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Abstract: An important topic in the field of geometric optimization is finding the largest rectangle
separating two different points sets, which has significant applications in circuit design and data
science. We consider some extensions of the maximum bichromatic separating rectangle (MBSR)
problem. In one of the extensions, the optimal rectangle may include up to k outliers, where k is given
as part of the input. This extension and is called MBSR with outliers or MBSR-O. In this paper, we
improve the current known time bounds for MBSR-O from O(k7m log m + n) to O(k3m + km log m +

n) using a clever staircase sweep approach. We also propose another extension, which is named
MBSR among circles or MBSR-C and asks for the largest rectangle separating red points from blue unit
circles. Our solution to MBSR-C is an O(m2 + n)-time algorithm that involves an optimized scanning
of all candidate circle arcs for locations of potential optimal solutions.

Keywords: extensions; bichromatic; maximum; separating rectangle; outliers; circles

1. Introduction

Geometric optimization deals with optimization problems involving large sets of
geometric objects. Bichromatic separability of point sets is a well-known topic in the field
of geometric optimization. Typically, we are given a set of “red” points and a set of “blue”
points in two or three dimensions, and the goal is to separate them using various geometric
loci, such as lines, planes, circles, spheres, rectangles, or boxes.

The Maximum Bichromatic Separating Rectangle (MBSR) problem was introduced by
Armaselu et al. in [1] (see also [2]) and is stated as follows. Given a red point set R and a
blue point set B in the plane, with |R| = n, |B| = m, compute the axis-aligned rectangle S
satisfying the following:

(1) S contains all points in R;
(2) S contains the fewest points in B among all rectangles satisfying (1);
(3) S has the largest area of all rectangles satisfying (1) and (2).

Such a rectangle is called maximum bichromatic separating rectangle (MBSR) or simply
largest separating rectangle.

Denote the smallest axis-aligned rectangle enclosing R by Smin.
In this paper, we consider two extensions of the MBSR problem.
The first extension, introduced in [3], is called MBSR with outliers (MBSR-O) or simply

outliers version. It seeks to find the largest axis-aligned rectangle containing all red points
and up to k blue points outside Smin, where k is given as part of the input. That is, MBSR-O
is a relaxation of condition (2) from the original MBSR problem. The running time of the
algorithm in [3] is O(k7mlogm + n). However, when the k is large (e.g., k = Θ(m)), this
running time bound can be unreasonably high. We will show how to improve this time
bound to O(k3m + km log m + n) using a more clever sweep line-based approach.

We also introduce another extension of MBSR, called MBSR among circles (MBSR-C)
or simply circles version, in which there are red points and blue unit circles, and the goal
is to find the largest rectangle containing no point of any blue circle outside Smin while
containing all red points.

Information 2022, 13, 476. https://doi.org/10.3390/info13100476 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13100476
https://doi.org/10.3390/info13100476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info13100476
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13100476?type=check_update&version=2


Information 2022, 13, 476 2 of 21

For both extensions, we assume no unbounded solution and also that all points are in
general positions.

The outliers version can have applications in various domains. For instance, in VLSI or
circuit design, one might seek to place a hardware component (e.g., cooler) on a board with
minor fabrication defects (blue points), where up to k defects are tolerated for component
placement. The red points may indicate “hot spots” that must be covered by the component
on the board.

The circles version is motivated by problems involving “imprecise” data, such as
probabilistic applications, machine learning applications, and tumor extraction with large
or imprecise cells as red or blue points. For instance, the goal is to surgically remove a
tumor using a rectangular tool, with tumor cells marked by red points while blue points
denote healthy cells and osteoclasts that should not be removed or cut out.

Various other applications of bichromatic separation with imprecise points can be
found in spatial databases and data science.

1.1. Related Work

Geometric separability of point sets, which deals with finding a geometric locus
that separates two or more point sets whilst achieving a specific optimum criterion, is
an important topic in computational geometry. Various approaches deal with finding a
specific type of separator (e.g., hyperplane) when the points are guaranteed to be separable.
However, this is not always the case, hence the need for results on weak separability, i.e.,
either minimizing the misclassifications or allowing up to a fixed number of them.

The problem of finding the smallest separating circle among red and blue points (i.e.,
containing all red points and the fewest blue points), was introduced by Bitner and Daescu
et al. [4]. They provide two algorithms that find all optimal solutions: the first one runs
in O(m1.5 logO(1) n + n log n) time and the second one runs in O(mn log m + n log n)-time.
The dynamic version of the problem, in which blue points may be dynamically inserted and
deleted at run time, was later addressed by Armaselu and Daescu [5], who provided three
data structures foir this version. The first one is a unified data sdtructure supporting both
insertion and deletion queries in O(n log m) time, as well as O((m + n) log m) time updates.
The other two are deletion-specific (resp., insertion-specific) and allow O(log2(mn)) (resp.,
O(log(mn))) query time, at the expense of O(mn log(mn)) update time.

Armaselu and Daescu were the first to address the MBSR problem. Their algorithm
runs in O(m log m + n) time [1,2]. When the axis-alignment restriction on the MBSR
is dropped, they have an O(m3 + n log n) time algorithm. They also come up with an
O(m2(m + n))-time algorithm to compute the maximum-volume separating box in three
dimensions [2]. Later, this wasr improved to O(m2 + n) time [6].

