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Abstract: We investigate the design of ontology-supported, progressively disclosed visual analytics
interfaces for searching and triaging large document sets. The goal is to distill a set of criteria that
can help guide the design of such systems. We begin with a background of information search,
triage, machine learning, and ontologies. We review research on the multi-stage information-seeking
process to distill the criteria. To demonstrate their utility, we apply the criteria to the design of a
prototype visual analytics interface: VisualQUEST (Visual interface for QUEry, Search, and Triage).
VisualQUEST allows users to plug-and-play document sets and expert-defined ontology files within
a domain-independent environment for multi-stage information search and triage tasks. We describe
VisualQUEST through a functional workflow and culminate with a discussion of ongoing formative
evaluations, limitations, future work, and summary.

Keywords: interface design; ontologies; visual analytics; visualizations; interaction; machine learning;
design; progressive disclosure; information search and triage; large document sets

1. Introduction

Visual analytics combines the strengths of machine learning (ML) techniques, visual-
izations, and interaction to help users explore data/information and achieve their analytic
tasks [1]. This joint human–computer coupling is more complicated than an internal au-
tomated analysis augmented with an external visualization of results seen by users. It is
both data-driven and user-driven and requires re-computation when users manipulate the
information through the visual interface [2,3]. Visual analytics tools (VATs) help users form
valuable connections with their information and be more active participants in the analysis
process [4,5]. They can be used to support a wide variety of domain tasks, such as making
sense of misinformation, searching large document sets, and making decisions regarding
health data, to name a few [6–9]. More than ever, researchers are investigating strategies
to combat the rising computational needs of analytic tasks [10]. ML technologies can be
helpful in increasing the computational power of VATs; however, their utilization can
often come at the cost of clarity and usability for users. Recent studies [11–13] have found
that traditional interface designs that integrate ML technologies limit user participation in
the information analysis process and can lead to reduced user satisfaction. That is, users
may struggle to understand and control ML when performing their tasks. In response,
there is a growing desire to strengthen “human-in-the-loop” engagement when designing
interfaces [11,14,15].

Users perform information search by communicating their information-seeking needs
through a tool’s interface, which then generates a document set mapping used to direct
document encounters in analytic tasks. This generation of document set mappings arises
from the results of the computational search, where investigations are concerned with
the design of algorithms and processes which improve computational power. Yet, for
information search, investigations usually center on how users can better participate in
the computational search through the interface of their tools. While there is great value in
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novel computational investigations, this paper focuses solely on investigating the design
of visual interfaces and how active human reasoning strengthens the human-computer
coupling during task performance.

In addition, when information search results are too numerous to be immediately
useful, the need for information triage arises. That is, document sets must sometimes be
further triaged into more manageable sets for the overall task—just as doctors must perform
an initial, rapid triage of their intake before their concentration can shift to the details of
individual cases. During information triage, users inspect, contextualize, and make timely
relevance decisions on documents to produce a reduced, task-relevant set. However,
information search and triage can be challenging for users, particularly in analytic tasks
involving large document sets. Harvey et al. [14] have found that when using traditional
interfaces for search and triage, such as those with multiple input profiles, paged sets of
documents, and linear inspection flows, users struggle to complete their domain tasks.
Specifically, users routinely struggle to understand the domain being searched, to apply
their expertise, to communicate their objectives during query building, and to assess the
relevance of search results during information triage.

To address these concerns, we believe and suggest that users can benefit from VAT
interfaces that promote a novel combination of two design considerations: (1) the use
of progressive disclosure in the multi-stage information-seeking process and (2) the use
of ontologies to bridge the gap between user and task vocabularies. For the former, re-
search [15] suggests that information seeking should be understood as a multi-stage process
with distinct functional roles and human-centered requirements. Progressive disclosure
is an organizational design technique that manages the visual space of an interface by
occluding unnecessary elements of past and future stages, allowing users to concentrate on
the task at hand. For multi-stage tasks, such as those involved in the information-seeking
process, progressive disclosure can be effective in supporting users to perceive and plan
task performances, hence being beneficial when searching and triaging [16]. Regarding
the second consideration, users must understand and apply domain-specific vocabulary
when communicating their information-seeking objectives. Yet, task vocabularies typically
do not align with user vocabularies, particularly in tasks within complex domains such as
health [17]. Ontologies are created by domain experts to provide a standardized mapping
of knowledge that can be leveraged both by computational and human-facing systems.
Thus, ontologies can be valuable mediating resources to assist users in bridging the gap
between their vocabulary and that of the task vocabulary [18,19]. To incorporate these
considerations into the design of VAT interfaces to enable effective search and triage of
large document sets, we are in need of high-level design criteria.

Therefore, in this paper, we set out to investigate the following research questions:

• What are the criteria for the design of VAT interfaces that support the process of
searching and triaging large document sets?

• If these criteria can be distilled, can they be used to help guide the design of a VAT
interface that integrates progressive disclosure and ontology support elements in
multi-stage information-seeking tasks?

The rest of this paper is organized as follows. We begin with a background section
on information search, information triage, ML, and ontologies. We review research on the
multi-stage information-seeking process to distill a set of design criteria. To illustrate the
utility of the design criteria, we apply them to the design of a demonstrative prototype:
VisualQUEST (Visual interface for QUEry, Search, and Triage). VisualQUEST enables users
to build queries, search, and triage document sets. Users can plug-and-play document
sets and expert-defined ontology files within domain-independent, progressively disclosed
environment for multi-stage information search and triage tasks. We describe VisualQUEST
through a functional workflow and conclude with a discussion of ongoing formative
evaluations, limitations, future work, and summary.
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2. Background

This section provides some conceptual and terminological background. We begin with
a discussion of information search and triage, explore the ML pipeline, and conclude with
an examination of ontologies.

2.1. Information Search and Triage

Numerous models exist which describe operational, temporal, and sequential frame-
works of the information-seeking process [20]. We mention two here. Kuhlthau’s six-part
model describes the stages of initiation, selection, exploration, formulation, collection, and
presentation. This model was refined by Vakkari into a three-part model of pre-focus
(initiation, selection, exploration), focus formulation (formulation), and post-formulation
(collection and presentation) [15].

When using a VAT interface to search a document set, users’ primary objective is to
encounter documents that are most relevant to their task. For this, users must first commu-
nicate their information-seeking needs via the VAT interface. Computational components
of the VAT generate a mapping between users’ input and the qualified and relevant docu-
ments in the document set and then present it to users at the interface level of the tool [21].
Existing research [14] describes user requirements and, in turn, design considerations of
interfaces that mediate information search on document sets. Namely, users must first
establish an understanding of the document set and how it relates to their existing domain
knowledge. Next, users must learn how to effectively communicate their objectives in a
way that can be understood by the tool. Finally, users must comprehend how the VAT
applied their input in its computational component so that they can effectively assess and
guide their analytics process.

However, as document sets increase in size within analytic reasoning tasks, it has
become more challenging for users to arrive at a final set of relevant documents without
additional intervention. That is, even after computational components have reduced the
document set down to a subset of documents, these subsets are still too large to be of value
to users. For this issue, information triage may be required to further reduce the number of
documents into a usable collection of task-relevant documents. During information triage,
a user’s primary objective is to inspect, contextualize, and make timely relevance decisions
on search results [22]. For this to occur, existing research [23–25] suggests that, while still
able to assess document relevance to information-seeking objectives, tools must allow users
to encounter and perform rapid triaging on large sets of documents in a non-linear fashion.
Notably, supporting information triage within tools can also help users assess the quality
of their search and triage tasks and inform them on how to improve further information
seeking [26].

