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Abstract: In recent years, the presence of malware has been growing exponentially, resulting in
enormous demand for efficient malware classification methods. However, the existing machine
learning-based classifiers have high false positive rates and cannot effectively classify malware
variants, packers, and obfuscation. To address this shortcoming, this paper proposes an efficient
deep learning-based method named AIFS-IDL (Atanassov Intuitionistic Fuzzy Sets-Integrated Deep
Learning), which uses static features to classify malware. The proposed method first extracts six
types of features from the disassembly and byte files and then fuses them to solve the single-
feature problem in traditional classification methods. Next, Atanassov’s intuitionistic fuzzy set-based
method is used to integrate the result of the three deep learning models, namely, GRU (Temporal
Convolutional Network), TCN (Temporal Convolutional Network), and CNN (Convolutional Neural
Networks), which improves the classification accuracy and generalizability of the classification model.
The proposed method is verified by experiments and the results show that the proposed method
can effectively improve the accuracy of malware classification compared to the existing methods.
Experiments were carried out on the six types of features of malicious code and compared with
traditional classification algorithms and ensemble learning algorithms. A variety of comparative
experiments show that the classification accuracy rate of integrating multi-feature, multi-model
aspects can reach 99.92%. The results show that, compared with other static classification methods,
this method has better malware identification and classification ability.

Keywords: intuitionistic fuzzy set; deep learning; malware classification; multi-feature fusion

1. Introduction

With the continuous development of information technology, cyber security has be-
come more important, and the number of cyberattacks has increased exponentially. Since
the development of the first virus, named the Morris worm, in the 1980s, the international
community has paid great attention to cybersecurity. However, aiming to the increasingly
fast development of malware, virus makers have introduced polymorphism to avoid virus
detection by constantly modifying and obfuscating the malware. As a result, the same
type of malicious code can appear to be different to the malware-detection. The variability
and invisibility of malware have posed great challenges to the prevention and control of
cyberattacks. Therefore, understanding how to classify a large number of malicious codes
quickly and accurately, and protect a cyber network, have remained a key challenge.

Malicious code classification divides malicious samples into different classes. Malware
analysis methods can be divided into dynamic and static methods. Static analysis methods
generally use reverse engineering technology to extract features to build models. The ex-
tracted features mostly include strings [1], opcodes [2], executables [3], and call graphs [4].
For instance, Santos et al. [5] performed unknown malware detection by calculating the
frequency of opcodes. Kang et al. [6] extracted the opcode sequence from a disassembly file
to represent the timing of malicious code execution and then used an N-gram algorithm to
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characterize the opcode sequence. Nataraj et al. [7] proposed, for the first time, to convert
malicious code executables into two-dimensional grayscale images and use the image
texture features with a certain similarity in each malware class as features for malware
detection model training. In recent years, image features have been widely used in malware
detection. Gibert et al. [8] extracted two types of sequence features, namely byte sequence
and opcode sequence, to classify malware using a convolutional neural network (CNN).
The main advantage of static analysis methods is that they try to understand the logical
structure of malware code without executing the code, thus avoiding damage to a cyber
network as a result of the analysis. However, these methods cannot accurately identify
obfuscation and packer codes. Therefore, dynamic analysis methods have been proposed
to extract malware features. Kwon et al. [9] proposed a method for malware classification
with API calling functions based on a recurrent neural network (RNN). The API calling
functions of nine malware classes obtained from dynamic analysis were used as a training
set, and a long short-term memory (LSTM) model was employed for classification; the
average classification accuracy was 71%. Kolosnjaji et al. [10] used the open-source sandbox
to extract the call sequence features of malware and then employed a CNN to perform deep
learning on malicious codes, achieving accurate malware classification. This method is inno-
vative but has low efficiency in feature extraction and model training. In contrast, dynamic
analysis refers to methods that execute malware in a secure and controlled environment to
analyze its behavior. To a certain extent, dynamic methods have high recognition accuracy
for obfuscated or packed malicious codes. However, rapid technology development has
enabled malware developers to launch targeted countermeasures. Moreover, dynamic
analysis requires a secure and controlled environment, which can be easily detected by
malware, whereas performing the analysis in a real environment can be expensive. Finally,
malicious data are typically massive. Compared with dynamic analysis, the time and
resource costs of static analysis methods are much lower. Therefore, this study uses static
analysis to extract malware features.

In the past few years, various deep learning-based algorithms have been developed
in the field of natural language processing and other related fields. These algorithms
have strong learning capabilities and can mine data structures in high-dimensional data.
Currently, deep learning-based malware detection has been a hot research topic. Many deep
learning-based models, such as Convolution Neural Network (CNN), Recurrent Neural
Network (RNN), and gated recurrent unit (GRU), can be used for malware classification.
In addition, ensemble learning is a learning method that uses a series of learners and
weights the results of the classifiers based on a certain rule, thus obtaining a model with
better performance than a single classifier. The fuzzy set (FS) overcomes the constraints
of binary logic in a classical set so that computers can also play a role in solving fuzzy
problems with unclear extensions. Intuitionistic FS (IFS) has introduced the concept of
the hesitation index, which has a more accurate representation of fuzzy phenomena than
FS. Further, Atanassov’s Intuitionistic FSs (AIFSs) [11] relax the condition that the sum
of non-membership and membership equals one. An important application of AIFSs is
multi-attribute group decision making (MAGDM) [12]. The classifier ensemble method is
similar to the MAGDM, so the MAGDM method based on the IFS can be used to ensemble
of classifier results. Through the ensemble of different deep learning models, the learning
ability for the latent information of features can be improved. In ensemble learning methods,
the input features are generally single features. Using different techniques, such as packing
obfuscation, may have different effects on features.