Separability of imprecise points has also been considered. In such setting, points are
asscoiated with an region of imprecision. For instance, blue unit circles (i.e., MBSR-C) can
be thought of as imprecision regions, where the imprecise points are their centers. When
the imprecisions are axis-aligned rectangles, de Berg et al. [7] come up with a linear-time
algorithm to compute certain separators, i.e., that are 100% likely to separate the point
sets. They also show how to compute possible separators (>0% likely to separate) in
O(n log n) time.

It is worth mentioning that all these results on separators deal with blue points.
However, there are also results for blue obstacles. In a more recent paper [3], Armaselu,
Daescu, Fan, and Raichel give an algorithm to find a largest rectangle separating red points
from blue axis-aligned rectangles in O(m log m + n) time.

Computing the largest empty (axis-aligned) rectangle problem is a very popular and
studied topic. Given a set of planar points P, the goal is to compute the largest axis-aligned
rectangle that has a point p ∈ P on each of its sides but none inside it. For the axis-aligned
version, Agarwal et al. [8] provided the best currently known time bound, O(n log2 n),
for computing one optimal solution, while Hsu et al. [9] got the best-known result for
computing all optimal solutions, namely, in O(n log n + M) time, where M is the number
of maximal empty rectangles. Mukhopadhyay et al. [10] solved the arbitrary orientation
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version and gave an O(n3) time algorithm that outputs all optimal solutions. In addition,
Chaudhuri et al. [11] proved a lower bound of Ω(n3) optimal solutions in the worst case.

Nandy et al. considered the problem of finding the maximal empty axis-aligned
rectangle among a given set of rectangles isothetic to a given bounding rectangle [12].
They show how to solve the problem in O(n log n + R) time, where R is the number of
rectangles. Later, they solved the version where obstacles have arbitrary orientation using
an algorithm that takes O(n log2 n) time [13]. Finally, they consider the problems of locating
the largest empty rectangle inside a simple polygon, as well as avoiding a bunch of simple
polygons [13].

1.2. Our Results

First, we improve upon the MBSR-O result in [3]. Specifically, we provide a slight
improvement of O(k7m + m log m + n) time for k outliers, which we further improve to
O(k3m + km log m + n) time. The latter is faster than the former whenever k > (log m)

1
4 ).

After that, we come up with an O(m2 + n) time algorithm for MBSR-C.
The rest of the paper is structured as follows. In Section 2, we describe our improve-

ments to MBSR-O, in Section 3 we describe our solution to MBSR-C, and finally, in Section 4
we draw the conclusions and suggest some future directions.

2. Finding the Largest Separating Rectangle with k Outliers

The goal is to compute the largest axis-aligned rectangle enclosing R while containing
no more than k blue points of B (“outliers”), for a given k ≥ 0. We call this rectangle
maximum bichromatic separating rectangle with outliers (MBSR-O).

We first discard the blue points inside Smin, as they cannot be avoided.
In [3], the given algorithm for MBSR-O operates as follows. We first compute the

smallest rectangle Smin enclosing R in linear time, and then partition the space outside Smin
into 8 regions, using the lines bounding Smin. Specifically, there are 4 “corner” regions
NE, NW, SW, SE. (also known as “quadrants”), and 4 “side” regions E, N, W, S. In each
such region Q, we consider the set BQ of blue points inside Q.

Definition 1. [3] A point p ∈ BNE dominates another point q ∈ BNE, if x(p) > x(q) and
y(p) > y(q). Similarly, a point p ∈ BNW dominates another point q ∈ BNW , if x(p) < x(q) and
y(p) > y(q), a point p ∈ BSE dominates another point q ∈ BSE, if x(p) > x(q) and y(p) < y(q),
and a point p ∈ BSW dominates another point q ∈ BSW , if x(p) < x(q) and y(p) < y(q).

Definition 2. [3] For each BQ and for any t such that 0 ≤ t ≤ k, the t-th level staircase of BQ is
the rectilinear polygon formed by the blue points in BQ that dominate exactly t blue points in BQ.

Note that an optimal solution contains t points from BQ if and only if it is bounded by
the t-th level staircase of BQ, shown in Figure 1.

Figure 1. The 2nd level staircase of BNE.
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For each partition of k into 8 smaller natural numbers k = kE + kNE + · · ·+ kSE, that
is, one natural number for each region, we do the following.

1. Consider the kQ + 1-th closest to Smin blue point from each side region Q. Note that,
by extending Smin in each direction until reaching these points, one obtains a rectangle
Smax which definitely contains the target rectangle.

2. For each quadrant Q, compute the kQ-level staircase STkQ(Q) of Q in O(m log m) time.
3. Solve a “staircase” problem on Smin, Smax, and ST in O(m) time. That is, compute the

largest rectangle enclosing Smin, supported by points of the staircases, and contained
in Smax.

Since there are O(k7) ways of partitioning the integer k into 8 smaller natural numbers,
it follows that the running time of this approach is O(k7m log m + n).

2.1. A Slight Improvement on the Running Time

We improve the running time bounds for MBSR-O. To do that, instead of computing
the t-th level staircase STt(Q) for each quadrant and each natural number t ≤ k, we pre-
compute all staircases in a more clever fashion that involves sweeping the blue points in
each quadrant Q with a line and computing all STt(Q)’s in a single sweep.