2.2. Machine Learning

ML technologies are increasingly being applied to challenging analytic problems, once
considered too complex to solve in an effective and timely manner [10]. For instance,
ML is used in developing pathways for drug discovery, rapid design and analysis within
materials science, and improvement of the performance of search tasks on large document
sets [27–29].

ML processes are traditionally described as a three-stage pipeline covering the prepa-
ration, utilization, and assessment of models [12]. The primary objective when preparing
a model is to analyze and sanitize incoming data. During this stage, responsibilities in-
clude data reformatting, minimizing signal noise, organizing common feature labels, and
removing features that misalign with the task domain [30].

The next stage in the process is the utilization of a selected ML algorithm. There
are many ML algorithms, typically categorized under either supervised or unsupervised
learning [13]. With supervised ML, labeled data are typically ingested and fit to train
the model to optimally arrive at a gold standard output. The objective is that, given the
same task and a new dataset with similar labels, a trained model can then repeat its per-
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formance [31]. Supervised models are best used in ML pipelines that require repeated
predictions of label classification or the regression of numerical data points. Examples of
supervised learning algorithms are Support Vector Machines, Naïve Bayes, and K-Nearest
Neighbor [32]. Unsupervised models rely on probabilistic adjustment techniques rather
than training to a specific gold standard. The most common application of unsupervised
learning is when an algorithm can analyze data points to learn of their shared associations
within the structure of the input space. Thus, unsupervised models are best applied in
ML pipelines whose goal is to make sense of data-point clusters and densities within the
input space, such as mapping inputs to document sets to generate document groupings
during information search [13]. Examples of unsupervised learning models are hierarchical
clustering algorithms which calculate distances between data points, centroid-based clus-
tering (e.g., K-means), which converge data points to centralized nodes, and density-based
clustering (e.g., MeanShift), which re-weight data points based on proximity to densities
within the input space [32,33].

In the final stage in the ML pipeline, users assess the effectiveness of the selected model
so as to conclude their task or provide feedback to their tool. A research area receiving much
attention is how to design interactive ML interfaces such that a balance is struck between
the computational power of the machine and the perceptual and decision-making power
of humans—that is, support the “human-in-the-loop” aspects of the design appropriately.
Through the lens of visual analytics, such ML pipelines can further expand to a five-stage
pipeline: data collection, cleaning, storage, analysis, and data visualization in both macro
and micro forms depending on analytic task needs [34]. A generalized and human-centered
interaction loop for interactive ML involves a set of stages where [35]:

1. Users specify their needs as a set of terms understood by the tool.
2. Users ask the tool to apply them as input features within its computational components.
3. The tool performs computation to map the features against the document set.
4. The tool displays the computational results and how they arrived at them.
5. Users assess if they are satisfied with the results or if they would like to adjust their

set of terms to generate an alternate mapping.
6. Users either restart the interaction loop or complete the task.

Despite knowledge of the above-mentioned stages, there are still many challenges
in supporting effective engagement with ML components of tools, such as those within
VATs. One challenge is the design of interfaces that can help users engage with ML
processes effectively [35]. For instance, if users cannot understand ML characteristics
and requirements of their tool, they cannot perform their tasks effectively or maximally.
Another significant challenge is supporting users in communicating their information-
seeking objectives to a VAT’s ML components. This is especially a concern in visual analytic
tasks which involve direct interaction with ML processes [36–39].

2.3. Ontologies

When using VATs for searching and triaging large document sets, both the human
and computational components can only perform optimally if their communication is
strong [40]. Simply put, users can only perform well if they understand what their tool’s
interface is presenting to them. Furthermore, a tool can only optimize its computational
components if the user-expressed vocabulary and instruction truly align with their intended
information-seeking objectives. Tools are not typically designed to adapt to changing vocab-
ularies. That is, when searching and triaging a specific document set, tools are traditionally
designed to fit a singular vocabulary and task. It is often up to the users to understand
the tool’s domain-specific vocabulary and use that understanding to communicate their
information-seeking objectives. Yet, learning the often unfamiliar vocabulary of the tool
can be a significant challenge for users, particularly in complex task domains (e.g., health),
which encapsulate terminology, relationships, axioms, and knowledge structures that
diverge from a common vocabulary of general users [17].
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To address this challenge, expert-defined ontologies are increasingly being used as
mediating resources within human- and system-facing interfaces [41]. Within his seminal
research, Gruber succinctly defined an ontology as an “explicit specification of a concep-
tualization” that reflects a set of objects describing knowledge through a representational
vocabulary [42]. Ontologies are created by domain experts to provide a standardized
mapping of knowledge. This can be leveraged both by computational and human-facing re-
sources [18]. A wide variety of domains have begun to integrate ontologies into tasks, such
as information extraction of unstructured text and behavior modeling of intellectual agents.
Furthermore, ontologies are seeing increased use both within critical and non-critical
health-related domains such as decision support systems within critical care environments,
telehealth systems, as well as general human-facing visualization tasks [43–47]. Ontologies
can be classified as one of three types: traditional ontologies that describe the structure
of reality, expert-created ontologies that describe the entities, relations, and structures of
a given domain, and top-level ontologies that interface domain ontologies [40]. Ontolo-
gies can provide flexibility, extensibility, generality, and expressiveness that are necessary
when trying to effectively bridge domain knowledge between humans and computational
tools [19].

Comprehensive investigations of ontology engineering exist, which provide systematic
reviews and methodologies. From these works, ontology engineers can find guidance in
their efforts when formulating, creating, and validating ontologies [48,49]. After transcrib-
ing an ontology, designers prepare its entities, relations, and other descriptive attributes
into standardized data file formats (e.g., W3C-endorsed languages OWL, RDF, RDFS).
These data files can be shared among knowledge users and used in domain-specific tasks.
In simple terms, it can be said that when creating a domain ontology, experts must navigate
the terms and characteristics of their domain to conceptualize a generalized and universal
mapping of their knowledge [40]. During the creation process, experts construct a struc-
tured network formed largely of ontology entities and relations [50,51]. Ontology entities
reflect the conceptual objects of a domain and will typically encode information about
their role in the vocabulary, definitions, descriptions, contexts, as well as metadata that
can inform the performance of future ontology engineering tasks [52]. Ontology relations
express the type and quality of interactions among entities and unfold numerous unique
interoperability of axioms within a domain [53]. As regards this, Arp et al. [40] distinguish
three relations: universal–universal (e.g., a rabbit “is a” animal), particular–universal (e.g.,
this rabbit is an “instance of” a rabbit), and particular–particular (e.g., this rabbit is a
“continuant parts” of this grouping of rabbits).

3. Methods

In this section, we provide an analysis of leading research within the task space. We
begin with a specification of the literature search, followed by task analysis. We conclude
by using this analysis to distill design criteria to guide the creation of VAT interfaces for
searching and triaging large document sets.

3.1. Literature Search

Our objective in this systematic search was to identify relevant research articles that
describe the information-seeking process, its stages, and how designs can account for the
unique characteristics and requirements of supporting user tasks.

3.1.1. Search Strategy

The literature search was divided into four categories: information-seeking process,
information search interface, information triage interface, and ontologies within user-
facing interfaces (Table 1). With these keywords, using Google Scholar and IEEE Xplore, a
literature search was conducted for articles published between 2015 and 2021.



Information 2022, 13, 8 6 of 29

Table 1. Search categories, keywords used to identify literature, and screening results reflected as the
number of articles found.

Search Categories Keywords Metadata Screening Abstract Screening

Information-
seeking process

Information seeking
model, information

seeking process,
and information
seeking stages.

