Artificial Neural Network Training Using Structural Learning with Forgetting for Parameter Analysis of Injection Molding Quality Prediction
Abstract
:1. Introduction
- (i).
- We employed SLF to train the ANN model and generate a simpler model as well as to reveal the most significant attributes without any major degradation in prediction performance;
- (ii).
- We further analyzed the selected attributes to investigate the linear correlation among those attributes by constructing rules and evaluating the performance of the rules for quality prediction;
- (iii).
- We undertook in-depth experiments comparing the proposed model to other prediction models and findings from earlier research.
2. Material and Methods
2.1. Dataset
2.2. Artificial Neural Network
2.3. Structural Learning with Forgetting
2.4. Evaluation Method
3. Results and Discussion
3.1. ANN Model of Injection Molding Quality Prediction
3.2. Parameter Analysis with Rule Extraction
3.3. Comparison with Earlier Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
CAE | Computer aided engineering |
ANN | Artificial neural network |
SLF | Structural learning with forgetting |
MSE | Mean squared error |
TP | True positive |
FP | False positive |
TN | True negative |
FN | False negative |
LR | Logistic regression |
MLP | Multi-layer perceptron |
RF | Random forest |
NB | Naïve Bayes |
References
- Kosior, E.; Mitchell, J. Chapter 6—Current Industry Position on Plastic Production and Recycling. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 133–162. ISBN 978-0-12-817880-5. [Google Scholar]
- Tosello, G.; Charalambis, A.; Kerbache, L.; Mischkot, M.; Pedersen, D.B.; Calaon, M.; Hansen, H.N. Value Chain and Production Cost Optimization by Integrating Additive Manufacturing in Injection Molding Process Chain. Int. J. Adv. Manuf. Technol. 2019, 100, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Turng, L.-S. A Review of Current Developments in Process and Quality Control for Injection Molding. Adv. Polym. Technol. 2005, 24, 165–182. [Google Scholar] [CrossRef]
- Fernandes, C.; Pontes, A.J.; Viana, J.C.; Gaspar-Cunha, A. Modeling and Optimization of the Injection-Molding Process: A Review. Adv. Polym. Technol. 2018, 37, 429–449. [Google Scholar] [CrossRef]
- Moayyedian, M. Intelligent Optimization of Mold Design and Process Parameters in Injection Molding, 1st ed.; Springer Theses, Recognizing Outstanding Ph.D. Research; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-03356-9. [Google Scholar]
- Zhou, H. Computer Modeling for Injection Molding: Simulation, Optimization, and Control; Wiley: Hoboken, NJ, USA, 2013; ISBN 978-1-118-44488-7. [Google Scholar]
- Moayyedian, M.; Abhary, K.; Marian, R. The Analysis Of Defects Prediction In Injection Molding. Int. J. Mech. Mechatron. Eng. 2016, 10, 1883–1886. [Google Scholar] [CrossRef]
- Moayyedian, M.; Abhary, K.; Marian, R. The Analysis of Short Shot Possibility in Injection Molding Process. Int. J. Adv. Manuf. Technol. 2017, 91, 3977–3989. [Google Scholar] [CrossRef]
- Kurt, M.; Kaynak, Y.; Kamber, O.S.; Mutlu, B.; Bakir, B.; Koklu, U. Influence of Molding Conditions on the Shrinkage and Roundness of Injection Molded Parts. Int. J. Adv. Manuf. Technol. 2010, 46, 571–578. [Google Scholar] [CrossRef]
- Wibowo, E.A.; Syahriar, A.; Kaswadi, A. Analysis and Simulation of Short Shot Defects in Plastic Injection Molding at Multi Cavities. In Proceedings of the International Conference on Engineering and Information Technology for Sustainable Industry, Tangerang, Indonesia, 28–29 September 2020; Association for Computing Machinery: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Li, D.; Zhou, H.; Zhao, P.; Li, Y. A Real-Time Process Optimization System for Injection Molding. Polym. Eng. Sci. 2009, 49, 2031–2040. [Google Scholar] [CrossRef]
- Hentati, F.; Hadriche, I.; Masmoudi, N.; Bradai, C. Optimization of the Injection Molding Process for the PC/ABS Parts by Integrating Taguchi Approach and CAE Simulation. Int. J. Adv. Manuf. Technol. 2019, 104, 4353–4363. [Google Scholar] [CrossRef]