Lemma 1. The t-level staircases STt(Q) can be computed in O(m log m + mk) time for all quad-
rants Q and integers t ≤ k.

Proof. We show how to compute STt(NE) for all t ≤ k with a sweep line algorithm, as
for other quadrants the approach is similar. For simplicity, denote STt(NE) as STt, that
is, without specifying the quadrant. Sort and label the points in BNE by increasing x-
coordinate, and denote the resulting sequence as p1, . . . , pm. Sweep a vertical line l from
x0 = max{x|(x, y) ∈ Smin} to x1 = ∞. For any given position of l, let Pl = {p1, . . . , pi} be
the set of blue points to the left of l. We maintain a balanced binary search tree T over Pl ,
indexed by the y-coordinates of its elements. The intersection of STt with l is a single point
qt

i , which is the highest point on l that lies above at most t points of Pl . That is, qt
i is the

(t + 1)-th smallest indexed entry in T, which we record. As we move l from left to right, qt
i

can only change when l intersects a point pi ∈ BNE. When we cross the point pi+1 (called
event point), we insert it into T and, for each t ≤ k, we have two cases.

1. If pi+1 is higher than qt
i , then the height of STt does not change.

2. If pi+1 is lower than qt
i , qt−1

i , . . . , qs
i , for some 0 ≤ s ≤ t, then qt

i is set to qt−1
i (which is

done in O(1) time), and STt moves to the height of this entry. This update is repeated
by setting qt−1

i to qt−2
i and so on down to qs+1

i . Finally, qs
i is set to pi+1.

If STt changes when sweeping over pi+1, we also record a point rt
i whose x-coordinate

is that of pi+1 and whose y-coordinate is that of the updated qt
i . Let Bt be the set of all

such points qt
i , rt

i recorded during this process for all t ≤ k, i = 1, . . . , m. It is not hard to
argue that ∪t≤kSTt ⊆ Bt. Moreover, |Bt| ≤ m holds, as a point is added to Q only when the
sweep line crosses a point of BNE. Finally, note that we encountered O(m) event points pi.
Inserting each of them into T requires O(log m) time, and O(k) extra time is needed qt

i , rt
i

pointer updates. Hence, the running time bound follows.

See Figure 2 for an illustration of the proof of Lemma 1.
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Figure 2. While sweeping vertical line l over point pi+1, the staircase STt is updated.

Instead of computing the STt’s for each partition of k, we compute all of them in
O(m log m + mk) time before considering such partitions. Then we only need to solve a
staircase problem in O(m) time for each of the O(k7) partitions, giving us the following result.

Theorem 1. Given two point sets, R : |R| = n and B : |B| = m, as well as an integer
k ≥ 0, the largest rectangle enclosing R and containing up to k points in B can be computed
in O(k7m + m log m + n) time.

2.2. A Closer Look at the Number of Candidate Partitions of k

In the previous section, we reduced the running time by a factor of log m. However, it
seems hard to further improve this bound given the high number of partitions of k. Thus, in
this subsection, we show how to reduce the number of candidate partitions of k, to further
improve the running time bound.

To do that, we first compute all the t-level staircases STt, 0 ≤ t ≤ k as described
in the previous section. We then consider the blue points in 4 pairs of adjacent regions,
e.g., N and NE. That is, we suppose the total number of outliers coming from BN ∪ BNE,
denoted kNNE = kN + kNE, is fixed. Similarly, we suppose kESE = kE + kSE, kSSW =
kS + kSW , kWNW = kW + kNW are fixed. Let ST(Q) = ∪k

t=1STt(Q), for any quadrant Q.
From now on, we focus on the N and NE regions and, for simplicity, we denote ST(NE) as
simply ST and STt(NE) as simply STt.

We notice that even though any points of any t-th level staircase, t ≤ kNE, may be
a corner for a candidate rectangle, most of these rectangles can be discarded as they are
guaranteed to be smaller than the optimal rectangle.

Definition 3. For every pair P = (P1, P2) of regions and every integer t : 0 ≤ t ≤ k, denote by
SP

t the set of pairs (p, q) ∈ (BP1 ∪ BP2)
2 such that p is the top support and q is the right support

for an optimal solution, among all rectangles containing t blue points from BP1 ∪ BP2 .

From now on, for simplicity, we are going to remove the superscript and simply write
St, e.g., SkNNE instead of SNNE

kNNE
. For every t, we store St as an array.

The goal is to compute SkNNE . Refer to Figure 3 for an illustration. Suppose we have
already computed all St′ : t′ < kNNE. Sweep BN ∪ BNE with a horizontal line lH going
upwards, starting at the kNNE + 1-th lowest blue point in BN ∪ BNE. For every blue point p
encountered as top support, let below(p) be the highest point in BN below p, and above(p)
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be the lowest point in BN above p. For every p ∈ BNE, let rb(p) be the leftmost point in BNE
to the right of p and below p. Let tN be the blue point count below p from BN . Furthermore,
let t be the number of points dominated by p from BN ∪ BNE.