Google Scholar: 95;
IEEE Xplore: 60;

Total: 155

Google Scholar: 18;
IEEE Xplore: 4;

Total: 22

Information
search interface

Information search
interface, search

interface, and search
interface design.

Google Scholar: 90;
IEEE Xplore: 27;

Total: 117

Google Scholar: 10;
IEEE Xplore: 1;

Total: 11

Information
triage interface

Information triage,
information triage

interface, document
triage, and triage
interface design.

Google Scholar: 38;
IEEE Xplore: 3;

Total: 41

Google Scholar: 6;
IEEE Xplore: 0;

Total: 6

Ontology use within
user-facing

information-
seeking interfaces

Ontology interface,
ontology integration,

ontology-based
interface, and

user-facing interfaces
with ontologies.

Google Scholar: 214;
IEEE Xplore: 12;

Total: 226

Google Scholar: 2;
IEEE Xplore: 0;

Total: 2

3.1.2. Inclusion and Exclusion Criteria

We used the following criteria to include papers from the literature in our review:
(1) published in a peer-reviewed journal; (2) accessible in full, with empirical evidence;
(3) published within the specified scope of time; and (4) aligned with the research direc-
tion. Namely, we included papers that present considerations for designs of user-facing
information-seeking visual interfaces and, in particular, the generalized task performances
of information search and triage on document sets.

Exclusions were made if the papers (1) presented deeply domain-specific user, task, or
interface requirements which would not hold as generalized information-seeking processes
(e.g., domain-specific datasets, AR, VR, mobile-exclusive, etc.); (2) described ontology
integrations that are not user-facing (e.g., system-facing integration); (3) involved ontology
integrations for tasks not related to the information-seeking process; (4) concerned system-
facing issues, such as computational search, machine learning algorithms, indexing, storage,
networking, and the like, rather than user-facing information search or triage processes; or
(5) were not in English.

3.1.3. Selection and Analysis

Through search interfaces and their available filtering functionality (e.g., keyword
entry, date range, article type, etc.), we performed screening on metadata using the inclusion
and exclusion criteria on the journal, title, and year of publication of available literature. If
a paper passed metadata screening and the inclusion and exclusion criteria, we accessed
the full article along with its abstract and any available summarizing content. We gathered
and reviewed in full papers that passed the second screening.

3.1.4. Results

After completing metadata screening using search engine interfaces, a combined total
of 539 papers were produced. From this set, we removed duplicates (n = 1). We performed
a second abstract screening on the set using inclusion and exclusion criteria, removing
502 papers (Table 1). Hand-searched references extending from encountered literature
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resulted in the inclusion of 18 additional papers. This produced a total of 54 papers
available for task analysis.

3.2. Task Analysis

We divide our analysis of the collected literature into three topic sections. First, we
summarize leading research on the models of the information-seeking process and the
importance of progressive disclosure for supporting multi-stage tasks. Next, we examine
the substages of information search: query building and search. Afterward, we discuss the
substages of information triage: high-level and low-level triage.

3.2.1. Models of Information-Seeking Process and Progressive Disclosure

Huurdeman [15] suggests that information seeking should be understood as a multi-
stage process with distinct functional requirements. This research explores existing models
of the information-seeking process, beginning with a summary of a six-stage model: initia-
tion, selection, exploration, formulation, collection, and presentation. This is further refined
and summarized as a three-stage model: pre-focus (initiation, selection, and exploration),
focus formulation (formulation), and post-formulation (collection and presentation). Hu-
urdeman concludes with an analysis of each of these stages, stating that “information
sought for evolves during different stages”. Specifically, Huurdeman describes how users
in the pre-focus stage concentrate on conceptualizing their topic using search tactics like
browsing, querying, and deciding on search models. Next, the focus formulation stage
investigates the broad concepts that are being searched. Finally, during the post-focus
stage, users are concerned with searching for specific information, increasing from low
specificity (high-level assessments of relevance) to high specificity (low-level assessments
of relevance). For our purposes, we can use the above-mentioned analysis to break down
the information search and triage tasks into four stages: query building, search, high-level
triage, and low-level triage (see Table 2).

Table 2. The stages of the information-seeking and triage process: their associated task, alignment
with existing models, and functional descriptions.

Stage Associated Task Alignment with Existing Models Functional Descriptions

Query building Information search Pre-focus (initiation,
selection, exploration)

Users communicate their
information-seeking objectives via the

tool’s interface.

Search Information search Focus formulation (formulation)
Users specify the formulation of their
search and, when satisfied, initiate the
performance of computational search.

High-level triage Information triage Low-specificity post-formulation
(collection and presentation)

Users encounter sets of similar information
entities generated from computational

search, make initial high-level assessments
of general alignment with

information-seeking objectives, and direct
further triaging encounters.

Low-level triage Information triage High-specificity post-formulation
(collection and presentation)

Users encounter individual information
entities previously encountered in

high-level triage to perform final, low-level
assessments of relevance to

information-seeking objectives.

Progressive disclosure is a technique for organizing and managing the visual space
of an interface. When implementing the technique, designers abstract and sequence the
stages of a complex task. Afterward, views can be generated with information encodings
and controls to promote the performance of each individual stage. Views can be placed
in sequence in the visual space, with controls to direct their activation. This enables
unnecessary interface elements, reflecting past and future stages, to be minimized while
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still maintaining the transparency of other relevant stages [54]. The goal of progressive
disclosure is to minimize user distraction, allowing them to concentrate on the critical
decisions of the task at hand [55]. When designed well, the technique can effectively
support users to perceive, plan, and navigate complex, multi-stage tasks [16].

Early research on progressive disclosure insisted on full occlusion of future stages. The
belief was that in cases when future stages do not directly support a current, active stage,
they should be fully concealed and only be accessible by request [55]. However, recent
research suggests otherwise. Specifically, user studies [54] have compared full occlusion
strategies with strategies that do not fully occlude future stages. These studies find that the
former strategies distract users, lack information transparency, and reduce user opportunity
for feedback. This suggests that effective progressive disclosure strategies should maintain
balanced transparency between performances of previous stages and the impact of the
current stage on future stages.

An example of a progressively disclosed interface is WebMD’s Symptom Checker.
This interface used by the general public supports the task of health diagnosis—a complex,
multi-stage task. In particular, WebMD’s Symptom Checker’s implementation provides
hints for how current task decisions may impact the performance of future stages within
the diagnosis sequence. In this example, a progressive disclosure implementation of a task,
users are guided along with a series of query building opportunities, inputting symptoms,
and personal health criteria (see Figure 1).
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Next, we review research on the individual stages of information search and triage.

3.2.2. Stages of Query Building and Search

When searching for information in the document sets of unfamiliar domains, users
generally possess some level of knowledge deficiency. This makes it difficult to formulate
and communicate their problem, a challenge that users must overcome. According to

https://symptoms.webmd.com/
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Harvey et al. [14], this is because users consistently suffer from four major issues during
the search:

• Difficulty understanding the domain being searched.
• Inability to apply domain expertise.
• Inability to accurately formulate queries matching information-seeking objectives.
• Deficiency assessing and determining if search results satisfy objectives or if adjust-

ments are required.

We now explore these in more depth.
While searching information, users must learn about the searched domain, understand

how their information-seeking objectives align, and formulate how to communicate their
knowledge in a way that can be understood by computational tools. Thus, designers
must provide users with the opportunity to understand the explored document set. Hu-
urdeman [15] highlights that search interface designers must consider, both novices and
experts. Yet, studies by Harvey et al. [14] show that in domains with complex vocabularies
(e.g., health and medicine), the disparity of prior domain knowledge in potential users is
extreme—that is, users routinely do not possess enough domain knowledge to satisfy their
information-seeking needs. This can cause significant problems during query formulation
for both domain experts and non-expert users. As a result, non-expert users must first
step away from their tool to learn to express their knowledge using specialized domain
vocabulary before they can begin query building. Both Soldaini and Anderson [56,57] note
that even experts can be negatively affected by this challenge. This is because they must
often make assumptions regarding the appropriateness and specificity of their information-
seeking communications and/or inputs to the tool.

