mt vs. Mk and Mt vs. Luke. For Mt vs. Mk they are:
Romanian (language number 7), English (10), Armenian (27), Somali (35). For Luke:
Spanish (8), Icelandic (13), Ukrainian (23), Estonian (24), Cebuano (31), Chichewa (33),
Somali (35).
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Figure 6. (Left panel): Sentences cross-channel theoretical signal-to-noise-ratio I';5 in the indicated
languages; Matthew versus Apocalypse. Languages are ordered according to Table 1. (Right panel):
Sentences channel relative range (%) in the indicated languages. The magenta line corresponds to
Greek (language no.1).

Figure 6 shows (right panel) also the relative range (%) found in a language, i.e., the
range of I';p (maximum — minimum) divided by the range in the Greek texts. The relative
range can be largely compressed (below the magenta line) or expanded (above the magenta
line), therefore biasing readers’ style appreciation of texts. Very few languages maintain the
range of Greek texts, namely Latin (2), Swedish (15), Albanian (26), Tagalog (32). In other
words, texts which in Greek are mathematically quite different, in another language can be
very similar, or vice versa.

However, at this point some important observations must be highlighted. The slope m
and correlation coefficient r of a regression line are stochastic variables, therefore character-
ized by average values (e.g., those reported in Table 2 for Greek, calculated by standard
algorithms) and standard deviations. The extended theory would yield improved estimates,
of course, if the standard deviation were a very small percentage of the average value.
However, with a sample size of at most 28 (as in Matthew, and even fewer samples in the
other New Testament texts), the standard deviations of 7 and r can give too large variations
in I' ;5 predicted by the theory and reported in Table 3 and in Figures 4-6.

Because the largest values of Iy fall in the steepest region of Figure 1, a small statistical
fluctuations in m or in 7, or in both, are amplified in I'jg. Only when the input parameters
are more diverse, as with Acts and Apocalypse (Table 2), the larger mathematical distinction
is maintained (I';p = 10.62 dB and 3.46 dB, respectively) because in this case I'yp falls in
the flat region of Figure 1 and the total noise effectively tends to mask sensitivity to m or
tor.

To avoid this inaccuracy-due to the small sample size from which the regression
lines are calculated (see Appendix B), not to the theory of Section 2-, we adopt a kind
of “renormalization” based on Monte Carlo simulations-whose results we consider as
“experimental”’-defined and discussed in the next section.
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5. The Sentences Channel and Its Experimental Signal-to-Noise Ratio

If we compare Matthew with itself (self-channel), we consider the ideal channel,
thereforem = 1,r = landI = oo, values of no practical use. Therefore, we suggest
to use a Monte Carlo simulation for three purposes: (a) renormalize the self-channel
to get a finite reference signal-to-noise ratio to which compare self-channels and cross-
channels; (b) to mitigate the inaccuracy in the regression lines of the texts (cross-channels)
to which Matthew is compared; (c) to assess the maximum theoretical signal-to-noise ratio
conservatively reliable, i.e., not likely due to chance.

In this Section we first set and run the simulation and secondly, we define and discuss
the experimental self- and cross-channel signal-to-noise, whose characteristics may be
useful to distinguish between two texts.

5.1. Monte Carlo Simulation and Experimental Signal-to-Noise Ratio

In this subSection we define the steps in the Monte Carlo simulation and calculate the
signal-to-noise ratio. Let us:

1.  Generate 28 (the number of chapters in Matthew) independent numbers from a
discrete uniform probability distribution in the range 1 to 28, with replacement-i.e., a
number can be selected more than once.

2. “Write” another possible “Matthew” with new 28 chapters corresponding to the num-
bers of the list randomly extracted; e.g., 23; 3; 16 . .. hence take chapter 23, followed
by chapter 3, chapter 16 etc. The text of a chapter can appear twice (with probability
1/28?), three times (with probability 1/28%), et cetera, and the new Matthew can
contain a number of words greater or smaller than the original text, on the average
(the differences are small and do not affect the results).

3. Calculate the parameters m; and r; of the regression line between words (independent
variable) and sentences (dependent variable) in the new Matthew.

4. Compare, according to the theory of Section 2, the new Matthew (output, dependent
text, m; and r;) with any other New Testament text-including the original Matthew-
(input, independent text, m; and ry, values listed in Table 2) according to the theory
of Section 2.