Figure 3. BN ∪ BNNE is swept with a horizontal line lH sliding upwards from the lowest blue point.
The set SkNNE is updated at every blue point p encountered. Staircase points that are not blue points
are marked with black dots.

First, assume p ∈ BNE and let tNE = t − tN be the number of points dominated
by p from BNE, i.e., p ∈ STtNE . When sweeping the next blue point q, we consider the
following cases.

Case 1. If q is to the right of p, then q is below above(p) but dominates p, the points
dominated by p, and the points in T(p, q) = {s ∈ BNE ∩ STtNE |x(p) < x(s) < x(q)}
(Figure 4). If t + tpq = kNNE, then we add (q, rb(q)) to St+tpq , where tpq = 1 + |T(p, q)|.

Figure 4. Case 1. p ∈ BNE, q to the right of p. The purple empty dots denote T(p, q).

Case 2. If q ∈ BNE and q is to the left of p, then q is below above(p) (otherwise
(p, q) /∈ SkNNE ), but dominates the points dominated by p, except the ones in U(q, p) = {s ∈
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BNE|x(q) < x(s) < x(p), y(s) < y(p)} (Figure 5). For each s ∈ U(q, p), if t− i(s) = kNNE,
then we add (q, s) to St−i(s), where i(s) is the index of s in U(q, p) in decreasing order of X
coordinates. Finally, if t = kNNE, then we add (q, p) to St.

Figure 5. Case 2. p ∈ BNE, q ∈ BNE, and q is to the left of p. The purple empty dots denote U(q, p).

Case 3. If q ∈ BN then, for each s ∈ U(p) = {s ∈ BNE|x(s) < x(p), y(s) < y(p)}
such that t− i(s) = kNNE, we add (q, s) to St−i(s), where i(s) is the index of s in U(p) in
decreasing order of X coordinates. Finally, if t = kNNE, then we add (q, p) to St (Figure 6).

Figure 6. Case 3. p ∈ BNE, q ∈ BN . The purple empty dots denote U(p).

Now assume p ∈ BN and let tNE be the largest t′ such that all points in any STt′ are
below p. Let b(p) be the leftmost point of STtNE below p. When sweeping the next blue
point q, we consider the following cases.

Case 4. If q is to the right of b(p) then, if t = kNNE − 1, we add (q, rb(q)) to St+1. For
each s ∈ U(q) such that t− i(s) = kNNE, we also add (q, s) to St−i(s) (Figure 7).
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Figure 7. Case 4. p ∈ BN , q is to the right of b(p). The purple empty dots denote U(q).

Case 5. If q ∈ BNE and q is to the left of b(p), then, if t = kNNE − 1, we add (q, s) to
St+1 for every (p, s) ∈ St (Figure 8).

Figure 8. Case 5. p ∈ BN , q ∈ BNE and q is to the left of b(p).

Case 6. If q ∈ BN , then, if t = kNNE − 1, we add (q, s) to St+1 for every (p, s) ∈ St
(Figure 9).



Information 2022, 13, 476 9 of 21

Figure 9. Case 6. p ∈ BN , q ∈ BN .

The following lemma puts an upper bound on the storage required by SkNNE .

Lemma 2. |SkNNE | = O(m).

Proof. In case 1, we only add one pair to SkNNE . In case 2, even though we consider
|U(q, p)| points, we only add the pair (q, s) such that t− i(s) = kNNE. Similarly, in cases
3 and 4 we only add the pair (q, s) : t − i(s) = kNNE, even though we consider |U(p)|
(resp., |U(q)|) points. In case 5, we add at most |STtNE | pairs if t = kNNE − 1. However,
note that for the subsequent point q′ swept, we would have a larger number t′ of blue
points in BN ∪ BNE dominated by q′. Thus, we only add at most |STtNE | = O(m) pairs once.
Similarly, in case 6 we only add O(m) pairs once.

The following lemma states the running time of the aforementioned sweeping algorithm.

Lemma 3. For any t : 0 ≤ t ≤ k, the horizontal line sweeping described above takes O(m log m) time.

Proof. We store the blue points in BN ∪ BNE in two balanced binary search trees X, Y,
indexed by X (resp., Y) coordinates. Thus, for each blue point p swept, we require O(log m)
time. We require an extra O(log m) time to compute above(p), below(p), and rb(p). In case
1, note that we can compute tpq by finding the position of q in the X-sorted order of STkNE ,
and thus the number of blue points s : x(p) < x(s) < x(q), in O(log m) time, since STkNE is
maintained as a binary search tree. Thus, we only require an extra O(log m) time to handle
case 1. In cases 2 and 4, note that we only need to add (q, s) to SkNNE if i(s) = t− kNNE, so
we query for s in X using O(log m) time. Similarly, in case 3 we only add (q, p) to SkNNE
if i(s) = t− kNNE, so we query X for s in O(log m) time. Now in cases 5 and 6 we spend
O(m) time to traverse St, since we store St as an array for any t, but they only occur once,
so this gives us O(m) total time. In every case, since St is an array, adding a pair to St takes
O(1) time. Since we sweep O(m) blue points, the result follows.
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Corollary 1. For any pair of quadrants, we compute St in O(km log m) time for all t : 0 ≤ t ≤ k.