- Primo Benitez-Rangel, J.; Domínguez-González, A.; Herrera-Ruiz, G.; Delgado-Rosas, M. Filling Process in Injection Mold: A Review. Null 2007, 46, 721–727. [Google Scholar] [CrossRef]
- Matin, I.; Hadzistevic, M.; Hodolic, J.; Vukelic, D.; Lukic, D. A CAD/CAE-Integrated Injection Mold Design System for Plastic Products. Int. J. Adv. Manuf. Technol. 2012, 63, 595–607. [Google Scholar] [CrossRef]
- Dang, X.-P. General Frameworks for Optimization of Plastic Injection Molding Process Parameters. Simul. Model. Pract. Theory 2014, 41, 15–27. [Google Scholar] [CrossRef]
- Michaeli, W.; Schreiber, A. Online Control of the Injection Molding Process Based on Process Variables. Adv. Polym. Technol. 2009, 28, 65–76. [Google Scholar] [CrossRef]
- Rousopoulou, V.; Nizamis, A.; Vafeiadis, T.; Ioannidis, D.; Tzovaras, D. Predictive Maintenance for Injection Molding Machines Enabled by Cognitive Analytics for Industry 4.0. Front. Artif. Intell. 2020, 3, 578152. [Google Scholar] [CrossRef]
- Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine Learning for Industrial Applications: A Comprehensive Literature Review. Expert Syst. Appl. 2021, 175, 114820. [Google Scholar] [CrossRef]
- Ageyeva, T.; Horváth, S.; Kovács, J.G. In-Mold Sensors for Injection Molding: On the Way to Industry 4.0. Sensors 2019, 19, 3551. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shan, S.; Frumosu, F.D.; Calaon, M.; Yang, W.; Liu, Y.; Hansen, H.N. Automated Vision-Based Inspection of Mould and Part Quality in Soft Tooling Injection Moulding Using Imaging and Deep Learning. CIRP Ann. 2022, 71, 429–432. [Google Scholar] [CrossRef]
- Ke, K.-C.; Huang, M.-S. Quality Prediction for Injection Molding by Using a Multilayer Perceptron Neural Network. Polymers 2020, 12, 1812. [Google Scholar] [CrossRef]
- Huang, Y. Advances in Artificial Neural Networks—Methodological Development and Application. Algorithms 2009, 2, 973. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.C.; Guo, G.; Wang, W.-N. Artificial Neural Network-Based Online Defect Detection System with in-Mold Temperature and Pressure Sensors for High Precision Injection Molding. Int. J. Adv. Manuf. Technol. 2020, 110, 2023–2033. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-Art in Artificial Neural Network Applications: A Survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Liu, N.; Hu, X. Techniques for Interpretable Machine Learning. Commun. ACM 2019, 63, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Molnar, C.; Casalicchio, G.; Bischl, B. Interpretable Machine Learning—A Brief History, State-of-the-Art and Challenges. In Proceedings of the ECML PKDD 2020 Workshops, Ghent, Belgium, 14–18 September 2020; Koprinska, I., Kamp, M., Appice, A., Loglisci, C., Antonie, L., Zimmermann, A., Guidotti, R., Özgöbek, Ö., Ribeiro, R.P., Gavaldà, R., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 417–431. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Mao, T.; Ruan, Y.; Gao, H.; Zhou, H. Feature Extraction and Physical Interpretation of Melt Pressure during Injection Molding Process. J. Mater. Process. Technol. 2018, 261, 50–60. [Google Scholar] [CrossRef]
- Román, A.J.; Qin, S.; Zavala, V.M.; Osswald, T.A. Neural Network Feature and Architecture Optimization for Injection Molding Surface Defect Prediction of Model Polypropylene. Polym. Eng. Sci. 2021, 61, 2376–2387. [Google Scholar] [CrossRef]
- Gim, J.; Rhee, B. Novel Analysis Methodology of Cavity Pressure Profiles in Injection-Molding Processes Using Interpretation of Machine Learning Model. Polymers 2021, 13, 3297. [Google Scholar] [CrossRef] [PubMed]
- Lockner, Y.; Hopmann, C.; Zhao, W. Transfer Learning with Artificial Neural Networks between Injection Molding Processes and Different Polymer Materials. J. Manuf. Process. 2022, 73, 395–408. [Google Scholar] [CrossRef]
- Li, Y.; Yang, L.; Yang, B.; Wang, N.; Wu, T. Application of Interpretable Machine Learning Models for the Intelligent Decision. Neurocomputing 2019, 333, 273–283. [Google Scholar] [CrossRef]