5. Consider the values of I';g so obtained as “experimental” results I';p ., to be com-
pared to the theoretical results of Section 4. Notice that it is not necessary to generate
also new “Mark”, “Luke” et cetera, because we wish to compare the theoretical results
of Section 4 to the results found in this section, therefore the input m; and r, must be
the same.

6. Repeat steps 1 to 5 many times (we did it 5000 times).

Besides the usefulness, as we show below, of the simulation as a “renormalization”
tool of Matthew, the new texts obtained in step (2) might have been written by the author of
the original text because they maintain, on the average, the statistical relationships between
the linguistic variables of the original text. In other words, the simulation should take
care of the inaccuracy in estimating slope and correlation coefficient due to a very limited
sample size by considering a larger sample size of texts which might have been written by
the same author.

For example, Figure 7 (left panel) shows, for Greek, the scatter plot between I' ;5 and
the slope of the regression line of step 3. The samples are spread according to the value
of the correlation coefficient found in step 3, and follow the theoretical curves shown
in Figure 1.

Table 4 reports the average values and standard deviations of I'yp . of the self-channel-
any new Matthew is compared to Matthew with regression line parameters m; = 0.0508
and 1 = 0.9410-, and for the cross-channels-any new Matthew is compared to Mark, Luke
etc.-whose regression line parameters (input data) are listed in Table 2.
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Figure 7. (Left panel): Scatter plot between I';5 (SNR) and the slope of the regression line (step 3 of
the Monte Carlo simulation) obtained in Greek. (Right panel): Probability distributions (histograms)
of I';p in the experimental self-channel (Matthew) and in the experimental cross-channels. Mt vs. Mk
(blue), Mt vs. Lk (red), Mt vs. Jh (magenta), Mt vs. Ac (green) and Mt vs. Ap (black).

Table 4. Average value and standard deviation (dB) of the experimental (simulation) I'yp ., in Mt self-
and cross-channels.

Channel Average Standard Deviation
Mt vs. Mt (self-channel) 25.26 6.84
Mt vs. Mk 18.17 3.40
Mt vs. Lk 20.25 6.26
Mt vs. Jh 19.05 2.69
Mt vs. Ac 10.60 2.13
Mtvs. Ap 3.48 1.41

Notice that the average value of Mt vs. Lk (19.52 dB) is now closer to Matthew
(Mt vs. Mt) and that the standard deviation of Mt vs. Mt (6.84 dB) and Mt vs. Lk (6.20) are
very alike and significantly larger than those of the other cross-channels. In other words,
these findings indicate a larger similarity of Matthew with Luke than with other texts, in
agreement with what reported in [21], and also that the sentences channel is reliable.

Figure 7 shows also (right panel) the probability distributions (histograms) of I';p . in
the experimental self-channel (Matthew) and cross-channels. Similar results (not shown for
brevity) are also found when the other New Testament texts (Mark, Luke etc.) are taken as
output texts to be used in the simulation, whose Greek self-channels values are reported
in Table 5.

Table 5. Average value and standard deviation of I';p ., (dB) in the indicated Greek self-channels.

Channel Average Standard Deviation
Mt 25.26 6.84
Mk 21.45 7.14
Lk 23.19 7.00
Jh 24.60 7.03
Ac 23.70 6.27

Ap 20.01 6.87
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Returning to Table 4, we can notice that the standard deviation decrease in the cross-
channels in the order Lk, Mk, Jh, Ac, Ap. The concentration of the histograms in a narrow
range in Figure 7 (small standard deviation) is mainly due to the large change in m,
e.g.,m = 1.503 in Mt vs. Ap (Table 3). Now the data spreading along the regression line
appear to be “compressed” when texts with very different slope are used as output, such
as with Matthew. We can see, on the contrary, that the standard deviation of the Greek
self-channels of all texts (Table 5) are about the same. In other words, the fact that the
probability distribution of I'jp ., decreases both in its average value and standard deviation
when passing from self-channels to cross-channels is general.

In self-channels (Table 5), the average value depends on the text, but the standard
deviation is practically very alike for all texts, in the range 6 ~ 7 dB. Notice that the
self-channel standard deviation of Luke, 7.00 dB, is very close to the value, 6.26 dB, found
in the cross-channel Mt vs. Lk reported in Table 4. This further show that Luke is closer to
Mt, than to the other texts.