We reduce the number of candidate partitions of k from O(k7) to O(k3) as follows. By
writing k = kNNE + kESE + kSSW + kWNW , we can deduce kNNE = k− kWNW − kESE− kSSW
for every combination of kWNW , kESE, kSSW . Therefore, there are O(k3) such combinations.

Initially, we compute SQ
t for every quadrant Q and 0 ≤ t ≤ k. Then, for each

combination (k1, k2, k3), k1, k2, k3 = 0, . . . k, k1 + k2 + k3 ≤ k, we set k4 = k− k1 − k2 − k3
and solve the staircase problem in [2] with the pairs SWNW

t1
∪ SESE

t2
∪ SSSW

t3
∪ SNNE

k4
as pairs

of supports. Each staircase problem takes O(m) time to solve, so we require O(k3m) time
for all candidate partitions of k. Putting this together with the result in Lemma 1, we get
the following result.

Theorem 2. Given two point sets, R : |R| = n and B : |B| = m, as well as an integer k ≥ 0, the
MBSR-O for R and B with k outliers can be computed in O(k3m + km log m + n) time.

3. Finding the Largest Axis Aligned Rectangle Enclosing R and Avoiding Unit Circles

In this extension, B consists of Smin-disjoint unit circles, and the goal is to find the
largest axis-aligned rectangle that avoids all circles while enclosing R. We call such rectangle
an MBSR among circles or MBSR-C.

Again, we discard blue circles intersecting Smin from consideration, as they cannot
be avoided.

One may wonder whether the reduction in [3] for finding the largest separating
rectangle among axis-aligned rectangles can be tailored to MBSR-C. However, it can be
shown that it does not always work. If we let CNW , CSW , CSE, CNE be circles in the regions
BNW , BSW , BSE, BNE, pick any point p on the quadrant of CNW that is the closest to Smin,
and add it to B′, then any rectangle enclosing R, avoiding B′, and top or right-bounded by
p will intersect CNW . See Figure 10 for a depiction of why this is the case.

Figure 10. If the MBSR among R and B′ were bounded by a point p ∈ C, it would intersect C.

We call a candidate separating rectangle (CSR) a rectangle that encloses R and cannot be
extended in any direction without intersecting some circle. Note that a CSR may touch a
circle either at a corner or at an edge. If it is bounded at an edge, then that edge is fixed in
terms of X or Y coordinate and the arc it touches at each endpoint of the edge is uniquely
determined (Figure 11). On the other hand, if it is bounded at a corner, then the corner
can be slid along the appropriate arc of the circle (Figure 12). Each position of the corner
determines the X or Y coordinates of its two adjacent edges, and thus the arcs pinning the
two adjacent corners, if any.
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Figure 11. A circle bounding a rectangle at an edge makes that edge fixed in terms of either X or Y
coordinate.

We say that an edge e of a CSR is pinned by a circle C if C touches the interior of e.
A horizontal (resp., vertical) edge e is said to be fixed by two circles C1, C2 in terms of

Y (resp., X) coordinate, if:

(1) the ends of e are on C1 and C2, respectively, and
(2) changing its Y (resp., X) coordinate would result in either e intersecting C1 or C2 or

failing to touch both C1 and C2.

Figure 12. A circle bounding the rectangle at a corner allows the corner to slide along the arc. Each
position of the corner uniquely determines its two adjacent edges.

3.1. A Description of All Cases in Which a CSR Can Be Found

We consider all the cases in which a CSR can be found, based on the number of edges
pinned by circles.

Case 1. Three edges pinned by circles (Figure 13). In this case, we extend the the fourth
edge outward from Smin until it touches a circle. Hence, the CSR is uniquely determined.
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Figure 13. Case 1: Three circles pin the CSR on edges, which uniquely determines its fourth edge.

Case 2. Two edges are pinned by two circles C1, C2. In this case, we further distinguish
the following subcases.

Case 2.1. Two adjacent edges are pinned by C1, C2. Note that their common corner q
is fixed. We extend one of the edges by moving its other end p away from q until it touches
a circle C3, and then extend the third edge until it touches a circle C4 at a point r (Figure 14).
The resulting CSR is unique.

Figure 14. Case 2.1: Two circles C1, C2 pin two adjacent edges of the CSR. When extending one of the
edges until it touches a circle C3, the resulting CSR is unique.

Case 2.2. Two adjacent edges are pinned by C1, C2. We extend one of the edges by
moving its other end p away from q, until the orthogonal line through p touches a circle C3
at a point r (see Figure 15). While moving p, the point r can slide along one or more circles
in the same quadrant, giving an infinite number of CSRs.
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Figure 15. Case 2.2: Two circles C1, C2 pin the CSR on the north and west edges. The SE corner may
slide along a circle C3.

Case 2.3. Two opposite edges are pinned by C1, C2. We slide the other two edges
outward from Smin until each of them touches some circle (see Figure 16). This gives us a
unique CSR.

Figure 16. Case 2.3: Two circles C1, C2 pin the CSR on the east and west edges. The other two edges
are uniquely determined.

Case 3. One edge e is pinned by a circle C1. We have the following subcases.
Case 3.1. When e is extended in both directions, it touches two circles C2, C3 (Figure 17).