To improve the feature mining ability, increase malware classification accuracy, de-
crease the interference of malware variants, packing, and obfuscation techniques, and
reduce the cost of dynamic analysis, this study proposes an IFS-based method, which is
named the Atanassov intuitionistic FSs-integrated deep learning, (AIFS-IDL).

The main contributions of this work can be summarized as follows:

1. A static malware classification method that integrates multiple features is proposed.
The proposed method extracts six malware features from the disassembly and byte



Information 2022, 13, 571 3 of 19

files and integrates the advantages of different features to improve the classification
accuracy;

2. Feature extraction capability of TCN for temporal data is introduced to fully learn the
dependency relationship among data; The nonlinear fitting ability of GRU is used
after information in the sequence, extracting the malware features based on the time
series to improve the model classification effect; CNN has the characteristics of simple
structure and low complexity. TCN, GRU, and CNN are used to learn the information
on the extracted features fully;

3. The IFS and MAGDM methods are introduced to integrate the classification results and
optimize the uncertainty, thus improving the classification accuracy and generalization
ability of the deep learning algorithm.

The remainder of this paper is organized into four sections. Section 2 presents the
research background and related work. Section 3 describes the proposed model in detail.
Section 4 presents the experimental results and analysis. Section 5 gives conclusions and
future prospects.

2. Related Work and Technology
2.1. IFS and MAGDM

The IFS method [11] was first proposed by Atanassov in 1986 and has been the most
influential expansion of Zadeh’s FS theory. The FS can describe the fuzzy concept of “one
and the other”. On the basis of the FS membership, IFS proposes a non-membership and
hesitation index, which can further describe the neutral state of “neither one nor the other”.
Thus, IFS can accurately and comprehensively reflect the fuzzy phenomena of the real
world.

Definition 1 [13]. Assume that a non-empty set X = {x1, x2, · · · , xn} is a given domain of
discourse; then, an FS A in X is defined as follows:

A = {〈x, µA(x)〉|x ∈ X } (1)

where µA : X → [0, 1] is the membership degree of X on A.

Definition 2 [11]. An IFS B in X = {x1, x2, · · · , xn} is defined in Atanassov as

B = {〈x, µB(x), vB(x)〉|x ∈ X } (2)

where µB : X → [0, 1] and vB : X → [0, 1] are membership and non-membership degrees, respec-
tively, and 0 ≤ µB(x) + vB(x) ≤ 1.

The IFS B defined in Atanassov can be expressed as πB. Then, for ∀x ∈ X, the
calculation of the hesitation index is as follows:

πB(x) = 1− µB(x)− vB(x) (3)

Obviously, πB(x) ∈ [0, 1], and ∀x ∈ X; πB(x) is known as an intuition index of x to B;
πB(x) denotes a fuzzier. When πB(x) = 0 and ∀x ∈ X, AIFS becomes an ordinary FS.

Since the introduction of AIFS, many studies have been devoted to exploring its applica-
tions and mathematical mechanisms. An important application of AIFSs is MAGDM [14–17].
However, in MAGDM problems, due to limited knowledge of experts and time pressure,
information the AIFSs provide when evaluating a scheme may be uncertain or incomplete.
Therefore, an appropriate model should be established to describe incomplete information.
The AIFSs can be used to describe uncertainty caused by ambiguity and lack of knowledge by
introducing the hesitation index. In addition, incomplete information can be directly pooled
using intuitive fuzzy aggregation operators [18]. Therefore, AIFSs have been considered an
effective tool to solve MAGDM problems and have attracted great research attention in solving
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MAGDM problems due to a series of open topics in this field, such as the determination of
attribute weights, efficient AIFSs, and incomplete information-based IFS.

Assume that A = {A1, A2, · · · , An} is a set of candidate schemes, C = {C1, C2, · · · , Cm}
is a decision-making index, and E = {E1, E2, · · · , Es} is a set of weights of decision makers.
The weight of attribute Ai is wi, where i = 1, 2, · · · , n. The weights are represented
by a weight vector, which is given by w = (w1, w2, · · · , wn)

T . Further, each decision
maker is assigned a weighting factor λj, where j = 1, 2, · · · , s. When solving MAGDM
problems, the superiority of two schemes is typically used to represent the preference
relationship [19]. This method is simpler than using numerical magnitudes to evaluate a
single scheme [20]. The IFS theory constructs an intuitionistic fuzzy judgment matrix by
comparing the preference between two schemes.