Finally Figure 8 shows I';p,, obtained in Matthew self-channel and in its cross-
channels, for all languages. Languages are ordered according to Table 1. Figure 9 shows
the difference between I'jp ., in Matthew self-channel and that in the cross-channels, for
all languages. We can notice how, in most languages, the difference is very different from
the difference found in Greek (language no.1). Moreover, in some languages the difference
between I'yp ., in Mt vs. Mt and I, in Mt vs. Lk is practically 0 dB so that, in these
languages—at least for the sentences channel-Matthew coincide, mathematically, with Luke
therefore amplifying what is found in Greek, namely that Matthew is more similar to
Luke than to other texts. These results mostly agree with those found in the theoretical
cross-channels, as we show in the next sub-section.

Experimental Cross-Channels
30 T T T 7 :

REXN
o 1o

Language

Figure 8. Experimental signal-to-noise-ratio I'jp . in Matthew self-channel and in its cross-
channels in the indicated languages. Languages are ordered according to Table 1. Color key:
yellow = Mt vs. Mt; blue = Mt vs. Mk; red = Mt vs. Lk; magenta = Mt vs. Jh; green = Mt vs. Ac;
black = Mt vs. Ap.
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Figure 9. Difference between I'yp ,, in the self-channel (Mt vs. Mt) and that in the cross-channels,
for all languages, according to Figure 8. Languages are ordered according to Table 1. The magenta
lines correspond to Greek (1). Color key: blue = Mt vs. Mk; red = Mt vs. Lk; magenta = Mt vs. Jh;
green = Mt vs. Ac; black = Mt vs. Ap.

5.2. Experimental versus Theoretical Signal-to-Noise Ratio

Very interesting is the comparison between the theoretical I';p 4, (Section 4) and the
experimental signal-to-noise I'yp ... For all languages and cross-channels, Figure 10 shows
the scatter plot between I'yp 4, and I'p ., (left panel) and the difference I'jp 4, — I'jp o (right
panel), which estimates the ratio (expressed in dB) between the total noise power in the
experimental channel and that in the theoretical channel. The horizontal magenta line
reports, for reference, the average value I';p .., of Matthew self-channel (see Table 5).

We can notice the following characteristics:

1. For several languages, I'jp . cross-channel maxima are found in Mt vs. Mk and in Mt
vs. Lk, in the approximate (ordinate) range I'yp ., ~ 25 to 30 dB.

2. Very clearly, there is a horizontal asymptote, starting at about I'jp ., ~ 25 to 30; this
range contains most values of I'yp ., of self-channels (see Table 5).

3. Before saturation, I'yp ., =~ I'yp s (approximately a 45°-line). Therefore, for I';p 3
25 to 30 dB, theory and simulation agree, indicating that the values of slope and
correlation coefficient which determine I'yp 4, are sufficiently accurate to be used
conservatively as input to the theory, without performing a Monte Carlo simulation.

4.  The difference I'yp 1, — I'4p e tends to be constant before saturation; afterwards it
increases linearly.

Let us now compare the theoretical signal-to-noise ratios I';, 45 14 and T’y g ¢, to Ijp ey
Figure 11 (T, 45 ,) and Figure 12 (T, 55 41, ) show the scatter plots. We can observe character-
istics similar to those shown in Figure 9, but with a significant larger spread. In Figure 10
saturation occurs at higher value of the signal-to-noise ratio (= 30 dB) because, as we
have shown in Table 3, I',, ;5 is usually larger than I';z. In Figure 12 the saturation occurs
practically at the same value of Figure 10 because in most cases I'; j5 ~ I';p.
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['4p x for the indicated cross-channels. (Right panel): Difference I'yp 1, — I'yp v, i.€., ratio (expressed
in dB) between the noise power in the experimental channel and that in the theoretical channel. Color
key: blue = Mt vs. Mk; red = Mt vs. Lk; magenta = Mt vs. Jh; green = Mt vs. Ac; black = Mt vs. Ap.

The magenta line corresponds to Greek self-channel.
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Figure 11. (Left panel): Scatter plot between the theoretical partial signal-to-noise ratio I';, 45 4, and
the experimental Iy, 45 ., in the indicated cross-links. (Right panel): Difference I, 45 1 — ' dBexs
i.e., the ratio (expressed in dB) between the noise power in the experimental channel and that in the
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vs. Ac; black = Mt vs. Ap. The magenta line corresponds to Greek self-channel.
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Figure 12. (Left panel): Scatter plot between the theoretical partial signal-to-noise ratio I', 45 ¢, and
the experimental I, 45 ,, in the indicated cross-links. (Right panel): Difference T, 5 1, — I'y 4B exs
i.e., the ratio (expressed in dB) between the noise power in the experimental channel and that in
the theoretical channel. Color key: blue = Mt vs. Mk; red = Mt vs. Lk; magenta = Mt vs. Jh;
green = Mt vs. Ac; black = Mt vs. Ap. The magenta line corresponds to Greek self-channel.