Another commonly cited challenge for users is their inability to perceive how their
query decisions impact, relate, and interact with the document set being searched. This
is a particularly important consideration for users who want and need to adjust their
previously communicated query to better align with their information-seeking objectives.
Huurdeman [15] describes potential strategies to address these concerns, prescribing the
use of query corrections, autocomplete, and suggestions. Yet, these strategies can be
ineffective if they do not allow users to be cognizant of how their query-making decisions
achieve the results that they seek.

Seha et al. [58] examine considerations for designing ontology-supported information
retrieval systems. They suggest that natural-language interfaces to information sources pro-
vide novice users with a pathway to avoid complex tool-dependent query languages. They
highlight the benefit of shifting the vocabulary of query building away from the tool and
towards the semantics of the domain being searched. Munir et al. [59] summarize the bene-
fits of computational strategies that integrate ontologies into information retrieval systems
for tasks involving both information search and triage. They state that ontology-supported
information retrieval can be an advantageous strategy for supporting domain-specific over
tool-specific vocabulary. This is due to their better and more effective human–computer
communication. Using the medical domain as a context, Soldaini et al. [48] investigate the
use of novel, ontology-supported query computation strategies in improving the qual-
ity of literature retrieval during search tasks. They apply combinations of algorithms,
vocabularies, and feature weights to assess the computational performance of different
query-reformulation techniques. Their findings suggest that the utilization of bridged
vocabularies within ML components improves retrieval performance.

In a systematic review of search interfaces that have ML components, Amershi et al. [60]
compile a set of principles that must be taken into consideration:

• Users are people, not oracles.
• Users should not be expected to repeatedly answer if ML results are right or wrong

without an opportunity to explore and understand the results.
• Users tend to give more positive than negative feedback to interactive ML.
• Users need a demonstration of the behavior of ML components.
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• Users value transparency in ML components of tools, as transparency helps users
provide better labels to ML components.

The application of sensitivity encoding within human-facing interface design can also
be of benefit to users when searching and triaging [61]. Sensitivity encoding is a design
strategy to provide a visual preview of possible results if particular actions are taken [62].
Within query building interfaces with sensitivity encoding, a visual interface can provide
the number of current query search results against ones with minor adjustments. In such
cases, users can relax one query item, thereby changing the size of the result set. By
providing such meaningful context cues, sensitivity encoding can guide query building and
search formulation, hence enhancing the perceived value of the search results, particularly
when used in combination with techniques like progressive disclosure [63,64]. An example
of sensitivity encoding in a search and triage tool interface is OVERT-MED [7]. This tool
uses sensitivity encoding to provide alignment cues within its query generator between the
expressed vocabulary and the search space. A screen capture of OVERT-MED is shown in
Figure 2 with the result of users comparing the queries of “Progressive + ophthalmoplegia”
and “congenital + fibrosis”.

Information 2022, 13, x FOR PEER REVIEW 10 of 30 
 

 

• Users need a demonstration of the behavior of ML components. 
• Users value transparency in ML components of tools, as transparency helps users 

provide better labels to ML components. 
The application of sensitivity encoding within human-facing interface design can 

also be of benefit to users when searching and triaging [61]. Sensitivity encoding is a de-
sign strategy to provide a visual preview of possible results if particular actions are taken 
[62]. Within query building interfaces with sensitivity encoding, a visual interface can pro-
vide the number of current query search results against ones with minor adjustments. In 
such cases, users can relax one query item, thereby changing the size of the result set. By 
providing such meaningful context cues, sensitivity encoding can guide query building 
and search formulation, hence enhancing the perceived value of the search results, partic-
ularly when used in combination with techniques like progressive disclosure [63,64]. An 
example of sensitivity encoding in a search and triage tool interface is OVERT-MED [7]. 
This tool uses sensitivity encoding to provide alignment cues within its query generator 
between the expressed vocabulary and the search space. A screen capture of OVERT-MED 
is shown in Figure 2 with the result of users comparing the queries of “Progressive + oph-
thalmoplegia” and “congenital + fibrosis”. 

 
Figure 2. OVERT-MED. Source: image generated on 5 July 2021 with permission courtesy of Insight 
Lab, Western University, London, Ontario, Canada http://insight.uwo.ca/ (accessed on 5 July 2021). 

3.2.3. Stages of High-Level and Low-Level Triage 
When performing information search on large document sets, the result set can re-

main large and overwhelming, even after significant refinement efforts by users during 
query building. To make the result set smaller and more manageable, information triage 
is often a necessary extra step in the information-seeking process. Research by Azzopardi 
et al. [65] indicates that the prevailing design language for triage interfaces provides users 
with linear inspection of long lists of documents. That is, traditional triage interfaces pre-
sent document search results as ordered sets of individual documents. However, this type 
of interface presentation has been found to significantly hamper both efficiency and effec-
tiveness of making relevant decisions using the result sets and does not scale for tasks 
with large document sets [24]. Poorly designed interfaces typically attempt to hide their 
scaling weaknesses by paging away large percentages of their results, implementing 
smooth scrolling interactions, or worse, by showing only the first result in an attempt to 
avoid triaging altogether. Yet, tools cannot ignore information triage, as it is critical in 
helping users assess the quality of search results [26]. An example of a tool that forces a 

Figure 2. OVERT-MED. Source: image generated on 5 July 2021 with permission courtesy of Insight
Lab, Western University, London, Ontario, Canada http://insight.uwo.ca/ (accessed on 5 July 2021).

3.2.3. Stages of High-Level and Low-Level Triage

When performing information search on large document sets, the result set can remain
large and overwhelming, even after significant refinement efforts by users during query
building. To make the result set smaller and more manageable, information triage is often a
necessary extra step in the information-seeking process. Research by Azzopardi et al. [65]
indicates that the prevailing design language for triage interfaces provides users with linear
inspection of long lists of documents. That is, traditional triage interfaces present document
search results as ordered sets of individual documents. However, this type of interface
presentation has been found to significantly hamper both efficiency and effectiveness of
making relevant decisions using the result sets and does not scale for tasks with large
document sets [24]. Poorly designed interfaces typically attempt to hide their scaling
weaknesses by paging away large percentages of their results, implementing smooth
scrolling interactions, or worse, by showing only the first result in an attempt to avoid
triaging altogether. Yet, tools cannot ignore information triage, as it is critical in helping
users assess the quality of search results [26]. An example of a tool that forces a linear
inspection of document results within a paged system is PubMed (see Figure 3 for a scenario
where a search is performed on the MEDLINE document set for “heart”. This provides

http://insight.uwo.ca/
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a linear triaging interface of over 1.5 million results spread over 100,000 pages within a
ten-per-page system).
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When designing information triage interfaces that provide non-linear inspection flows,
the two primary concerns for designers are how best to represent documents to users
and how users can interact with those documents to further their information-seeking
objectives. Critically, designers must re-approach triaging as a part of the multi-stage
information-seeking process. In this regard, Chandrasegaran et al. [66] describe the value of
high-level triage of full document sets prior to individual document inspection. Specifically,
they suggest that designers should avoid having users open individual documents in
full initially and instead create visual abstractions which provide an overview display
of all documents for high-level relevance assessment. Anderson [57] agrees with this,
stating that ideal high-level triage strategies should abstract out shared characteristics
to structure groupings of comparable documents. Users can be provided interactions
that allow them to simultaneously traverse, preview, contrast, and judge relevance for
groupings of documents at a time, rather than individually. Figure 4 shows the HockeyViz
Team Assessment interface for non-linear triaging team performance within the NHL. This
is different from a traditional linear approach, where statistical data is ordered in a listed
fashion. This example shows how the high-level triage stage of information-seeking task
can be supported using a visual interface.