For C = {C1, C2, · · · , Cm}, the intuitionistic fuzzy judgment matrix is given by:

C1 C2 · · · Cn

Rk =

C1
C2
...

Cm


〈0.5, 0.5〉

〈
µk

12, vk
12

〉
· · ·

〈
µk

1n, vk
1n

〉〈
µk

21, vk
21

〉
〈0.5, 0.5〉 · · ·

〈
µk

2n, vk
2n

〉
...

...
. . .

...〈
µk

m1, vk
m1

〉 〈
µk

m2, vk
m2

〉
· · · 〈0.5, 0.5〉


(4)

where rk
ij =

〈
µk

ij, vk
ij

〉
is an intuitionistic fuzzy value (IFV); µk

ij represents the preference of

Ci over Cj; vk
ij denotes the preference of Cj over Ci; µij : X → [0, 1] and vij : X → [0, 1] .

When µk
ij = vk

ji = 0.5, Ci is the same as Cj, and µk
ij+vk

ji ≤ 1. Based on the rules in the
calculation matrix, R∗ can be obtained, and the optimal and worst schemes in C denoted
by Cbest and Cworst, respectively, are determined.

In addition, consistency should be analyzed when constructing the intuitionistic
fuzzy judgment matrix, since the lack of consistency may lead to misleading results in the
MCGDM problem with intuitionistic fuzzy preference relation matrix [21].

A matrix R, rk
ij =

〈
µk

ij, vk
ij

〉
is expressed as follows:{

1
2 (1+log9 µbest,i)× 1

2 (1+log9 µi,j)=
1
2 (1+log9 µbest,j)

1
2 (1+log9 µi,j)× 1

2 (1+log9 µj,worst)=
1
2 (1+log9 µi,worst)

(5)

{
1
2 (1+log9 νbest,i)× 1

2 (1+log9 νi,j)=
1
2 (1+log9 νbest,j)

1
2 (1+log9 νi,j)× 1

2 (1+log9 νj,worst)=
1
2 (1+log9 νi,worst)

(6)

where µbest,worst ∈ [0.5, 1] and νbest,worst ∈ [0, 0.5].
If Equations (5) and (6) hold, the intuitionistic fuzzy judgment matrix satisfies strict

consistency, but when these equations conflict, the consistency degree will be reduced. For
µk

ij and vk
ij, there are special cases where µbest,j = µj,worst = µbest,worst and νbest,j = νj,worst =

νbest,worst. In these cases, two new consistency indicators ω and δ are introduced, which can
be obtained based on the value ranges of µbest,worst and νbest,worst. Then, Equations (5) and
(6) can be re-written as follows:{

( 1
2 (1+log9 µbest,i)−ω)×( 1

2 (1+log9 µi,j)−ω)= 1
2 (1+log9 µbest,j)+ω

( 1
2 (1+log9 µi,j)−δ)×( 1

2 (1+log9 µj,worst)−δ)= 1
2 (1+log9 µi,worst)+δ

(7)

The intuitionistic fuzzy preference judgment matrix is not necessarily consistent.
In order to meet the consistency requirements as much as possible, we introduce two
mathematical models. The mathematical models are model 4 and model 5 in literature [21].

A mathematical model minξ is established to obtain a membership degree, which
satisfies the following properties:

(DP1)
∣∣∣ φbest

φj
− 9(2×µbest,j−1)

∣∣∣ ≤ ξ;
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(DP2)
∣∣∣ φj

φworst
− 9(2×µworst−1)

∣∣∣ ≤ ξ;

(DP3)
n
∑

j=1
φj = 1;

(DP4) φbest ≥ · · · ≥ φj ≥ · · · ≥ φworst;
(DP5) φj ≥ 0, ξ ≥ 0

Similarly, in terms of the non-membership degree, a mathematical model minζ is
established. The following model can be constructed:

(DP1)
∣∣∣ ϕbest

ϕj
− 9(2×νbest,j−1)

∣∣∣ ≤ ζ;

(DP2)
∣∣∣ ϕj

ϕworst
− 9(2×νworst−1)

∣∣∣ ≤ ζ;

(DP3)
n
∑

j=1
ϕj = 1;

(DP4) ϕbest ≥ · · · ≥ ϕj ≥ · · · ≥ ϕworst;
(DP5) ϕj ≥ 0, ζ ≥ 0

Based on the two mathematical models, (φ1, φ2, · · · , φm)T and (ϕ1, ϕ2, · · · , ϕm)T can
be obtained, and the weight of the decision-making index C = {C1, C2, · · · , Cm} can be
determined.

Based on the two mathematical models, the optimal solutions (φ1, φ2, · · · , φm)T and
(ϕ1, ϕ2, · · · , ϕm)T can be obtained, and the weight of the decision-making index can be
determined. The reasonableness of weight is judged based on the consistency ratio CR =

max
{

ξ
ω , ζ

δ

}
. The CR value ranges from zero to one. The smaller the value, the more rea-

sonable the constructed intuitionistic fuzzy judgment matrix will be. When the constructed
matrix is assessed as reasonable, the decision matrix is constructed to obtain the sequences
of alternative schemes W = {ω1, ω2, · · · , ωm}T = ((φ1, ϕ1), (φ2, ϕ2), · · · , (φm, ϕm))

T.