In the next Section we discuss how I'yp ., changes in self- and cross-channels when
the output text is reduced. The study may be useful to further indicate whether two texts
are mathematically indistinguishable.

6. Self-and Cross Channels Signal-to-Noise Ratios in Reduced Texts

Let us study how the signal-to-noise ratio changes in self- and cross-channels when
the output text is reduced. This analysis can be useful for indicating whether two texts are
mathematically indistinguishable.

For this analysis, we perform a Monte Carlo simulation like that described in Section 5,
but now the number of chapters is varied from maximum (28 for Matthew) to a minimum
of at least 3. Then, for each text reduction, we calculate the experimental values of I';z,
'y, 4, and T, 4p as outlined in Section 5.

Figure 13 (left panel) shows the average values of 'y, I',,, s5, and T', ;5 as a function of
the fraction f(%) of text considered, the latter given by the average total number of words
found in the simulation with reduced text divided by the total average number of words
found in the simulation with full text (28 chapters). The normalization to 100% takes care
of the small differences in totals mentioned in Section 5.

We notice that in the self-channel the total signal-to-noise ratio I';p is practically
determined more by T’ ;5 than by I';, s, as already observed for full text (Table 3). The
cross-channels follow a similar trend but with a very important difference, highlighted in
Figure 13 (right panel), which shows the difference between the 100% signal-to-noise ratio
and that at the indicated fraction. The most striking finding is that in the self-channel at
f = 50%, I'yp, I’y qp and I', 4p are all reduced by 3 dB. In other words, in a large range of
f,Tap, Ty qp and T, 4p are proportional to f -1

On the contrary, the reduction is much lower in the cross-channels, whose results are
also shown in Figure 13 (right panel). Mathematically this is due to being in the steepest
range of Figure 1 in the self-channel-where signal-to-noise ratio drops rapidly -, and in the
flat range in the cross-channels. This is confirmed by the results shown in Figure 14, which
clearly shows that, the slope is practically constant, regardless of f, while the correlation
coefficient varies significantly.
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Figure 13. (Left panel): Average values of I';p (total), I', 45 (m) and I, 45 (r), versus fraction f(%) of
text considered in Matthew self-channel and total I' ;5 in the cross-channels indicated. (Right panel):
Difference between the average signal-to-noise ratio obtained with full text (100%) and that obtained
with reduced text in the same channels.
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Figure 14. Scatter plot between correlation coefficient r and line slope m for Matthew self-channel
(Mt vs. Mt) and Matthew cross-channels Mt vs. Mk (blue), Mt vs. Lk (red), Mt vs. Jh (magenta),
Mt vs. Ac (green), Mt vs. Ap (black).

This characteristic can be considered as another check to assess whether a text can be
confused with another text, be therefore indistinguishable, a characteristic more stringent
than mere similarity of I'yp, such that between Matthew and Luke. In other words, if in
a self-channel and in its cross-channels I'y3, I';, 4p and I, 43 are proportional to f 1, then
we can be reasonably confident that the two texts are more than similar, than one can be
confused with the other, not excluding the further hypothesis that the author is the same.

The same characteristics can be found in any text. For example, Figure 15 shows
the results found in the self-channels concerning the Greek Jewish War (JW) by Flavius



Information 2022, 13, 20

19 of 28

Josephus, the English David Copperfield (DC) by Charles Dickens, and the Italian I Promessi
Sposi (PS) by Alessandro Manzoni. For each text, regardless of epoch and language, the
total signal-to-noise ratio T'yp is reduced according to f~!.
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Figure 15. Difference between the average signal-to-noise ratio obtained with full text (100%) and
that obtained with reduced text in the sentences self-channel in Jewish War (JW, blue line), David
Copperfield (DC, green line), and I Promessi Sposi (PS, black line).

7. Channel Probability of Error and Likeness Index

In this Section we explore a way of comparing the signal-to-noise ratios of self- and
cross-channels objectively and automatically, and possibly also getting more insight on
texts mathematical likeness.