After high-level triaging, users should be able to perform low-level triaging—that
is, assess the contents of document groupings at the individual document level. For
low-level triaging, Huurdeman et al. [22] suggest that users should be aided by displays
that allow them to save, annotate, and/or provide other personalized interactions. Other
useful strategies include displaying document metadata, titles, and short snippets of result
sets [15]. Oftentimes, traditional interfaces do not provide scaffolding supports that help
users make distinctions between the high-level and low-level triage stages. Huurdeman [15]
states that interfaces use one of three strategies when displaying search results:

https://pubmed.ncbi.nlm.nih.gov/?term=heart
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• Underload documents: little to no content of each document is displayed, making it
difficult to compare documents.

• Overload documents: too much of each document is displayed, making it difficult to
rapidly understand each document.

• Distort documents: a summarization, weighting, or filtering strategy is used to either
demote or promote certain document attributes, providing different tradeoffs: making
some attributes easier to perceive, creating poor decontextualized generalizations,
hiding away value, and sometimes promoting harmful attributes.

1 
 

 

 

 

Figure 4. HockeyViz Team Assessments. Source: image generated on 21 December 2021using the
public web portal provided by HockeyViz, https://hockeyviz.com/team/TOR/2122 (accessed on
21 December 2021).

The design of low-level triage interfaces can be challenging. Namely, designers must
consider the characteristics of the information to be represented, the knowledge domain of
users, the task to be performed, and the interactions that can effectively support the for-
mer [26,28,67]. When designing document displays, it is important that any summarization,
weighting, and filtering techniques highlight attributes that best assist in the application
of domain expertise for relevance judgement. For this, both Loizides and Mavri [68,69]
suggest some best-practice design strategies. They note that factors such as section types,
content positioning, font weight, and font size, among other factors, influence final docu-
ment relevance decision-making. Furthermore, document titles, captions, abstracts, section
snippets, conclusions, and a decreasing valuation for document pages are the most impor-
tant factors that affect decision-making regarding relevance of documents [69,70]. Simply
put, an interface that supports effective document triaging should maximize and highlight
important content and minimize elements that do not support rapid decision making.

https://hockeyviz.com/team/TOR/2122
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3.3. Design Criteria

Using the task-analysis review in the previous section, we distill the following set of
design criteria, presented in Table 3.

Table 3. The set of criteria for designing VAT interfaces for searching and triaging large document
sets. For reference within discussion, a numerical value is assigned to each criterion. Each DC#
describes the design criteria and provides an integration classification and examples of potential uses
of ontologies within user-facing information seeking interfaces.

Design Criteria Integration Potential Uses of Ontologies within
User-Facing Interfaces

1
Use progressive disclosure when

sequencing the stages of the
information-seeking process.

All stages

Ontology entities and relations can be consistent and
transparent guideposts between stages, particularly for

non-active stages which must be pruned of
unnecessary elements.

2
Attune users to the characteristics and

domain of the document set before
beginning search formulation.

Query building Ontology entities and relations can promote the
characteristics and domain of document sets.

3 Be cognizant of users’
domain expertise. Query building

Ontology entities and relations can provide a bridge
between task vocabularies and the common

vocabularies of non-expert users, as well as previously
formed domain vocabularies of expert users.

4
Create search formulation and

refinement environments
supplemented by query building.

Search
Ontology entities and relations can be useful within

interface elements that suggest expansions and
refinements to their search formulation.

5
Leverage sensitivity encoding when

previewing the document set mappings
of search formulations.

Search

Ontology entities and relations can be useful sensitivity
encoded displays, which can suggest refinement

opportunities for re-aligning their search formulation to
the document set being searched and

information-seeking objectives.

6
Present overview displays which
arrange and compare document

groupings using shared characteristics.
High-level triage

Ontology entities and relations can be useful in
abstraction, such as locating shared document

characteristics and when forming document groupings.

7

Utilize non-linear inspection flows
which support actions for traversing,
previewing, contrasting, and judging

relevance.

High-level triage

Ontology entities and relations can help users connect to
and assess the general characteristics and contents of a
document grouping, allowing them to inspect, assess,
and judge relevance on multiple documents at a time.

8
Offer document-level displays that

allow users to apply domain expertise
during relevance decision making.

Low-level triage

Ontology entities and relations can be useful for
directing summation and annotation actions, as well as
provide familiar cues for interactions like sorting and

relevance judgment.

9
Persist relevance decision-making

results externally to allow for repeat
information-seeking sequences.

Low-level triage
Ontology entities and relations can be useful for

indexing document selections as well as for
recordkeeping users’ prior search and triage sequences.

10
Allow users to encounter search results

without a demand for
immediate appraisal.

All triage

Ontology entities and relations can help direct search
formulation previews and the results of a full mapping
of the document set, allowing users to quickly associate

their predictions against search results.

11 Promote positive feedback over
negative feedback. All stages

Ontology entities and relations can provide familiar
cues to direct positive feedback interactions within

information-seeking sequences.
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4. Materials

In this section, we describe VisualQUEST, an ontology-supported and progressively
disclosed VAT interface created to demonstrate the utility of the design criteria that support
searching and triaging of large document sets. Next, we describe the technical scope and
functional workflow of VisualQUEST.

4.1. Technical Scope

VisualQUEST is a web-based generalized plug-and-play interface with user-provided
ontology files and document sets. VisualQUEST provides cross-browser (Firefox, Chrome,
Opera) and cross-platform support. VisualQUEST’s front-end views use HTML5, CSS,
and JavaScript. D3.js JavaScript visualization library is used in VisualQUEST’s interactive
displays [67]. A custom Python Flask-based server is used for data storage and ML
computations. VisualQUEST also uses Apache’s Solr system as its indexer and search
engine [71].

4.2. VisualQUEST Functional Workflow

VisualQUEST’s workflow encompasses several system and view components. The
front-end interface of VisualQUEST maintains an accordion-like design that sequences
view stages using the progressive disclosure technique (DC1). Only one VisualQUEST
subview is active at a time, assigning it the majority of the visual interface. Following
progressive disclosure best practices, inactive stages are not occluded. Instead, they are
assigned reduced yet still present display space which highlights any task-relevant value
generated within the stage.

We now describe the overall workflow of VisualQUEST and its parts. Figure 5 provides
a depiction of the VisualQUEST workflow. Labeled arrows reflect transitional actions of
systems and users. Users begin by uploading their ontology files and document sets (bottom
center). These activate their respective Ontology and Document Process Systems (brown
boxes), which prepare their content for back-end storage (blue boxes) and activation (pink
boxes). Once achieved, the front-end interface activates its various subview functionalities
(yellow boxes). The user can act upon the interface (green box). The system processes
those actions, formulates adjustments to its display, and returns a visual response to be
perceived by users. Sometimes, these adjustments must connect with back-end systems
and ask computations to be performed, and the results of those computations are sent back
to the display level.

4.3. Back-End Systems

VisualQUEST is supported by two servers that move heavy computation away from
the browser: Analytics Server and Document Server.