- Rønsch, G.Ø.; Kulahci, M.; Dybdahl, M. An Investigation of the Utilisation of Different Data Sources in Manufacturing with Application in Injection Moulding. Int. J. Prod. Res. 2021, 59, 4851–4868. [Google Scholar] [CrossRef]
- Finkeldey, F.; Volke, J.; Zarges, J.-C.; Heim, H.-P.; Wiederkehr, P. Learning Quality Characteristics for Plastic Injection Molding Processes Using a Combination of Simulated and Measured Data. J. Manuf. Process. 2020, 60, 134–143. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Yang, K.-J.; Huang, M.-S. Online Quality Monitoring of Molten Resin in Injection Molding. Int. J. Heat Mass Transf. 2018, 122, 681–693. [Google Scholar] [CrossRef]
- Baptista, D.; Morgado-Dias, F. A Survey of Artificial Neural Network Training Tools. Neural Comput. Appl. 2013, 23, 609–615. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Samatin Njikam, A.N.; Zhao, H. A Novel Activation Function for Multilayer Feed-Forward Neural Networks. Appl. Intell. 2016, 45, 75–82. [Google Scholar] [CrossRef]
- Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A Survey on Modern Trainable Activation Functions. Neural Netw. 2021, 138, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Zajmi, L.; Ahmed, F.Y.H.; Jaharadak, A.A. Concepts, Methods, and Performances of Particle Swarm Optimization, Backpropagation, and Neural Networks. Appl. Comput. Intell. Soft Comput. 2018, 2018, 9547212. [Google Scholar] [CrossRef]
- Ishikawa, M. Structural Learning with Forgetting. Neural Netw. 1996, 9, 509–521. [Google Scholar] [CrossRef]
- Pan, L.; Yang, S.X.; Tian, F.; Otten, L.; Hacker, R. Analysing Contributions of Components and Factors to Pork Odour Using Structural Learning with Forgetting Method. In Proceedings of the Advances in Neural Networks—ISNN 2004, Dalian, China, 19–21 August 2004; Yin, F.-L., Wang, J., Guo, C., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2004; pp. 383–388. [Google Scholar] [CrossRef]
- Susmaga, R. Confusion Matrix Visualization. In Proceedings of the Intelligent Information Processing and Web Mining, Zakopane, Poland, 17–20 May 2004; Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2004; pp. 107–116. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Wen, S.; Tang, C. A Strategy on Selecting Performance Metrics for Classifier Evaluation. Int. J. Mob. Comput. Multimed. Commun. (IJMCMC) 2014, 6, 20–35. [Google Scholar] [CrossRef]
- Setiono, R.; Liu, H. NeuroLinear: From Neural Networks to Oblique Decision Rules. Neurocomputing 1997, 17, 1–24. [Google Scholar] [CrossRef]
- Syafrudin, M.; Fitriyani, N.L.; Li, D.; Alfian, G.; Rhee, J.; Kang, Y.-S. An Open Source-Based Real-Time Data Processing Architecture Framework for Manufacturing Sustainability. Sustainability 2017, 9, 2139. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-H.; Kang, Y.-S.; Lee, Y.-H. Development of Manufacturing Ontology-Based Quality Prediction Framework and System: Injection Molding Process. IE Interfaces 2012, 25, 40–51. [Google Scholar] [CrossRef]
Parameter Name | Explanation | Measurement Unit |
---|---|---|
Maximum Mold Temperature | Maximum temperature reach during the molding process on each cycle. | Celsius |
Cycle Time | The time required for completing a single batch of the molding process from start to finish. A single batch of the molding process is recorded from the beginning of the molding process until the end of molded material ejection. | Second |
Maximum Pressure Value | Maximum cavity pressure value reached during the molding process on each cycle. | Mpa |
Minimum Pressure Value | The minimum cavity pressure value was reached between the time when the maximum pressure value was obtained to the end of the injection molding process on each cycle. | Mpa |
Time to Maximum Pressure | Time required to reach the maximum pressure value from the start of the molding process on each cycle. | Second |
Time to Minimum Pressure | Time required to reach the minimum pressure value from the maximum pressure value of the molding process on each cycle. | Second |