In the sentences channel explicitly studied in the present paper-but our development
can be applied to any other linguistic channel-, can we “measure” how close, in the Monte
Carlo simulations, is Matthew to itself (self-channel), or to other texts (cross-channels) with
an index based on probability? In other words, how much can we be confident that a text
can be mistaken, mathematically, with another text, e.g., Matthew with Luke or John, et
cetera, by studying self- and cross-channels? Because in the Monte Carlo simulations we
get probability densities as those shown in Figure 7 (right panel) for Greek, we must deal
with continuous functions. In other words, can Mt self- channel, described statistically
by its probability density shown in Figure 7, be confused with one of the cross- channels,
also described by a probability density in Figure 7, therefore implying, for example, that
Matthew and Luke are very similar, while Matthew and Acts are not? The probability
problem is binary because a decision must be taken between two alternatives.

The problem is classical in binary digital communication channels affected by noise,
as recalled in Appendix C. In this field, “error” means that bit 1 is mistaken for bit 0 or
vice versa, therefore the channel performance worsens as the error frequency (i.e., the
probability of error) increases.

Now, in the sentence self- and cross channels-to be specific -, “error” means that a text
can be more or less mistaken, or confused, with another text, consequently two texts are
more similar as the probability of error increases.

According to Equation (A8), the average minimum probability of error in a binary
channel with equiprobable “events”—as we assume, of course, for self- and cross-channels-is
given by:

S Tmin
Pe = 0.5 l:/ gO(rdB,cross)drdB,cross + [m 81 (rdB,self)drdB,self] (14)

min
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In Equation (14) Typcross and I'ypses are the signal-to-noise ratios in the
indicated channels.

The decision threshold T),;,, as shown in Appendix C, is given by the interSection of
the known probability density functions g,(y) (cross-channel) and g; (v) (self-channle), i.e.,
the experimental probability densities shown in Figure 7. The integrals limits are fixed as
shown in Equation (14) because I'yp cross < T'apsel -

Let us study the range of p. If p, = 0 there is no interSection between the two
densities; their average values are centered at —oco and +co, respectively, or the two densities
have collapsed to Dirac delta functions. If p. = 0.5 the two densities are identical, e.g., a
self-channel is comparerd with itself. In conclusion, 0 < p, < 0.5. Therefore, when p, = 0
cross- and self- channels can be considered totally uncorrelated; when p. = 0.5 = pe max,
self and cross-channels coincide, the two texts are mathematically identical.

Instead of reporting results on p,, we define and show results of the following normal-
ized “likeness index” I :

n = P (15)
Pe,max

In Equation (15), 0 < I} < 1; I} = 0 means totally uncorrelated texts, I; = 1 means
totally correlated texts.

Let us apply Equation (15) to the probability density of I'yp se1¢ (“bit 1) and I'yp cross
(“bit 0”). Now, according to Figure 7 (right panel), g,(y) and g1 (y) can be well modelled
in a large range with Gaussian probability density functions (not shown for brevity),
with average value and standard deviations given by Table 4 in Greek Matthew self- and
cross-channels.

In the left panel of Figure 16 we show I in the indicated cross-channels (i.e., g,(v))
compared to Matthew self-channel (i.e., g1(y)). It is evident that when the text of Matthew
is referred to Luke (Mt vs. LKk, red line) I} is the closest to Matthew self-channel (Mt vs.
Mt): in other words, Matthew can be confused with Luke (and vice versa) more than with
Mark, John, Acts or Apocalypse.
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Figure 16. I vs. text fraction considered in the Monte Carlo simulations in Greek. (Left panel):
Matthew self-and cross-channels; color key in left panel: red refers to cross-channel Mt vs. Lk, blue
to Mt vs. Mk, magenta to Mt vs. Jh, green to Mt vs. Ac, black to Mt vs. Ap; ¢1(y) refers to Mt
self-channel. (Right panel): Matthew and Luke self- and cross-channels; color key in right panel:
red lines refer to cross-channel compared to Mt self-channel; green lines refer to cross-channels
compared to Lk self-channel. g1 (y) refers to Mt self-channel (indicated by /Mt) or to Lk self-channel
(indicated by /Lk).
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The results shown in the right panel of Figure 16 highlight the asymmetry of linguistic
channels [1]. Here we show cross- and self-channels of both Matthew and Luke referred
to their self-channels. For example, I} of the cross-channel in which Matthew is “read”
as Luke and compared to Luke (Mt vs. Lk/LKk, solid green line) is smaller than I of
the cross-channel in which Luke is “read” as Matthew (Lk vs. Mt/Mt) and compared
to Matthew.

