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Abstract: Contemporary information-sharing environments such as Facebook offer a wide range of
social and practical benefits. These environments, however, may also lead to privacy and security
violations. Moreover, there is usually a trade-off between the benefits gained and the accompanying
costs. Due to the uncertain nature of the information-sharing environment and the lack of technologi-
cal literacy, the layperson user often fails miserably in balancing this trade-off. In this paper, we use
game theory concepts to formally model this problem as a “game”, in which the players are the users
and the pay-off function is a combination of the benefits and costs of the information-sharing process.
We introduce a novel theoretical framework called Online Information-Sharing Assistance (OISA) to
evaluate the interactive nature of the information-sharing trade-off problem. Using these theoretical
foundations, we develop a set of AI agents that attempt to calculate a strategy for balancing this
trade-off. Finally, as a proof of concept, we conduct an empirical study in a simulated Facebook
environment in which human participants compete against OISA-based AI agents, showing that
significantly higher utility can be achieved using OISA.

Keywords: information sharing; information sharing platforms; human-computer interaction; artifi-
cial intelligence; game theory; game tree

1. Introduction

While the use of digital applications and the Internet continues to increase world-
wide [1–3], it also introduces significant risks to both privacy and security, threatening
to violate individual data ownership [4]. For example, sensitive personal information
that might be disclosed when making e-commerce purchases can later potentially be used
improperly [5–9], private health data may leak when using wearable e-health technolo-
gies [10,11], and users’ behavioral patterns may be disclosed through Internet of Things
(IoT) applications [12]. The protection of privacy and security is considered essential to
liberal society, and for individual autonomy, these are considered basic human rights [13,14]
that are extensively regulated by governments and intragovernmental organizations, e.g.,
the EU’s General Data Protection Regulation (GDPR) [15,16].

Protecting privacy and security is not a trivial task, and contains an inherent trade-off
between the benefits derived from sharing data and the resultant costs [17,18]. Online
purchasing, for example, is beneficial in terms of cost reduction and convenience, but it
may involve both a loss of privacy (e.g., disclosing one’s shopping list) and security issues
(e.g., disclosing one’s credit card details).

Information-sharing (or information-exchange) is defined as “the act of people, com-
panies, and organizations passing information from one to another, especially electron-
ically” [19], and can be considered as a characteristic of modern human society and be-
havior [20]. As beneficial as information-sharing currently is, it also raises concerns about
privacy and security, thereby affecting the likelihood of using information-sharing ser-
vices [21,22]. Individuals in online information-sharing environments are often helpless
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in managing and controlling their own privacy and security, usually due to the lack of
technological literacy, the stochastic nature of the problem (it is probabilistic rather than de-
terministic, making it more difficult to perceive), and cognitive laziness [23]. As suggested
by prospect theory, the uncertainty resulting from sharing the information causes people
to act with bounded rationality, meaning they may not behave in an optimal manner [24].
However, the broad discussion in the literature on privacy and security in the information-
sharing domain relates mainly to the involvement of machines, e.g., blocking intrusions to
a network [25] or developing strategies for decisions taken by firewall algorithms [26]. The
current theories are limited when dealing with scenarios in which actual human factors
are involved.

To bridge this gap, we introduce a novel framework, the “Online Information-Sharing
Assistance” (OISA), based on concepts from the field of game theory [27], a broadly appli-
cable methodology in the social sciences [28]. Combining game theory and user behavior
on social networks is a promising research direction that has gained popularity in the
last few years. Alvari et al. [29] used game theory to detect overlapping communities
on social networks for the purpose of building efficient recommendation systems and
improving business opportunities. Wahab et al. [30] modeled the multi-cloud community
formation problem as a trust-based, hedonic coalition formation game. However, forming
a coalition is not common on many online information-sharing platforms such as Facebook
because it requires secured authentication and trust [31,32]. Guo et al. [33] applied a game
theory framework to handle disinformation on social networks. In our study, we deal with
another issue inherent to information-sharing environments, namely how to effectively
share information while considering the trade-off between the benefits and the resultant
costs. Using game theory concepts, the information-sharing process can be modeled as
a “game” in which the decision-makers are the players, who act according to the rules of
the information-sharing environment (usually based on the platform used, e.g., Facebook)
and whose pay-off function is a combination of the benefits (e.g., social benefits) and the
costs (e.g., privacy violation) of information-sharing. An adequate approximate solution
can, thus, be formulated in the form of a game theory strategy to be used in the online
environment. For example, in the Facebook Online Social Network (OSN) environment, a
user may click on the “like” button associated with a post published by another Facebook
user. This choice will increase the probability of future posts appearing on both users’
feeds [34]. In that case, the benefit for the user could be attaining a higher rate of publicity
of future posts, which is usually the main motivation when publishing a post online [35].
Liking a post, however, can also lead to the violation of privacy, e.g., by enabling a third
party to accurately deduce a range of highly sensitive personal attributes of the user [36].
In this example, OISA can be used to decipher optional strategies adopted by Facebook
users to provide them with recommendations that assist them in improving their utility.
Recommendation agents are prevalent today and aim to support complicated decisions, for
example agents that assist travelers’ calls concerning the COVID-19 pandemic [37].

Using OISA, we will represent information-sharing environments as a formal mathe-
matical model. We will thereby encapsulate purely mathematical factors (e.g., the probabil-
ity distribution of shared data to be disclosed) and “soft” human factors (e.g., cognitive
burden or privacy disclosure costs) to create an approximate real-life model that represents
the cost–benefit trade-off resulting from using an information-sharing platform.