2.2. Deep Learning Models

A CNN is a deep feedforward neural network with sparse connectivity and weight-
sharing characteristics. It consists of the input layer, convolutional layer, pooling layer,
fully-connected layer, and output layer [22,23].

A temporal convolutional network (TCN) is a CNN-based network proposed by Bai
et al. [24] for processing time-series data. In the TCN, causal convolution is added to
the time-series convolutional network so that the upper and lower layers have a causal
relationship, while dilated convolution and residual connection are used to address the
gradient disappearance problem in RNNs. The TCN model can not only maintain a
large receptive field for data, but can also reduce the amount of calculation and thus can
efficiently control the memory length of a model and improve the accuracy of time-series
data classification [25].

Compared with an ordinary one-dimensional CNN, TCN mainly has improvements
in three aspects, which are as follows:

(a) Causal convolution: An output at time t is related only to the input at time t and
the input of the previous layer [26]. Traditional CNN can see future information,
whereas causal convolution can see only past information. Therefore, the causal
convolution has a very strict time constraint and represents a one-way structure. A
single causal convolution structure is shown in Figure 1a, and the overall structure is
shown in Figure 1b, for a convolution kernel number off four. Using four convolution
kernels means that four points are sampled from the previous layer as the input of
the next layer;
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Figure 1. Causal convolution. (a) A single causal convolution structure, and (b) the overall structure.

(b) Dilated Convolution: With the increase in the number of dilated convolution layers,
the expansion coefficient increases exponentially, and the increase in the receptive
field of a layer will reduce the number of convolution layers. This reduces the amount
of calculation and simplifies the network structure. In view of the traditional neural
networks problem that time-series data modeling can only be extended by linearly
stacking multi-layer convolutions, TCN uses dilated convolution to increase the re-
ceptive field of a layer to reduce the number of convolutional layers [27]. The network
structure for a convolution kernel number of four and an expansion coefficient of one
is shown in Figure 2. When the expansion coefficient of the input layer is one, the
model samples data from the previous layer with an interval of one and inputs them
to the next layer.
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The difference between dilated and ordinary convolutions is that, in contrast to ordi-
nary convolution, the dilated convolution permits interval sampling during convolution,
and the sampling rate depends on the expansion coefficient.

The receptive field can be expressed as follows:

RF = (K− 1) ∗ d + 1 (8)

where K is the convolution kernel size, and d is the expansion coefficient.
There are two methods that TCNs use to increase the receptive field. One method is

to increase the expansion coefficient, and another method is to select a large convolution
kernel value. In dilated convolution, the expansion coefficient increases exponentially with
the network depth, so fewer layers are needed to obtain a large receptive field;

(c) Residual block: Residual block is an important part of the TCN structure. As shown in
Figure 3, a residual block includes a dilated causal convolution layer and a nonlinear
mapping layer and has an identity mapping method that connects layers, enabling the
network to transmit information across layers. Residual connection can both increase
the response and convergence speed of a deep network and solve the problem of
slow learning speed caused by complex layer structure. Moreover, dropout and
batch normalization are added to the residual block to prevent model overfitting and
increase the training speed [28].
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The residual connection converts input x to output f (x) through a series of modules,
which can be expressed by:

f (x) = h(x)− x(1) (9)

A GRU, a variant of RNN, has a recursive structure and includes a memory function
for processing time-series data. A GRU can effectively solve the problems of gradient
disappearance and explosion that may occur in RNN training, thus effectively addressing
the long-term memory problem. An LSTM network is also a variant of RNN [29]. It has
similar performance to GRU, but GRU has a simpler structure, lower calculation complexity,
and higher training efficiency [30]. The internal structure of GRU is shown in Figure 4,
where the GRU has two inputs, which denote the output data of the previous moment
and the input sequence of the current moment. The GRU output represents the state at
the current moment. The GRU updates the model state using the reset and update gates,
where the reset gate controls the forgetting degree of historical state information so that the
network can eliminate unimportant information. The update gate controls the proportion
of past information in the current state, helping to maintain long-term information [31].
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3. AIFS Malware Classification Based on Ensemble Deep Learning 
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The sigmoid activation function is defined by Equation (10) and presented in Figure 4.
Its function is to convert the intermediate state into the range of [0, 1]. In Equation (12), ht−1
and ht are the output states at times (t−1) and t, respectively, xt is the input sequence at
time t, h̃t is the candidate output state, Wr, Wz, Wh̃, Ur, Uz, and Uh̃ are the weight coefficient
matrices corresponding to each part, tanh is the hyperbolic tangent function, and � is the
Hadamard product of a matrix.

rt = σ(Wrxt + Urht−1)
zt = σ(Wzxt + Uzht−1)

h̃t = tan h(W~
h
xt + U~

h
(rt � ht−1))

ht = (1− zt)� ht−1 + zt � h̃t

(10)