From Figure 16, we can draw the following conclusions on a possible use of the
likeness index:

(@) In the self-channel Mt vs. Mt, I} > 0.7, for any text fraction (> 30%), therefore 30% of
Matthew compared with its full text retains a large likeness.

(b) In the cross-channel Mt vs. Lk, I} =~ 0.7 for full-texts (100%), therefore indicating a
large likeness when the full Mt is compared to the full Lk.

(¢) Inthe reverse channel Lk vs. Mt/Mt, I} > 0.7 for f > 80% (right panel), therefore
indicating a larger likeness when Luke is compared to Matthew.

(d) In the cross-channel Lk vs. Mt/Lk (right panel) the likeness index is markedly larger
than in the cross-channel Mt vs. Lk/Mt. This finding may support the conjencture,
shared by many scholars (see [39]), that Matthew was written before Luke, and that
Luke might have known Matthew when he wrote his text.

() In the cross-channels Mt vs. Mk and Mt vs. Jh I} ~ 0.45.

(f) In the cross-channels Mt vs. Ac I} ~ 0.1 and in Mt vs. Ap I, ~ 0.02.

In conclusion, the likeness index I} seems reliable because it confirms known rela-
tionships among the Greek New Testament texts (e.g., [39]). In particular it confirms that
Matthew and Luke are the most similar texts.

Similar results are found in English, shown in Figure 17 where g (y) refers to Mt
self-channel. Compared to Greek (Figure 16, left channel), distortions are clearly evident
because I} is quite smaller, and with different rankings, than what found in Greek.

English Mt self- and cross-channels

o o o o o
-~ w D -~ w
T T T T
1

Channel Likeness Index

o
w

Lk vs Mt

o
N

Mt vs Mk
Mt vs Lk:
A Pieve ok L
Mt vs Ac:
Wit vs Api H H |
0 i f

20 30 40 50 60 70 80 90 100
Text Fraction (%)

o

Figure 17. I} vs. text fraction in Matthew self- and cross-channels, in English. In Mt vs. Lk cross-
channel (solid red line) Matthew is compared to Luke; in the reverse channel Lk vs. Mt (solid red line
with circles), Luke is compared to Matthew. g1 (i) refers to Mt self-channel.

Finally notice the universal result that in self-channels I} is practically given by the
same function, I}, > 0.7 for f > 30% and [} ~ 0.8 for f = 50%, features which evidently
characterize self-channels, as also shown in Section 8.
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In conclusion I, can be considered another usefull index for automatically comparing
texts in a multidimensional space of indices.

8. Texts across Time

In this Section we first compare the following translations of Matthew: (a) modern
English-version studied in the present paper-versus the XVII century English of King James’
Bible; (b) modern German-version studied in the present paper- versus the XVI century
German of Luther’s Bible. All texts have been downloaded from the web sites reported
in [1]. Secondly, we compare the two versions of the Italian novelist Alessandro Manzoni’s
masterpiece, namely Fermo e Lucia (Fermo and Lucy) and I Promessi Sposi (The Betrothed).

Figure 18 shows I;, versus text fraction for English (left panel) and for German (right
panel). Besides the trend of self-channels already observed in Figures 16 and 17 (I > 0.7
forany f and I} =~ 0.8 for f = 50%), the two versions of Matthew seem to refer to different
texts because the cross-channels have very small Iy, practically the same value found in the
cross-channels Mt vs. Ac or Mt vs. Ap in Greek (Figure 16, left panel). Similar results are
found also for German, with I; ~ 0.15 in both cross-channels.
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Figure 18. I} vs. text fraction in Matthew self- and cross-channels. Left panel: Modern English
(Vc)-version studied in the present paper-versus the XVII century English of King James’ Bible (S]).
In the cross-channel Vc vs. SJ (green line) g1 (i) refers to King James.; in the cross-channel SJ vs. V¢
(magenta line) g1 (i) refers to modern English. Right panel: Modern German (G)-version studied in
the present paper- versus the XVI century German of Luther’s Bible (L). In the cross-channel G vs. L
(green line) g1 () refers to Luther; in the cross-channel L vs. G (magenta line) g1 (i) refers to modern
German. All texts have been downloaded from the web sites reported in [1].

From Figure 18, we can conclude that the modern translations of Matthew in English
and in German are signficantly different of the classical versions due to King James (English)
and to Luther (German).