Integral Pressure to Maximum | The integral value of the pressure change curve to reach maximum pressure from the start of the molding process on each cycle. | - |
Integral Pressure to Minimum | The integral value of the pressure change curve to reach minimum pressure from the start of the molding process on each cycle. | - |
Total Integral Pressure | The integral value of the pressure change curve from the start to the end of the molding process on each cycle. | - |
Output | This is the class label, 0 denotes short-shot, 1 denotes non-short-shot | - |
Configuration Factor | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Injection speed (cm/second) | 3 | 4 | 5 |
Switching point of pressure holder (cm) | 1.5 | 2 | 2.5 |
Cooling water temperature (Celsius) | 10 | 30 | 50 |
Experiment Number | Cooling Water Temperature | Injection Speed | Switching Point of Pressure Holder |
---|---|---|---|
1 | 10 | 3 | 1.5 |
2 | 10 | 4 | 2 |
3 | 10 | 5 | 2.5 |
4 | 30 | 3 | 2 |
5 | 30 | 4 | 2.5 |
6 | 30 | 5 | 1.5 |
7 | 50 | 3 | 2.5 |
8 | 50 | 4 | 1.5 |
9 | 50 | 5 | 2 |
Parameter Name | Max | Min | Mean | Std. Dev. |
---|---|---|---|---|
Maximum Mold Temperature | 72.58 | 23.43 | 44.46 | 18.57 |
Cycle Time | 22.42 | 16.02 | 19.13 | 1.52 |
Maximum Pressure Value | 290.38 | 21.43 | 134.43 | 70.61 |
Minimum Pressure Value | 24.79 | 0 | 3.33 | 4.71 |
Time to Maximum Pressure | 11.38 | 1.22 | 6.04 | 1.83 |
Time to Minimum Pressure | 16.597 | 7.26 | 13.08 | 1.59 |
Integral Pressure to Maximum | 946.37 | 71.40 | 364.87 | 70.61 |
Integral Pressure to Minimum | 2764.44 | 84.21 | 717.89 | 575.81 |
Total Integral Pressure | 3710.81 | 288.12 | 1082.76 | 663.55 |
Acronym | Element Name | Explanation |
---|---|---|
TP | True Positive | The ANN model correctly predicts the positive class. |
FP | False Positive | The ANN model predicts the positive class as negative. |
TN | True Negative | The ANN model correctly predicts the negative class. |
FN | False Negative | The ANN model predicts the negative class as positive. |
Metrics | Backpropagation | SLF | ||
---|---|---|---|---|
Mean | Std. Deviation | Mean | Std. Deviation | |
Precision | 0.91 | 0.05 | 0.88 | 0.06 |
Recall | 1 | 0.04 | 0.94 | 0.04 |
F-Score | 0.95 | 0.05 | 0.91 | 0.05 |
Specificity | 0.95 | 0.06 | 0.93 | 0.07 |
Accuracy | 0.97 | 0.03 | 0.93 | 0.03 |
No | Rule |
---|---|
1 | if (Maximum Pressure Value < 88.5) then: short-shot otherwise: non-short-shot |
2 | if (7.41 * Integral Pressure to Minimum) + (34.12 * Time to Maximum Pressure) + (28.14 * Time to Minimum Pressure) − (20.17 * Cycle Time)) > −2259) then: short-shot otherwise: non-short-shot. |
Metrics | Rule 1 | Rule 2 |
---|---|---|
Precision | 0.82 | 0.88 |
Recall | 0.84 | 0.91 |
F-Score | 0.83 | 0.89 |
Specificity | 0.9 | 0.93 |
Accuracy | 0.88 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maarif, M.R.; Listyanda, R.F.; Kang, Y.-S.; Syafrudin, M. Artificial Neural Network Training Using Structural Learning with Forgetting for Parameter Analysis of Injection Molding Quality Prediction. Information 2022, 13, 488. https://doi.org/10.3390/info13100488
Maarif MR, Listyanda RF, Kang Y-S, Syafrudin M. Artificial Neural Network Training Using Structural Learning with Forgetting for Parameter Analysis of Injection Molding Quality Prediction. Information. 2022; 13(10):488. https://doi.org/10.3390/info13100488
Chicago/Turabian StyleMaarif, Muhammad Rifqi, R. Faiz Listyanda, Yong-Shin Kang, and Muhammad Syafrudin. 2022. "Artificial Neural Network Training Using Structural Learning with Forgetting for Parameter Analysis of Injection Molding Quality Prediction" Information 13, no. 10: 488. https://doi.org/10.3390/info13100488
APA StyleMaarif, M. R., Listyanda, R. F., Kang, Y. -S., & Syafrudin, M. (2022). Artificial Neural Network Training Using Structural Learning with Forgetting for Parameter Analysis of Injection Molding Quality Prediction. Information, 13(10), 488. https://doi.org/10.3390/info13100488