We then slide the fourth edge outward from Smin until it touches a circle C4 and we have a
unique CSR.
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Figure 17. Case 3.1: Circle C1 supports the CSR on the east edge, which, when extended in both
directions, it eventually touches circles C2, C3.

Case 3.2. When e is extended in both directions, the orthogonal line through one of the
ends p touches a circle C2 at point q (Figure 18). While moving p, q can slide along one or
more circles in the same quadrant, yielding an infinite number of CSRs. After establishing
the position of q, we slide the fourth edge away from Smin until it touches a circle C3.

Figure 18. Case 3.2: The CSR is supported by C1 on the east edge. One of the adjacent edges is
uniquely determined, while the opposite corner may slide along a circle C2.

Case 4. No edge is pinned by any circle. In this case, all corners can slide along circles
until one of the edges becomes pinned by some circle, giving an infinite number of CSRs.
Suppose the position of a corner p along a circle C1 ∈ BNE is known. We consider the
following subcases.

Case 4.1, while extending the CSR in the two directions away from p, the CSR touches
a circle in BSE or BNW at some point q before touching any circle in BSW (Figure 19). The
other two corners are determined by sliding the edge opposite to pq outwards until it
touches a circle at some point r. In this case, the CSR is uniquely defined.
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Figure 19. Case 4.1: No edge is pinned by any circle, and the position of p on C1 ∈ NE is known.
While sliding the CSR left-downward from Smin, we first touch circle C2 at corner q adjacent to p. The
other two corners are uniquely determined.

Case 4.2, while extending the CSR in the two directions away from p, the first circle
that CSR touches, at a point q, is located in BSW (Figure 20). This gives us an infinite number
of CSRs.

Figure 20. Case 4.2: No edge is pinned by any circle, and the position of p on C1 ∈ NE quadrant
is known. While sliding the CSR left-downward from Smin, we first touch circle C2 at a corner q
opposite to p. There are an infinite number of CSRs in this case.

3.2. Dominating Envelopes

Definition 4. The dominating envelope of a corner region Bi is a curve C satisfying the following:

1. Bi fully contains C,
2. ∀p ∈ C, the rectangle cornered at p and the closest corner of Smin from p is empty, and
3. property (2) no longer holds if one extends C away from Smin.

Note that C is a sequence of horizontal and vertical segments, circle arcs, as well as a
horizontal and a vertical infinite ray (see Figure 21). We shall reveal the use of dominating
envelopes later.
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Figure 21. In each region, the circles define a dominating envelope C, which is a sequence of arcs and
horizontal or vertical segments. Two consecutive arcs or segments define a breakpoint on C.

The dominating envelope changes direction at breakpoints, which can be between two
consecutive arcs, segments, or an infinite ray. Every two consecutive breakpoints define a
range of motion for a CSR corner.

A breakpoint p is said to be a corner breakpoint, if a CSR cornered at p cannot be
extended away from Smin in all directions without crossing some circle, even if its other
corners are not located on any envelope.

To compute the dominating envelope C of BNE, we do the following. First, sort the
circles by X coordinate of their centers. Let p be the current breakpoint (initially, the first
breakpoint is the left endpoint l of the left-most circle, with a vertical infinite ray upwards
from l). For each two adjacent circles C1(c1, 1), C2(c2, 1), depending on the relative positions
of c1, c2, we do the following.

Case A. c2 ∈ C1. In this case, we add the lower intersection between C1 and C2 as a
new corner breakpoint q, along with the arc pq of C1.

Case B. y(c1)− 1 ≤ y(c2) ≤ y(c1) and x(c2) > x(c1) + 1. We add a breakpoint q at
the bottom of C1, the arc pq of C1, a corner breakpoint r at the intersection between the
horizontal through q and C2, and the line segment qr.

Case C. x(c1) + 1 ≤ x(c2) ≤ x(c1) + 1 and y(c2) < y(c1)− 1. We add a breakpoint
r at the left endpoint of C2, a corner breakpoint q at the intersection between the vertical
through r and C1, the line segment qr, and the arc pq of C1.

Case D. x(c2) > x(c1) + 1 and y(c2) < y(c1) − 1. We add the breakpoints q at the
bottom of C1, r at the left end of C2, the corner breakpoint s at the intersection between the
horizontal through q and the vertical through r, the arc pq of C1, and the segments qs and sr.

We then set p to the rightmost breakpoint added and repeat the process for the next
pair of adjacent circles. Finally, for the last circle, we add an arc from p to its bottom b, the
breakpoint b, and then a horizontal infinite ray emanating from b to the right. In each case,
we say that a pair of circles (C1, C2) defines breakpoints p1, . . . , pk, if all of p1, . . . , pk are
added as breakpoints in the process described above. Similarly, we say (C1, C2) defines arcs
a1, . . . , ak, if all of a1, . . . , ak are added as arcs in the process. See Figure 22 for an illustration
of this process.
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Figure 22. Each pair of adjacent circles gives a different case.

Note that deciding the case a circle belongs to can be done in constant time.

3.3. Finding an Optimal Solution in Each Case

We first slide the edges of Smin outward until each of them touches a circle. Since we
assumed no unbounded solutions, we are guaranteed that every edge will eventually hit a
circle. Denote by Smax the resulting rectangle and discard the region outside Smax from the
dominating envelopes of all quadrants. The endpoints of the resulting envelopes are also
counted as breakpoints. We also sort the blue circles by the X coordinate and then (to break
ties) by the Y coordinate of their centers.