4.3.1. Analytics Server

Analytics Server is built using the Python-based Flask framework. It is accessed
through an API that offers two functionalities: (1) uploading user-provided document sets
and (2) performing ML computations. Document sets are uploaded from users’ computer
file system to Analytics Server. This server validates the type, format, size, and encoding of
uploaded documents and then stores them into a temporary PostgreSQL database. This
database is accessed by Document Server (a Solr server) during indexing procedures. Ana-
lytics Server can request Document Server to index all new documents. When users request
ML computations during the search, Analytics Server assesses the selected algorithm, the
document set, and the search formulation generated by users during query building and
search. It then performs sanitization and query expansion. During this process, query
items within the search formulation are expanded using user-provided ontology files and
WordNet for synonym ring analysis. The search formulation in both its original and ex-
panded form is packaged and applied within ML computations. The resulting clusters
are propagated back to VisualQUEST. These ML computation services are facilitated by
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the Scikit-Learn library, which we do not express to be a part of the novel contributions
in this research [72]. That is, we connect with existing ML toolsets to enable the required
ML computation in support of our investigations of the design of visual interfaces for
searching and triaging large document sets. We include the pseudocode describing this
process (Algorithm 1).
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4.3.2. Document Server

VisualQUEST’s Document Server is a cloud-based Solr server for indexing, storing,
and serving documents from user-provided document sets. Solr is a prepackaged, scalable
indexing solution developed by The Apache Software Foundation. It provides a valuable
array of features like a REST-like API that support numerous HTTP-based communication
interfaces. Solr also supports a wide range of customizable settings and schemas for storing,
searching, filtering, analyzing, optimizing, and monitoring tasks [71]. During indexing
procedures, Document Server uses a prepared schema to extract new documents from a
temporary PostgreSQL database hosted by Solr. These documents are then treated and
stored within an index. Document Server also handles document serving requests. When
VisualQUEST is displaying documents, Document Server provides metadata such as titles,
word counts, and content for document-level displays (See Apache’s official website and
document for more information on Solr [71]).



Information 2022, 13, 8 16 of 29

Algorithm 1 Pseudocode of clustering functionality spanning the workflow of VisualQUEST
(front-end), Analytics Server, and Document Server.

Input: A set Q of user inputted queries.
Output: Signal to update interface with cluster assignments
targets← chain(Q).unique().difference(getStopWords())
documents← getDocuments()

/* Prepare bag of words using target, related entities, and their generated WordNet synsets */

for i = 0 to targets.length do
target = targets[i]
targetCoverage← target + target.getDirectlyRelatedEntities()
targetSpread[target]← targetCoverage + targetCoverage.getWordNetSynsets()
targetSpread[target]← targetSpread[target].unique().difference(getStopWords())

/* Gather counts from pre-indexed documents, then fit and
predict clusters using Scikit.Learn KMeans clustering */

documentCounts← getIndexesFromSolrAPI(targetSpread, documents).scaleRange(0,
1)reducedPCA← SciKitLearn.PCA(nComponents = 2).fit_transform(documentCounts)
kmeansPCA← SciKitLearn.KMeans(init =’k-means++’, nClusters = 7, nInit = 10)
clusterAssignments← kmeansPCA.fit_predict(reducedPCA)
for i = 0 to targets.length do

target = targets[i]
for j = 0 to clusterAssignments.length do

cluster = clusterAssignments[j]
yPred = cluster.yPred[target]
/* Generate weighting scale using x5 multiplier */
clusterAssignments[j].weighting[target]← generateClusterWeighting(yPred)

return signalInterfaceUpdate(clusterAssignments)

4.4. Front-End Subviews

This section describes VisualQUEST’s subviews with reference to relevant design
criteria (DC#) discussed before.

4.4.1. Query Building Subview

Query Building is the first subview within VisualQUEST (DC1). Figure 6 provides
a depiction of an ontology and document set having been uploaded, from which a set of
query items have been generated with a subset of those added in Search.

In this subview, two functions are performed: uploading user-provided files and query
building. Upon clicking the upload button, users can select ontology files and document
sets which are then inserted into a file management listing, accompanied by file name, type,
and any available descriptions. Once a document set has been uploaded, users can begin
query building by inputting text into a search bar. This leads to the generation of query
items from all combinations of the inputted words (DC2). For instance, if a two-word input
is provided, a query item is generated for each, as well as two-word query items in both
possible orders (e.g., A, B, A B, B A). Each query item is accompanied by a count of its
verbatim presence within the document set (DC10). Furthermore, VisualQUEST analyzes
the alignment of query items with the entities, relations, and descriptions of user-provided
ontology files. If a feature of the ontology is found to align with a query item, it is placed
within a drop-down menu attached to the listing (DC3). In this menu, users are presented
with ontology terms that are conceptually similar to that query item (Figure 7).
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Figure 7. Expanding a query item to assess related ontology elements.

Encountering these terms, users can learn more about the domain vocabulary, appraise
how their research problem may or may not align with their document set, and adjust their
query item selections (DC2). Both direct-input and ontology-mediated query items can be
saved and are assigned unique colors that are used throughout all subviews (DC11).

4.4.2. Search Subview

Search is the second subview within VisualQUEST (DC1). Figure 8 provides a de-
piction where prior query building has produced a set of query items; these have been
inserted into the search formulation for preview.
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Figure 8. An overview of the Search subview within VisualQUEST.

In this subview, users can control the formulation of search queries, encounter sensitivity-
encoded previews of the formulation, and initialize the search on the full document set
(DC4). In the Search subview, a list allows users to manage query items, including insertion
into the search formulation (DC11). After at least one query item has been selected, a
preview of the current search formulation is activated (Figure 9).
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Figure 9. A preview of a search formulation that uses all query items.

This preview is a matrix-like heatmap display describing a cluster analysis of docu-
ment groupings within the document set (DC5, DC10). By adding and removing query
items from the search formulation, users can investigate: (1) how individual query items
align with the document set, (2) how differing query item combinations change document
grouping arrangements, and (3) estimate how many documents may be found in a full
search. If not satisfied, users can refine their formulation using existing query items or
generate new query items within Query Building (DC4, DC10). Finally, users can initialize
a full search, with the results of ML computations sent to the triage stages (DC11).
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4.4.3. High-Level Triage Subview

High-Level Triage is the third subview within VisualQUEST (DC1). Figure 10 provides
a depiction of where the previous searching has produced groupings of the document set.
A subset of those groupings has been selected, producing a further listing of their contained
documents. Some of these documents have been inspected and added into low-level triage.

1 
 

 

 

 

Figure 10. An overview of the high-level triage subview within VisualQUEST.

In this subview, users triage the results of ML computations at the grouping level. A
full document mapping is displayed within Query Result Heatmap, providing users with a
high-level abstraction of the document set (Figure 11, DC6, DC10) [65].
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Figure 11. High-level triage after groupings have been inspected and opened for further examination.

This visual abstraction is divided into horizontal slices representing document group-
ings. For each document grouping, a set of color cues highlight query item presence. Users
can inspect each document grouping to assess its size and alignment with the search for-
mulation. Listings can be re-ordered to prioritize specific query items. A cursor marks the
current position, trailing dots mark previously viewed listings, and a green mark for those
selected for further triaging. Document groupings can be opened within an additional
Query Result Heatmap, which provides high-level abstractions of individual documents
from selected groupings (Figure 12, DC7).
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Figure 12. A close look at high-level triage, showing a listing of documents contained within a
selected grouping of the document set.

Users can use this additional collection of documents to individually assess alignment
with the search formulation, as well as inspect metadata such as titles and document-specific
counts (DC6). Documents can then be saved to Low-Level Triage (DC7, DC11).