3. AIFS Malware Classification Based on Ensemble Deep Learning

The malware classification process includes three stages: preprocessing, feature ex-
traction and training, and classification. The classification model structure is presented in
Figure 5.
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As shown in Figure 5, the proposed AIFS algorithm based on ensemble deep learning
mainly includes the following steps. First, eight types of features are extracted from the
two types of samples in the original dataset. Next, the original data features are subjected
to the min–max normalization, and their labels are one-hot encoded. Then, the GRU, TCN,
and CNN classifiers are used to train and predict the single and fused features, and the
classification accuracy of each model is calculated. Afterward, the intuitionistic fuzzy
judgment matrices of the three models are constructed based on the classification accuracy
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and their consistency is evaluated. If a matrix is inconsistent, it will be corrected. Otherwise,
the classifiers are ranked, and the weight of each classifier is calculated. Finally, based on
the model weights and the MAGDM method, the classification results are obtained.

3.1. Feature Extraction

During malware classification, it is necessary to extract multiple features from data
samples first and then input the extracted features into the classification model. Thus, in
this study, six static features are extracted from the disassembly and byte files for malware
classification, including image texture, string, and entropy features are extracted from the
byte files. Data section, data definition, and API features are extracted from the disassembly
files. The features are described in Figure 6.
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1. Data sections

The sections of the .asm file are mainly used to store information such as code, data,
and resources, whereas .asm files are composed of some predefined sections such as .text
(code section) and .data (data section), as shown in Table 1.

Table 1. Structure of .asm files.

Name Description

.text Code section; program code segment identifier
.data Data section; initialize data segment, store global data, and global constants
.bss Uninitialized data segment; store global data and global constants

.rdata Resource data segment

.edata Export table; addresses of exported external functions
.idata Import table; addresses of imported external functions
.rsrc Resource section; store program resources such as icons and menus

.tls Store pre-stored thread-local variables, including initialization data, callback
functions for each thread initialization and termination, and TLS index

.reloc Base address relocation table; all content in the mirror that needs to be relocated

Data in a data section can be modified, reordered, and new structures can be created
using check-avoiding techniques such as packing. In this study, the number of lines of
each section is calculated, as well as the total number of lines of all sections, the number of
lines of unknown sections, and the proportion of each section. The total number of lines
of each section is referred to as total_[section]. For instance, total_.bss denotes the total
number of lines in the .bss section. The proportion of each section to all sections is denoted
by [section]_por, and .bss_por represents the percentage of .bss section. The overall results
are shown in Table 2.
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Table 2. List of features in the section category.

Name Description

Num_Sections Total number of sections
Unknown_Sections Number of unknown sections

Unknown_Sections_lines Number of lines in unknown sections
known_Sections_por Proportion of known sections

Unknown_Sections_por Proportion of unknown sections
Unknown_Sections_lines_por Proportion of lines in unknown sections
Unknown_Sections_lines_por Proportion of lines in unknown sections

2. Data definition

This functional class differs among malware samples, and some samples may not
contain any API calls due to packaging or contain only a small number of operational codes.
Particularly, due to packaging, some samples mostly contain db, dw, and dd instructions
that are used to set bytes, words, and double words, respectively. In addition, some
malicious codes are packaged or packed, and the .asm files do not contain normal code
segments. For instance, in the malicious code 58kxhXouHzFd4g3rmInB, there are only two
data segments, HEADER and GAP. In the sample 3r0swJ67FWm5HXDnjaIy, there is only
one segment, the seg000 segment. The sample 6tfw0xSL2FNHOCJBdlaA contains only the
.gap segment. In the malicious sample 36eMEj40inf8r5vVQlBx, after UPX compression, the
disassembled .text segments become UPX* code segments, and most disassembled codes
contain only data definition instructions, such as db.

Accordingly, through the analysis, it is found that there are three main instructions
in the packed samples considered in this study, namely, db, dd, and dw instructions. In
addition, by calculating the proportion of the three instructions in the sample and different
data sections under the frequency of zero, features of packed samples are identified, as
well as features of different malware classes after packing. Based on the analysis of these
features, it is expected to improve the classification result of packed samples.

3. API features

The APIs are mainly stored in the .idata segment. The total number of APIs is very
large, and APIs bring little or no meaningful information to malware classification. Based
on the analysis of nearly 500 K malware samples, the analysis is limited to the top 794 most
common APIs used in malicious binaries. The descriptions of some of the APIs are shown
in Table 3. For the API features, the feature occurrence frequency is calculated for each
sample, and the influence of APIs in different malware classes on the classification result
is I.

Table 3. API interface example.

Name Description

API_GetProcAddress Retrieves the output library function address from the specified
dynamic link library (DLL).

API_LoadLibraryA
Loads the specified module into the address space of the calling
process. The specified module may cause other modules to be

loaded.

API_GetModuleHandleA Retrieves a module handle for the specified module.
The module must have been loaded by the calling process.

API_ExitProcess Ends the calling process and all its threads.

API_VirtualAlloc
Reserves, commits, or changes the state of a region of pages in

the virtual address space of the calling process. Memory
allocated by this function is automatically initialized to zero.