Alessandro Manzoni (Milan 1785, Milan 1873), one of the most studied Italian novelist
and poet in Italian High Schools and Universities, in 1827 published Fermo e Lucia, a text
that scholars of Italian Literature-and Manzoni himself- consider the “first” version of
his masterpiece I Promessi Sposi, which was published in 1842. According to scholars, the
two versions differ very much, both for structure and characters [40-43], therefore it is
interesting to study how much the author transformed (mathematically) Fermo e Lucia into
I Promessi Sposi, according to our theory specifically applied to the sentences channel.
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Figure 19 shows I} versus text fraction for the indicated self- and cross-channels. The
novel published in 1842 (PS) has practically little connection with that (FL) published in
1827, as scholars of Italian Literature have noticed.

A. Manzoni self- and cross-channels

D8 co e b e e B S 4

PS vs PS
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Channel Likeness Index
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= tn @ 3
T T T T
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Figure 19. I} vs. text fraction in Alessandro Manzoni’s novels. FL = Fermo e Lucia; PS = I Promessi
Sposi. In the cross-channel Ps vs. FL (green line) g1 (y) refers to Fermo e Lucia. In the cross-channel
FL vs. PS (magenta line) g1 (y) refers to I Promessi Sposi.

9. Concluding Remarks

We have extended the general theory of translation [1] to texts written in the same lan-
guage. To be specific, we have applied the extended theory to New Testament translations
already studied in [1], and have assessed how much the mutual linguistic mathematical
relationships present in the original Greek texts have been saved or lost in 36 languages.
In general, we have found that in many languages/translations the original relationships
have been lost and consequently texts have been mathematically distorted.

After defining the mathematical problem in general terms, we have assessed the
sensitivity of the signal-to-noise ratio of a linguistic channel to input parameters. The
theory is based on the properties of linear regression lines, therefore on slope m and
correlation coefficient r. The slope m is the source of the “regression noise”-because
|m| # 1—; the correlation coefficient r is the source of the “correlation noise”-because
|| < 1—, as discussed in [1] for translation channels, but now the theory refers also to texts
written in the same language.

Because it is cumbersome to consider all New Testament texts to assess whether,
within a language, the mathematical mutual relationships of the original Greek texts are
saved or lost, we have studied only the gospel according to Matthew as reference text in
any language. However, the results reported are sufficient for giving a reliable answer to
the question.

For the purpose of being specific in deriving the full characteristics of the extended
theory, we have shown how Matthew is mathematically related, within the same language,
to the gospels according to Mark (Mk), Luke (Lk) and John (Jh), and to Acts (Ac) and
Apocalypse (Revelation) (Ap). The channels so defined are termed “cross-channels”. The
channel in which Matthew is compared with itself is the “self-channel”.

Of the many linguistic channels linking two texts [1], we have considered only the
channel that links their sentences, referred to as the “sentences channel”. We have investi-
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gated how the number of sentences in text Y is “translated” into the number of sentences
in text Y; for the same number of words. This comparison can be done, of course, by con-
sidering average values and regression lines, but the theory has allowed us to consider also
the correlation coefficient and has provided insight because it models linguistic channels
according to parameters of communication theory, such as the signal-to-noise ratio.

To avoid the inaccuracy, due to the small sample size from which the regression
lines are calculated, we have adopted a kind of “renormalization” based on Monte Carlo
simulations, whose results we consider as “experimental”. We have compared theoreti-
cal I'yp ¢, and experimental I'yp ., signal-to-noise ratios and have found that for several
languages I'yp ., cross-channel maxima are found in the approximate (ordinate) range
Iiypex ~ 25 to 30 dB. Beyond these values there is saturation, i.e., a horizontal asymp-
tote. Before saturation, I'yp.x ~ I'jp; (approximately a 45°-line). In other words, for
I'yp 2 25 to 30 dB, theory and simulation agree, indicating that the values of slope and cor-
relation coefficient which determine I 4, are sufficiently accurate to be used conservatively
as input to the theory, without performing a Monte Carlo simulation.

We have also studied how the signal-to-noise ratio changes when the output text is
reduced, according to the fraction f. This analysis can be useful for indicating whether
two texts are mathematically indistinguishable. We have found that the signal-to-noise
ratio in the self-channel is proportional to f ~!. In the cross-channels the reduction is much
lower. Operationally, this can be another check to assess whether a text can be confused
with another text.

We have found the same characteristics in self-channels concerning the Greek Jewish
War (JW) by Flavius Josephus, the English David Copperfield (DC) by Charles Dickens, and
the Italian I Promessi Sposi (PS) by Alessandro Manzoni. For each text, regardless of epoch
and language, the total signal-to-noise ratio T'yp is reduced according to f .