4.4.4. Low-Level Triage Subview

Low-level triage is the fourth subview within VisualQUEST (DC1). Figure 13 provides
a depiction of where a set of saved documents have been produced in prior triaging. Each
of these documents has been provided a timeline-like summary reflecting words or phrases
aligning with the search formulation within its content. When selected, the Document
Content viewer depicts the document itself, either in the summarized or full document
mode. The summarized mode is shown.
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In this subview, users triage the documents produced in high-level triage. Users are
provided a timeline-like visual abstraction of individual documents (Figure 14).
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Figure 14. A closer view of the Selected Documents listing, where the user can see timeline-like
abstraction of documents and their alignment with the search formulation.

In this visual abstraction, colored marks are placed along a timeline to reflect the
position of words or phrases which align with the query items of the search formulation.
Documents with strong alignment will produce numerous markings, resulting in color-
heavy and densely marked timelines. Utilizing the timelines, users can perform rapid
analysis of the themes of individual documents. Namely, users can assess the presence
of query items used within the search formulation, where in the document they are, and
the density of their usage (DC8, DC10). The Document Content viewer is activated after
selecting a document for deeper inspection (Figure 15, DC10, DC11).
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This viewer presents all available document content, such as document text, title,
authors, file name, URLs, and published date. Users can toggle between a full document
and a summarized mode. The full document mode displays all available information, an-
notated to reflect alignment with the search formulation. The summarized mode condenses
documents to just content in proximity to aligning words or phrases (DC8, DC10). Users
may open documents to inspect, compare, and make final relevance decisions on its content.
Relevant documents can be added to a persistently saved list, allowing users to continue
searching and triaging without the risk of losing progress (DC9).

5. Discussion and Summary

In this section, we provide a discussion of ongoing formative evaluations of Visu-
alQUEST and some preliminary findings; in addition, we discuss the limitations of the
current work, highlight some future work, and provide a summary.

5.1. Formative Evaluations of VisualQUEST

We had formative user evaluations of VisualQUEST—that is, ongoing, task-driven
assessments of the effectiveness of the search and triage interface. These evaluations
have been informal, involving volunteers associated with our research lab. The feedback
from these users helped us gain some insights into how the design of ontology-supported
and progressively disclosed VAT interfaces can be guided by the collection of design
criteria that we discussed in this paper. We learned that criteria-driven designs can help
users perform complex, multi-stage information-seeking tasks on large document sets.
In these evaluations, users performed tasks aligning with the stages of the information-
seeking process, including the fulfillment of a research, question-driven scoping review.
The restrictions of the ongoing COVID-19 pandemic placed significant limitations on us
performing formal empirical user studies, which we highlight in the Limitations section.
Our research objectives for expanded empirical evaluations are described within the Future
Work section.

5.1.1. Tasks

Given the same document set (MEDLINE database) and ontology (Human Phenotype
Ontology), and directed through an automated task set, users performed seven tasks with
VisualQUEST. Given their current level of knowledge and vocabulary, users explored
the interface to perform a set of information-seeking tasks: including building queries,
assessing how their queries aligned with the document set, conducting high-level triage on
search results, and doing low-level triage. The exploration culminated with the completion
of a task involving all stages of information search and triage. We provide a general
description of each task within the task set (Table 4).

Table 4. General description of tasks (T1 . . . T7) performed during formative evaluations.

Target Stage Task Description

T1 Query building Consider two terms and contrast their rate of occurrence within the document set.
T2 Query building Consider a term and determine its alignment with a set of provided definitions.

T3 Search Consider how provided set of terms aligns with the document set, both individually
and in combinations.

T4 High-level triage Without opening a specific document, predict its alignment to a provided set of terms.

T5 High-level triage Without opening a specific pair of documents, compare and predict which of them
would contain a higher rate of occurrence of a specific term.

T6 Low-level triage Given a specific document, count and order the rate of occurrences of a provided set
of terms within that document.

T7 Multi-stage Given a domain research question, using all stages and available functionalities of the
interface, produce five relevant documents from the document set.
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5.1.2. Formative Evaluations and Findings

In total, 10 users affiliated with our research lab interacted with VisualQUEST during
task performance. The gender split was 80% male and 20% female. The information-seeking
domain was medicine, using the MEDLINE as the document set with over 25 million
documents in it, and Human Phenotype Ontology (HPO) with over 11 thousand items as the
vocabulary meditation ontology. On average, these users stated that they liked to try new
software tools and learn how tools work by exploring them rather than reading instructions.
They also stated that they frequently use tools for information search and are generally
confident in their ability to communicate their information-seeking needs using search
interfaces. Furthermore, they noted that they generally trust that their search tools capture
all relevant information. Most of them (>60%) stated that they are frequently satisfied with
their results after a single round of search, with greater than 30% occasionally or rarely
being satisfied after a single round. Users reported that they possessed low to average
knowledge of the medical domain, as it rarely impacts their lives on a weekly basis. Finally,
the majority of users were aware of what ontologies were prior to using VisualQUEST.

During ongoing formative evaluations, all users completed all assigned tasks. Further-
more, they reported their general experiences after using VisualQUEST. They described
their experiences with progressive disclosure, the use of novel visual abstractions, view
sequences, and ontology mediations. We itemize initial, general findings below, followed
by some informal quotes on which these findings are based (A . . . J):

(1) Users were able to learn how to use VisualQUEST without much difficulty (e.g., A, B).
(2) Users were able to interpret the visual abstractions in VisualQUEST to engage with

the ML component of the tool (e.g., C, D).
(3) Users were able to differentiate between the individual stages of the information-

seeking process and used VisualQUEST’s domain-independent, progressively dis-
closed interface to search and triage MEDLINE’s large document set (e.g., E, F, G).

(4) Users were able to use Human Phenotype Ontology to align their vocabulary with the
vocabulary of the medical domain, even while they were not initially familiar with
the ontology’s domain or its structure and content (e.g., H, I, J).

(5) Users felt that mediating ontologies make search tasks more manageable and easier
and not having them would negatively affect their task performance (e.g., H, I, J).

The following are excerpts from these informal sessions:
(A) “Once I understood what it was showing me, it helped me. Usually with new tools

I tend to read through the documentation or watch videos. And then it still takes me like a
while to pick up on them. Like, just running through them and using them a few times.
Once you get the hang of it, usually you find success in whatever it’s providing you.”

(B) “It’s a tool that I’m not used to and I’m kind of going back and forth and for me
when there’s kind of a lot of little moving parts. I mean it, it feels that way right now
because I’m not familiar with the tool and I’m kind of taking in this information and figure
out how the way different pieces of information needs to go together.”

(C) “If I was using [VisualQUEST] against other search (interfaces), I would just use
[VisualQUEST] constantly. Being able to really filter down exactly what I need . . . like
that’s really on point. Especially with like the different colorings of the words. It’s like
telling you like what each document (grouping) is like. It gives me the ability to better
align with the documents and gives me more confidence when I’m creating my queries.
I’m making the correct query decision even before even running the search.”

(D) “A lot of other tools you use, they kind of do predictive searches for you. They
build a filter. So, for example, like Google doing a predictive search. It’s predicting based
on top results from previous searches, so with that, it can be finagled with. Where you
know you could have a bot farm or whatever finagling those search results and making
them be what they want them to be. Whereas with [VisualQUEST] you get to parse those
results and make your own educated decisions versus the search engine doing it for you.
So, I feel more control in the experience than you would typically. I feel more certain in the
end goal.”
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(E) “[With VisualQUEST], going through low-level triage and seeing and reading the
abstract and the actual documents . . . I wanted to check and have a comparison between
the documents that I chose . . . (because) usually my style of choosing is that I usually
choose more than what I have to choose and then I remove that and the extra ones.”