API_WriteFile Writes data to the specified file or input/output (I/O) device.
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4. Entropy feature

Entropy is a metric used to measure disordered quantities and can also be used to
detect possible obfuscation. In this study, entropy has a value between zero and eight,
and is computed from the byte-level representation of each malware sample. The goal
is to measure the disorder degree in the distribution of bytes. First, a sliding window
method is used to express malware as a series of entropy measures, which is denoted by
E = ei : i = 1, . . . , N where ei is the entropy value measured in a window i and N is the
number of windows. Then, the entropy is calculated using the Shannon entropy formula
as follows:

ei = −
m

∑
j=1

p(j) log2 p(j) (11)

where p(j) is the frequency of byte j in a window i, and m is the number of different bytes
in the window.

Then, the entropy sequence obtained using the sliding window method is calculated,
which is the entropy for a window of 10,000 bytes. Different statistical measures such
as quantiles, percentiles, mean, and variance are used to analyze the results. Finally, the
entropy of all bytes in malware is calculated.

5. Haralick features

The Haralick features are statistical features that are computed over the entire image.
They are texture features based on an adjacency matrix. Namely, the adjacency matrix
stores a number of pixels with a value of i in a position (i, j), which are adjacent to pixels
with a value of j. Using different definitions, it is possible to obtain features with slight
variations. Generally, the average values in all directions are calculated to obtain rotational
invariance. Moreover, representing malware as an image can cause problems, as shown
in Figure 7, where the textures of the two images are almost the same, even though the
two samples belong to different classes. Hence, other features are needed to improve the
classification accuracy.
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Figure 7. Malware sample image. (a) Vundo family. (b) Simda family. (c) Tracur family.

6. String features

Visible strings length: The hex dump of each PE is used to extract possible ASCII
strings. The length, frequency, distribution, and other information of various types of
visible strings are counted. It is worth noting that some meaningful visible strings deserve
more in-depth study [32]. Since the feature can extract many valueless strings, it is not
reasonable to use string length directly. To reduce noise and avoid overfitting, this study
uses only the distribution histogram of string lengths.

3.2. IFS-MAGDM

Two crucial tasks in the proposed method are the intuitionistic fuzzy judgment matrix
construction and the classifier weight calculation.
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By comparing the classification accuracy of different classifiers {GRU, TCN, CNN}
= {C1, C2, C3}, the intuitionistic fuzzy judgment matrix R is constructed using µij =

Accuracy of Ci
Accuracy of Ci+Cj

and νij =
Accuracy of Cj

Accuracy of Ci+Cj
as follows:

GRU TCN CNN

R =
GRU
TCN
CNN


〈0.5, 0.5〉

〈
µk

12, vk
12

〉 〈
µk

1n, vk
1n

〉〈
µk

21, vk
21

〉
〈0.5, 0.5〉

〈
µk

2n, vk
2n

〉
〈
µ31, v31

〉 〈
µk

m2, vk
m2

〉
〈0.5, 0.5〉

 (12)

where R12 = (µ12, ν12) represents the difference in accuracy of the GRU model over the
TCN model, and R∗ij =

(
µ∗ij, ν∗ij

)
is obtained based on the following rules:

1. When µij > νij,
µ∗i,j = µi,j + νi,j × 10%
ν∗i,j = νi,j − µi,j × 10%

;

2. When µij = νij,
µ∗i,j = µi,j

ν∗i,j = νi,j
;

3. When µij < νij,
µ∗i,j = µi,j − νi,j × 10%
ν∗i,j = νi,j + µi,j × 10%

.

Further, based on the matrix R∗ij =
(

µ∗ij, ν∗ij

)
, the best and worst models in the classifi-

cation model C, denoted by Cbest and Cworst, respectively, are obtained. After passing the
consistency test, the weights of classifiers are calculated by mathematical models.

4. Experimental Results
4.1. Experimental Setup

The performance of the proposed malware classification method based on the IFS for
different features was verified by three experiments, which were as follows:

• Experiment 1: Single-feature comparison;
• Experiment 2: Multi-feature fusion comparison;
• Experiment 3: Comparison of different classification algorithms.

4.2. Evaluation Indices

This study adopted four common evaluation indices in the field of malware classifica-
tion and detection, namely, accuracy (Acc), precision (PR), recall rate (RR), and F1-score
(F1), which were respectively calculated by:

Acc = TP+TN
TP+TN+FP+FN

PR = TP
TP+FN

RR = TP
TP+FP

F1 = 2×PR×RR
PR+RR

(13)

TP represents the number of true positives; FN is the number of false negatives; FP is
the number of false positives; TN is the number of true negatives.

4.3. Hardware and Dataset

The computer used in the experiments operated on the Win10 system and included an
Intel(R) Core™ i9-9880H CPU @ 2.30 GHz, 64-GB memory, and Quadro RTX 4000 GPU.
The program was written in PyCharm2021.2.2 using Python3.7 and ran in the CUDA11.0
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accelerated environment. The neural network model used the deep learning framework
versions of TensorFlow2.4.1 and Keras2.4.3.