We have also we explored a way of comparing the signal-to-noise ratios of self- and
cross-channels objectively and automatically-by applying concepts of binary communica-
tion channels affected by noise-, and possibly also a way of getting more insight on texts
mathematical likeness. To this end, we have defined a “likeness index” I;, and have shown
how it can reveal similarities or differences of different texts.

Finally notice that, because the theory deals with linear regression lines, it can be
applied any time a scientific/technical problem involves two or more linear regression
lines, therefore it is not limited to linguistic variables but it is universal.
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Appendix A. List of Mathematical Symbols

Symbol Meaning
Cp number of characters per word
f fraction of text
I likeness index
Ip number of words per interpunction (word interval)
m slope of linear regression line
Mr number of interpunctions per sentence
n noise source
ng number of sentences per chapter
nw number of words per chapter
r correlation coefficient
E linguistic vector
R total noise-to-signal power ratio
R regression noise-to-signal power ratio
Ry correlation noise-to-signal power ratio
Pr number of words per sentence
S total number of sentences
XR coordinate in the vector plane
YR coordinate in the vector plane
Yy input language
Y; output language
W total number of words
r signal-to-noise power ratio in self- and cross-channels
T'ip signal-to-noise power ratio in decibels
Tex experimental signal-to-noise power ratio (Monte Carlo simulation)
T regression signal-to-noise power ratio (due to m)
I, correlation signal-to-noise power ratio (due to r)
T theoretical signal-to-noise power ratio

Appendix B. Variability of Linear Regression Line Parameters

Let 7 be a correlation coefficient of a regression line of a large sample size n. According
to statistical theory (see [44] p. 296), the transformed variable:

= o.SZnGJ”) (A1)

is approximately Gaussian, with average value given by Equation (A1) and variance
given by:
o* =1/(n—3) (A2)

Let us consider Matthew, hencen = 28 and r = 0.9410 (Table 2). A sample size of 28
is not large. However, for the purpose of estimating some bounds, let us apply Equations
(Al) and (A2). The parameters of the Gaussian distribution are therefore = 1.747 and
c = 1/v/25 = 0.2. At 10, we find n = 1947 and y = 1.547. From Equation (A1),
we get:

e —1
r= 1 (A3)

From Equation (A3), we calculate at £10, r = 0.9601 and r = 0.9133, a very large range.

A similar analysis, although more complicated, can also be done for the slope m, which
for large n is also Gaussian.

Moreover, since the correlation noise does depend also on m, see Equation (9), we
should estimate a reliable bivariate probability distribution of r and m, a difficult task.

In conclusion, because of all these mathematical difficulties it is straighter and more
reliable to turn to the Monte Carlo simulation defined in Section 5.
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Appendix C. Minimum Probability of Error in Binary Decisions

The following analysis is typical of binary digital communication channels affected by
noise (usually Gaussian) ([45], Section 4.3), in which the receiver must decide, by sampling
the amplitude y of the received signal+noise, whether the bit 0 or the bit 1 has been
transmitted, usually with amplitude of the pulse carrying bit 1 larger (e.g., positive) than
that carrying bit 0 (e.g., negative).

Let go(y) and g1 (y) be the known (conditional) probability densities of the amplitude
received when bit 0 or bit 1 have been transmitted, with a-priori probability py and p;
respectively. The average (or total) probability of error-i.e., the probability of mistaking
bit 0 for bit 1 or vice versa-is given by:

T

Pe = Po /T oogo(]/)dwrm / oogl(y)dy (A4)

In Equation (A4), T is the amplitude threshold used by the receiver to make a (“hard”)
decision. If the sample is larger than T, the decision is bit 1; otherwise is bit 0.

The unknown threshold T is chosen by minimizing p.. By deriving Equation (A4)
with respect to T and setting it equal to zero, we get:

d
% = _pOgO(Tmin)+p1g1(Tmin) =0 (A5)

Therefore, the threshold value T,,;, which minimizes Equation (A5) is given by the
implicit equation in the variable T},;,:
gl(Tmin) _ @ (A6)
80(Twin) 1

If the two bits are equiprobale-as is usually assumed in digital communications,
ie,pp = p1 = 0.5-then Equation (A6) gives:

81(Twmin) = §0(Tmin) (A7)

In other words, T),;, is determined by the interSection of the two known probability
density functions, therefore:

00 Tmin
pe = 05 { / o(y)dy + / L& (y)dy] (A8)
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