(F) “At first, I just copy and pasted the entire keywords . . . and my first thought I
wasn’t really seeing the results of the all the keywords mixed in together the same way. So,
[with VisualQUEST] I was able to go back and see if the words individually not together
had brought in any difference in the search.”

(G) “I think [VisualQUEST] is a benefit. In my previous experiences with searching
queries, if you just type it in and it blurts out the answer it prioritizes in whatever way that
it wanted. I like this because it is a little bit more specific, and you are able to choose more
of the options that you want to use. I think you have more control of how to exactly find
the answer and what exactly you are looking for, instead of starting from just a general
basis of all the answers that are possible. So, I think it’s better to be able to narrow down
exactly what you’re looking for and find more appropriate answer towards your question.”

(H) “I was thinking . . . where the ontology would have been helpful. So . . . it would
have possibly brought up some of those other terms just from searching a few words and
they would be able to make some connections between the text that was provided and
some of my search terms (to see) . . . how relevant they were. So, if I was shooting in the
dark and hoping for the best, which is what I was kind of doing (without the ontology), at
the very least, it would have given you confidence of your actions. Yeah, I think so. A little
bit more confidence.”

(I) “Yeah, actually on second thought, yeah, this (ontology) would have helped because
I . . . can find the things that . . . share in common, and that can make it probably much
easier to find the relevant documents. Yeah, being able to see the things that certain phrases
. . . or words share in common. You can find that common link . . . that can find you the . . .
the relevant documents.”

(J) “I do really like how [VisualQUEST] gives you the ability to find different vocabu-
lary or other words that may not have been the first thing you thought of when you were
building the query.”

5.2. Limitations

One of the limitations of this research is the lack of a formal empirical user study of
VisualQUEST. The COVID-19 pandemic has made it difficult to conduct such a study. Our
preliminary investigations do not enable us to fully evaluate all the features of VisualQUEST.
In these informal evaluations, we noted that user experiences of the tool were affected
by their initial unfamiliarity with the interface—that is, users expressed an initial lack of
confidence when using the novel elements of the interface. However, this was quickly
overcome when they had a few minutes to learn the preliminaries of the tool. Users felt
that they were able to mold their interface to match their personal needs and expectations
when searching and triaging. They said that this was in contrast to their typical limiting
experiences with traditional interfaces. They expressed that they were capable of utilizing
ontology files to align their vocabulary with the vocabulary of the domain, even if they
were not initially familiar with the ontology’s domain or its structure and content. Users
conveyed that the use of the ontology and the mediation opportunities it provided helped
guide their information-seeking process, making tasks manageable and easier and that
not having ontologies would negatively affect their task performance. Despite the lack
of a formal study, we anticipate that insights gained through our formative evaluations
can help future investigations and promote further refinement to the interface design
process, particularly how user-facing ontologies should be integrated into VATs that support
searching and triaging of large document sets.

The second limitation of this research is of a technical nature. First, the Analytics
server of VisualQUEST can handle uploading, processing, and serving document sets and
ontology files of large sizes. For example, our usage scenario demonstrates VisualQUEST



Information 2022, 13, 8 25 of 29

handling HPO and its 11,000 ontology terms and a large document set reflecting a subset
of MEDLINE. However, if document sets and ontology files were to be increased to an
extreme scale, overhead limits within the local browser could produce a notable wait
before users could begin to search and triage. Therefore, this limits VisualQUEST’s current
ability to handle document sets and ontology files of extremely large sizes. Additional
technical efforts would be needed to address this limitation. For instance, additional
efforts could be made to shift computation away from the local browser, improve the
general computational efficiency of the tool, and seek centralized solutions to eliminate
document set and ontology file indexing prior to task performance. VisualQUEST’s second
technical limitation is its current level of support for ontology file formats. As previously
described, VisualQUEST in its current state can process the core elements of OWL, a leading
format for encoding ontologies within the digital space. Yet, the OWL specification is overly
verbose, particularly in regard to its extensive base of axiom relations. Therefore, we believe
VisualQUEST’s ontology processing system can be improved to supply even more value
for mediation and query expansion opportunities. In addition, there are other RDF-based
ontology formats that would be valuable to support.

5.3. Future Work

We plan to perform formal, empirical evaluation studies. These studies will implement
task-driven formal evaluations to compare VisualQUEST with other tools that facilitate
searching and triaging large document sets. We hope to generate qualitative and quanti-
tative results that provide a better understanding of how interface design criteria affect
user performance in information-seeking tasks. Specifically, we will expand our evaluation
studies to include quantitative results which track how user performance changes when
presented with alternative interfaces for a task set. We intend to measure task performance
and completion timings, as well as expand qualitative findings such as user-reported ease,
satisfaction, assessment, and more in-depth interviews. These will help us with a better
understanding of the criteria for the design of such tools.

Beyond these, we intend to explore several other potential research directions. First, we
believe there is value in deeper investigations of lower-level design considerations and their
impact on the performance of challenging information-seeking tasks on large documents.
Second, the distilled design criteria and the implemented prototype, VisualQUEST, provide
an initial exploration of how ontologies can be presented to information seekers within the
visual interface of their tool. Yet, we believe ontologies present more research opportunities
for novel designs. Future research could explore additional points of ontology integration
(e.g., in the high-level and low-level triage stages) within complex, multi-stage information-
seeking processes. Third, information-seeking tasks can sometimes require refined levels
of domain knowledge for effective performance. Future research could investigate how
domain-specific considerations affect the performance of information search and triage and
what design approaches can be used to benefit those requirements.

5.4. Summary

We investigated the design of ontology-supported, progressively disclosed visual
analytics interfaces for searching and triaging large document sets. In this investigation,
we first reviewed existing research literature on the multi-stage information-seeking pro-
cess to distill high-level design criteria. Using this, we suggested a four-stage model
encompassing query building, search, high-level triage, and low-level triage. We also
highlighted the importance of progressive disclosure as an organizational design tech-
nique for complex, multi-stage tasks. Furthermore, we discussed the use of ontologies
as a mechanism for bridging the gulf between the current user’s vocabulary and that of
the document set. We developed eleven criteria to help with the systematic design of the
aforementioned interfaces.

To illustrate the utility of the criteria, we applied them to the design of a demonstrative
prototype: VisualQUEST (Visual interface for QUEry, Search, and Triage). VisualQUEST
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enables users to build queries, search, and triage document sets both at high and low
levels. Users can plug-and-play document sets and expert-defined ontology files within
a domain-independent, progressively disclosed environment for multi-stage information
search and triage tasks. We described VisualQUEST through a functional workflow.

We presented some preliminary findings of our ongoing formative evaluations. Initial
evaluations found that users responded positively to the design criteria applied within
VisualQUEST. These preliminary evaluations suggested that:

• Users are able to transfer their knowledge of traditional interfaces to use VisualQUEST.
• Users are able to interpret VisualQUEST’s abstract representations to use its ML

component more effectively, as compared to traditional “black box” approaches.
• Users are able to differentiate between the individual stages of their information-

seeking process and use VisualQUEST’s domain-independent, progressively disclosed
interface to search and triage large document sets.

• Users are able to use ontology files to align their vocabulary with the domain, even
when they are not initially familiar with the ontology’s domain, its structure, or
its content.

• Users feel that mediating ontologies make search tasks more manageable and easier.

This research is a step in the direction of investigating how to design novel visual
analytics interfaces to support complex, multi-stage information-seeking tasks on large
document sets.
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