The experimental data were open-source and downloaded from Microsoft [33]. The
malware in the dataset was divided into nine classes, and contained 10,868 samples. The
dataset is shown in Figure 8, which shows that each sample file was available in two
formats, .asm file format and .bytes file format. In this study, the assembly language .asm
file was used.
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Figure 8. Microsoft malware data set and partition.

In the experiment, the dataset was divided into training and test sets according to the
ratio of 7:3. The training set contained 7608 samples and the test set included 3260 samples.
The parameter random_state was fixed to ensure that the divided dataset remained the
same.

4.4. Single-Feature Comparison

Feature selection methods have been compared by authors in [34–36], which discusses
how the methods affect the classification stage. This section observes the impact of different
features on the classification results through experiments on individual features. Six
classes of features were extracted, and the GRU, TCN, CNN, and AIFS-IDL models were
used for classification. By using five-fold cross-validation, the average value of indices
of each feature in the three experiments was calculated. For the six extracted features,
the performances of three single-feature models were compared, as shown in Table 4 and
Figure 9.

As presented in Table 4 and Figure 9, the proposed model achieved better classification
performance than the other models. Compared with the TCN, GRU, and CNN models,
the accuracy of the proposed AIFS-IDL model has improved on different single features
extracted from this dataset. Based on the accuracy, precision, recall, and F1-score results
of the models based on the six classes of features extracted on this dataset, the proposed
AIFS-IDL model performed better than the TCN, GRU, and CNN. Thus, the results verified
that the proposed AIFS-IDL model could improve malware classification performances.
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Table 4. Single-feature comparison experiment results.

Features Model Accuracy Precision Recall F1-Score

Features
from
the

.asm
file

Data
section

GRU 97.79% 97.34% 97.41% 97.35%
TCN 98.36% 97.81% 97.72% 97.72%
CNN 98.42% 98.24% 98.16% 98.18%

AIFS-IDL 98.81% 98.62% 98.52% 98.50%

Data
definition

GRU 98.47% 97.49% 97.50% 97.48%
TCN 97.94% 97.62% 97.57% 97.58%
CNN 98.23% 97.91% 97.90% 97.91%

AIFS-IDL 98.50% 98.53% 98.52% 98.64%

API

GRU 94.54% 94.18% 94.02% 94.02%
TCN 77.31% 80.49% 76.45% 74.54%
CNN 97.98% 97.74% 97.55% 97.57%

AIFS-IDL 98.30% 98.25% 98.17% 98.22%

Features
from
the

byte
file

Entropy

GRU 97.77% 97.09% 97.20% 97.13%
TCN 93.41% 92.38% 92.38% 92.18%
CNN 98.91% 98.50% 98.60% 98.54%

AIFS-IDL 99.01% 98.56% 98.67% 98.56%

Haralick

GRU 95.29% 94.21% 94.33% 94.23%
TCN 95.25% 94.23% 94.33% 94.24%
CNN 94.89% 94.34% 94.42% 94.31%

AIFS-IDL 95.32% 94.65% 94.76% 94.28%

String

GRU 96.98% 96.97% 96.98% 96.94%
TCN 92.75% 92.84% 92.75% 92.59%
CNN 98.22% 97.81% 97.89% 97.85%

AIFS-IDL 98.35% 98.03% 98.06% 97.97%
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The ensemble learning model had slightly higher or comparable values of the eval-
uation indices compared to the single-feature models, which demonstrated the strong
classification capability of the proposed AIFS-IDL model.
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4.5. Multi-Feature Fusion Comparison

Four different features in the .asm files and .byte files were extracted and then all
features were fused. The three single-feature models were compared, and the experimental
results are shown in Table 5 and Figure 10.

Table 5. Multi-feature fusion experiment results.

Features Model Accuracy Precision Recall F1-Score

Features
from the .asm

file

GRU 99.63% 99.64% 99.63% 99.62%
TCN 99.36% 99.36% 99.36% 99.36%
CNN 99.36% 99.00% 98.99% 98.97%

AIFS-IDL 99.84% 99.86% 99.85% 99.85%

Features
from the
.byte file

GRU 99.26% 99.27% 99.26% 99.25%
TCN 98.07% 97.91% 98.07% 97.98%
CNN 98.99% 98.91% 98.90% 98.88%

AIFS-IDL 99.46% 99.47% 99.46% 99.45%

All features

GRU 99.72% 99.73% 99.72% 99.73%
TCN 99.45% 99.46% 99.45% 99.46%
CNN 99.45% 99.37% 99.36% 99.34%

AIFS-IDL 99.92% 99.92% 99.92% 99.92%
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As presented in Table 5 and Figure 10, the proposed model achieved better classifica-
tion performance than the other models. Compared with the TCN, GRU, and CNN models,
the accuracy of the proposed AIFS-IDL model on the dataset was improved by 0.21%, 0.48%,
and 0.48%, respectively. Based on the data set, all features are fused, and three features
are fused based on .asm files or .byte files, Based on the accuracy, precision, recall, and F1
score results of three different feature models, the proposed AIFS-IDL model performed
better than the TCN, GRU, and CNN. Thus, the results verified that the proposed AIFS-IDL
model could improve malware classification performances.