Now we give a specific algorithm to compute the MBSR-C in each of the cases listed
in Section 3.1.

Case 1. We consider all corner breakpoints that are defined by pairs of adjacent circles
in Case D, and add them to a set B′. We also consider all arcs pq of circles that are part of
pairs in Case D (p to the west of q), the vertical line lp through p and the horizontal line
lq through q, and add lp ∩ lq to B′. We then find the largest rectangle S∗ enclosing R and
containing the fewest points in B′ using the algorithm in [1] in O(m + n) time. It is easy
to check that S∗ is an optimal solution for Case 1, since any circle containing points in B′

intersects a circle in B. Thus, Case 1 can be done in O(m + n) time.
Case 2. Assume wlog that two circles pin the north and the west edges of a CSR. The

cases where the two circles define a different pair of adjacent edges of a CSR can be handled
in a similar fashion.

If we are in Case 2.1, we consider all corner breakpoints q defined by pairs of adjacent
circles in Case D, as well as the intersection between the south horizontal tangent tH to
the eastmost circle in BNE and the east vertical tangent tV to the northmost circle in BNW
south of tH . For every such point, the north and west edges are fixed, and we either find
the south edge by extending the west edge southwards until it hits a blue circle, or the east
edge by extending the north edge eastwards until it hits a blue circle. In both approaches,
the fourth edge is uniquely determined. For each circle in C ∈ BNE, we store pointers to
the northmost circle in BNW south of C and to the eastmost circle in BSE west of C, as well
as similar pointers for the other quadrants and directions, Thus, once the first two edges
are fixed, we can find the third and fourth edges in O(1) time. Since there are O(m) circles
in Case 2.1 and they all can be found in O(m) time, Case 2.1 can be solved in O(m) time.

For Case 2.2, we consider all points q as in Case 2.1. Having selected such point q
defined by two circles C1 ∈ BNE ∪ BNW and C2 ∈ BNW ∪ BSW , we consider the dominating
envelope of BSE starting from the east tangent to C1 or the east edge of Smin, whichever is
eastmost, and ending at the south tangent to C2 or the south edge of Smin, whichever is
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southmost. This gives us a range of motion for the SE corner r of the CSR spanning O(m)
circle arcs. For each such arc, we find the optimal CSR in O(1) time as we shall prove in the
next section. Since there are O(m) choices of q, we handle Case 2.2 in O(m2) time.

As for Case 2.3, note that the pairs of circles defining the NW and the SE corners,
respectively, must belong to a dominating envelope. We scan the dominating envelope
of BNW for pairs of circles C1, C2 in Cases B and C and, for each such pair, we scan the
dominating envelope of BSE for pairs of circles in Cases B and C, starting from the east
tangent to C1 or the east edge of Smin, whichever is eastmost, and ending at the south
tangent to C2 or the south edge of Smin, whichever is southmost. Once these pairs are
established, the CSR is determined. Since scanning each dominating envelope takes O(m)
time, we handle Case 2.3 in O(m2) time.

Case 3. Assume wlog that a circle C pins the east edge of the CSR. The cases where
the circle define a different edge of the CSR can be handled in a similar fashion.

For Case 3.1, we scan the dominating envelope of BNE (similarly, BSE) for pairs of
circles (C1, C) in cases C and D, (C is the rightmost circle of the pair). For every such pair
of circles in BNE, we consider all circles C2 ∈ BSE that are intersected by the west vertical
tangent to C. It is possible that some of these circles were already considered for a previous
pair of circles in BNE, so we may have to consider O(m2) triplets of circles (C, C1, C2). We
also traverse the circles in BE in increasing X order of their centers. Denote by C the current
circle. We consider the sequences of circles CNE ∈ BNE and C2 ∈ BSE that are intersected
by the west tangent to C. Since these sequences may include circles already considered for
a previous circle in BE, we may need to spend O(m2) to find all such triplets (C, C1, C2) for
which there exists a vertical line intersecting both C1, C2. Once a triplet is established, the
west, north, and south edges are established, and the west edge can be determined in O(1)
time by extending the north or the south edge until it hits a circle. Thus, Case 3.1 requires
O(m2) time.

For Case 3.2, we scan the dominating envelope of BSE (similarly, BNE) for pairs of
circles (C1, C) in cases C and D (C is the rightmost circle of the pair). We also traverse the
circles C ∈ BE in increasing X order and consider the sequences of circles C1 ∈ BSE that are
intersected by the west tangent to C. For each pair (C1, C), the east and south edges of the
CSR are defined. This provides a range of eligible circles from the dominating envelope
of BNW such that the SW and NE corners of the CSR are not supported by any circle, and
the NW corner slides along some circle arc. There are O(m) (C1, C) pairs and each of them
gives O(m) circles from BNW . Hence, Case 3.2 takes O(m2) time.