The ensemble learning model had slightly higher or comparable values of the eval-
uation indices compared to the multi-feature models, which demonstrated the strong
classification capability of the proposed AIFS-IDL model.
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4.6. Comparison of Different Classification Algorithms

In order to evaluate the performance of the classification model, the model was
compared with the model method proposed in [8,37–46]. The data sets used in these
documents are the same as those in this paper.

Among the five models, two models were based on machine learning, one model was
related to gene sequence classification, and the other two models were deep learning-based
models. Gilbert et al. [8] first extracted byte and opcode sequences and then used two
CNN classifiers for classification. Yan et al. [37] used a CNN model to extract features from
grayscale images and employed an LSTM model to extract opcode features. Then, the
features were fused and used for classification. Narayanan et al. [38] extracted the opcode
and grayscale features and then used the support vector machine (SVM) for classification.
Narayanan et al. [39] processed the grayscale images converted from malware, performed
dimensionality reduction of the image features using the PCA, and finally used the K-
nearest neighbor method for classification. Guo et al. [40] used the Strand method and
other gene detection methods to classify texts. Ni. et al. [41] proposed the MCSC model.
The opcode features in malware samples are extracted, converted to grayscale maps by Sim-
Hash coding, and feature extraction and classification are performed using convolutional
neural networks. Le. et al. [42] proposed a method to convert the original samples into
binary features and train the binary sequence features using a deep learning model. Khan
et al. [43] introduced a feature processing method that converts an opcode into a linear
matrix, which is used to generate an image. The extracted image features were trained
using ResNet and GoogleNet models. N. Marastoni et al. [44] uses CNN and LSTM models,
respectively, to classify malware image features using migration learning methods. Darem
et al. [45] proposed an approach with integrated deep learning, feature engineering, image
transformation and processing techniques. Darem et al. [45] uses CNN and XGBoost
methods. The experimental results are shown in Table 6.

Table 6. Comparison with the existing models.

Authors Time Method Model Features Accuracy

Burnaev et al. [38] 2016 One-class SVM SVM Opcode + grayscale image 92%
Narayanan et al. [39] 2016 PCA and kNN KNN grayscale image 96.6%

Drew et al. [40] 2017 Strand Gene Sequence Strand asm sequence 98.59%
Ni et al. [41] 2018 Sim–Hash and NN CNN Grayscale images 98.86%

Le et al. [42] 2018 - CNN, LSTM and
RNN Binary representation 98.20%

Yan et al. [37] 2018 MalNet CNN and LSTM Raw file data 99.36%

Khan et al. [43] 2019 - ResNet and
GoogleNet Image 88.36%

Gibert et al. [8] 2020 Orthrus CNN Byte + Opcode 99.24%
Marastoni et al. [44] 2021 - CNN and LSTM Image-based data 98.5%

Darem et al. [45] 2021 ensemble CNN and XGBoost Opcode + image+
segment + other 99.12%

X et al. [46] 2022 TCN-BiGRU TCN and BiGRU Opcode + Byte sequence 99.72%
AIFS-IDL current AIFS-IDL TCN, CNN, and GRU Disassembly file + Byte file 99.92%

Although the methods mentioned above achieve good results, they are inferior com-
pared to the method proposed in this study. To improve the classification accuracy, the
proposed method fused six features extracted from the .asm files and .byte files and inte-
grated the training results of the GRU, TCN, and CNN models based on AIFS and MAGDM.
The accuracy of the proposed model reached 99.92%, outperforming that of the other mod-
els. Therefore, the proposed multi-feature AIFS-IDL method achieved the best performance
among all methods.

5. Conclusions and Future Work

In this study, an AIFS-IDL and multi-feature fusion-based method is proposed for
malware classification. The proposed method extracts three types of features from the
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disassembly files and three types of features from the byte files in malware samples,
accounting for a total of six types of features. The six features are extracted with different
focuses. They compensate each other for the deficiencies of their own features. Then,
according to the classification accuracy of the GRU, TCN, and CNN models and based on
IFS theory, an intuitionistic fuzzy judgment matrix is constructed and used to determine
the classifier weights. This method combines the advantages of different classifiers. Finally,
the MAGDM method is used to classify malware samples. The experiments show that
the proposed method can improve the classification accuracy and generalization ability
of traditional deep learning models. In addition, the performance of the proposed model
is compared with single-feature models, including the GRU, TCN, and CNN models, on
malware datasets. This combines the advantages of different classifiers to avoid the losses
generated by a single classifier in the process of feature extraction. The experimental
results show that, compared to the traditional algorithms, the classification accuracy of the
proposed method is better, and the generalization ability is improved to a certain extent.

The method proposed in this paper can meet the requirements of higher data vol-
ume level well, and has a series of advantages, such as high classification accuracy, anti-
confusion, and shelling. However, the proposed method in this paper is requires higher
computational time. Therefore, the next consideration would be to refer to [47–49] to study
the time consumption and improve the model in a lightweight way. At the same time, we
will continue to study to the anti-attack technology in the field of malware classification.
We will also plan to use some newer anti-attack technology attack detection models to
verify whether the classification method can resist more advanced anti-attack methods.
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