Case 4. Consider all arcs defined by pairs of adjacent circles in one of the cases A, B,
C, or D. Consider all arcs defined by pairs of adjacent circles. Each such arc a establishes
the range of motion for the appropriate corner p of a CSR, say [pstart, pend] in X order.
Suppose a belongs to a circle in BNE, which establishes the range of motion of the NE
corner p of the CSR. This gives us a range of sliding motion for the north and the east
edges of the CSR, which are supported by two rays rW , rS shooting from p to the west
and south, respectively. Since only the SW corner q may also slide along a circle, the west
edge can be neither to the west of the first intersection W(p) between rW and a circle,
nor to the west of the easternmost point in BW of a circle. Similarly, the south edge can
be neither be to the south of the first intersection S(p) between rS and a circle, nor to
the south of the northernmost point in BS of a circle. This gives a range of motion for q,
which may span multiple circle arcs with X coordinates within the range arcs(pstart, pend)
= [min(X(W(S(pend))), X(S(W(pend)))), max(X(W(S(pstart))), X(S(W(pstart))))]. In fact,
there are O(m) arcs in the worst case, yielding O(m2) pairs of arcs for all possible pairs
(p, q). By computing the pointers west(p), south(p), east(p), and north(p) for every p, from
the dominating envelope, we can find each pair of arcs in O(1) time, as we take them in X
order. That is, we consider all arcs [pstart, pend] defined by pairs of adjacent circles in X order
and, for each such arc, we compute the points W(S(pstart)), S(W(pstart)), W(S(pend)), and
S(W(pend)), and then consider the arcs in BSW with X coordinates within arcs(pstart, pend).

Handling each pair of arcs in O(1) time will be detailed in the next subsection. Thus,
computing the optimal solution takes O(m2) time in Case 4.



Information 2022, 13, 476 19 of 21

3.4. Finding the CSR Once the Arcs Pinning Its Corners Are Selected

For each quadrant Q, let θQ ∈ [αQ, βQ] be the angular position of the corner within
the arc belonging to Q, say C(c, 1). Let f (θNE, θNW , θSW , θSE) denote the area of the CSR
with the corners defined in terms of θQ as above. Our goal is to find the maximum of f
over the feasible set of arguments, along with its arguments. First, assume θSE, θNW , θSW
are fixed, with the left and bottom supports denoted as l, b (Figure 23). We refer to
f (θNE, θNW , θSW , θSE) as simply fNE(θ) (that is, refer to θNE as simply θ).

Figure 23. Area of the CSR cornered on circle C(c, 1) as a function fNE(θNE) of that corner’s location.

Lemma 4. fNE has at most 3 maxima.

Proof. We have
fNE(θ) = (w− sin θ) · (h− cos θ), (1)

where w = x(c)− x(l) and h = y(c)− y(b). For simplicity, assume that all circles are fully
contained in some quadrant, so w, h > 1. Furthermore,

f ′NE(θ) = w sin θ − h cos θ + sin2 θ − cos2θ. (2)

Letting x = tan θ, we get

f ′NE(x) =
wx− h√

1 + x2
+

x2 − 1
1 + x2 , (3)

so f ′NE(x) = 0 ⇐⇒
(wx− h)

√
1 + x2 = 1− x2 ⇐⇒

(wx− h)2(1 + x2) = (1− x2)2 ⇐⇒
(w2 − 1)x4 − 2whx3 + (w2 + h2 + 2)x2 − 2whx + h2 − 1 = 0 ⇐⇒
(w2 − 1)x2(x2 − 1)− 2whx(x2 − 1) + (h2 − 1)(x2 − 1) = 0 ⇐⇒
((w2 − 1)x2 − 2whx + h2 − 1)(x2 − 1) = 0,
which solves to

x1 = 1, (4)

x2,3 =
wh +−

√
2(w2 + h2)− 1

w2 − 1
(5)

(we ignore negative roots since x ≥ 0). Since x = tan θ, it follows that θ1 = π
4 , θ2,3 =

arctan x2,3 are extrema for fNE. That is, fNE has no more than 3 maxima.
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Similarly,it follows that fNW , fSW , fSE each have no more than 3 maxima. Note that
the position of two opposite corners of a CSR, say NE and SW, determine the position of
the other two corners. Since there are only two variables, f has at most 9 maxima we need
to consider. We compute all these maxima in O(1) time and then choose the one that gives
the largest CSR.

Thus, we have proved the following result.

Theorem 3. Given a set of n red points R and a set of m blue unit circles B with |B| = m, the
MBSR-C among R and B can be computed in O(m2 + n) time.

4. Conclusions and Future Work

We improve upon the existing result for the maximum bichromatic separating rect-
angle with outliers problem (MBSR-O) of O(k7m log m + n) and provide an O(k3m +
km log m + n) time algorithm. We also consider the problem of finding the maximum
bichromatic separating rectangle among unit circles (MBSR-C), for which we give an
algorithm that takes O(m2 + n) time [14].

We leave for future consideration proving lower bounds and finding efficient approxi-
mation algorithms for MBSR-C and MBSR-O. Other interesting related problems would
be finding the smallest and largest circle enclosing red points while avoiding blue circles.
Finally, we leave for future work finding the largest rectangle separating red points from
blue polygons, as well as solving the weighted version, in which red points have a positive
weight, blue points have a negative weight, and the goal is to find the largest rectangle of
maximum weight. This weighted version would have promising applications in circuit
design, where the board defects may have various severity levels.
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