In this paper, we formally introduce OISA and empirically prove in a simulated
Facebook environment that the OISA agent performs significantly better than a human.
The novelty of OISA is twofold: (1) it is a first step towards bridging the gap between
existing mathematical theories and the reality of information-sharing; (2) OISA constitutes
the basis for creating a smart AI agent that will be able to assist users in navigating the
potential benefits vs. privacy and security threats of OSN.
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2. Related Work

Several solutions have been proposed for balancing various utilities against potential
privacy and security costs, e.g., when targeting advertisements based on users’ collected
data [38,39], publishing data [40–42], using location-based applications [43,44] or e-health
platforms [45], applying IoT technologies [46,47], and when directly sharing informa-
tion [48–53]. However, many users find it increasingly hard to balance this trade-off in
practice, which leads to failures in protecting their privacy and security [54–57]. Several
reasons may account for this difficulty. First, understanding the complicated relationships
between the actions taken in a digital space and their real-world consequences requires
technological literacy [58,59], which is usually limited [60] and hard to acquire [61]. Indeed,
this has been considered a matter worthy of societal attention [62–64]. Second, the rules
of information disclosure are dynamic and change frequently [65]. Third, because many
users naturally tend toward cognitive laziness, they are often nudged to choose the defaults
that reflect the preferences of the service provider more than their own [66,67]. Fourth,
the nature of the data-sharing process itself is often uncertain, e.g., Facebook users do
not always know to whom their posts will eventually be exposed [68]. Thus, there is a
significant gap between the actual privacy and security consequences of using technological
applications and the users’ knowledge, expectations, and control of these consequences.
This phenomenon poses a real problem for many users [69–71].

More specifically, the following approaches have been proposed: (1) Using a classical
game theory approach [72]. This approach is limited to financial scenarios and is not fully
applicable to the domain of privacy and security, where games do not have a zero-sum
nature. (2) Using game theory as a mathematical tool to simplify difficult problems [73].
This approach focuses on reducing computations and does not provide a solution to
the privacy and security trade-off game. (3) Relying on the distributed nature of cyber
defense systems, where coalitions are established [74] or secret-sharing occurs, involving
multi-party computation [75]. The coalition assumptions are usually unrealistic in the
information-sharing domain (e.g., on Facebook) because users usually do not coordinate
their information-sharing actions. (4) Seeking consensus on a privacy level [76], assuming
that users negotiate their privacy. As in the case of coalitions, this assumption is unrealistic
for most online activities. (5) Using privacy-preserving methodologies, such as adding
artificial noise to the dataset [77]. These methodologies are relevant to protecting databases,
but not to online decision-making. (6) Abstracting a simplified model, e.g., by discretizing
data-sharing levels OSNs to optimal, undershared, overshared, and hybrid states [78].
While this solution enables the introduction of an elegant mathematical model, it is not
viable for realistic problems. Hu et al. [79] applied a game theory model based on multi-
party access control to elicit privacy concerns in OSN settings. However, they did not
address the iterative decisions that need to be made within each action.

Taken together, the existing literature has established some important theoretical
grounds for tackling privacy and security issues using game theory [80,81]. However,
a rigorous and comprehensive investigation is still required for applying game theory
solutions to privacy and security problems in the online information-sharing domain.

3. Increasing Information-Sharing Utility Methodology
3.1. Model

The first step required for representing any trade-off on an information-sharing plat-
form in an accurate and realistic way is generating a formal mathematical model of the
information-sharing environment itself. All information-sharing platforms include a
finite set of n agents, A = {a1, a2, . . . , an} acting in a collaborative space as the under-
lying condition for the sharing operation. Agent ai is associated with a group, Gai , which
is defined to be a subset of A (i.e., Gai ⊆ A). All agents who are a part of ai’s group
(i.e., ∀aj ∈ Gai) might influence ai and vice versa. An agent can be a part of more than one
agent’s group. If agent aj is not a part of ai’s group, i.e., aj /∈ Gai , it does not have any direct
influence on ai, nor does ai have a direct influence on it. Each agent has a channel through
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which it communicates and shares information with its group members. Using this channel,
agent i can perform any operation out of a finite set of mi operations, which we denote as
Oi = {o1 , o2, . . . , omi}. To maintain generality, we define the action of “doing nothing” as
a valid operation, meaning ∀i : Oi ⊃ {DoNothing}.

The timeline used in this model is defined to be discrete rather than continuous. In prac-
tice, this is achieved by implementing an action during an interval of time (of length T); an
agent can perform only one operation per interval. Each operation is denoted by ot

k,i, where
k ∈ {1 . . . mi } is the chosen operation index, i is the agent who performed the operation,
and t is the interval of time in which the operation was performed. While this approach
enables the implementation of a viable agent, it does not detract from the generality of the
methodology, because by minimizing the time interval (T→ 0), we are practically dealing
with a continuous timeline scenario. In any given interval, agent i is only aware of its choice
of operation, and has a set of probabilities Pothers =

(
Pother

1 , . . . , Pother
i−1 , Pother

i+1 , . . . , Pother
n

)
regarding the other agents’ choices, where Pother

w (w 6= i) corresponds to Ow. Note that
those probabilities are dynamic and might change from one time interval to another based
on previous experience and resulting world states. Omitting agent ai, we denote all other
agents’ chosen operations in a certain interval as V−i. Once an operation is completed,
it can have several possible outcomes (realizations). Each combination of ai’s chosen op-
eration, oi, and V−i might be realized in a few possible ways, each leading to a different
world state s. Realization α has a probability pτα ∈ Pτ to be the actual one. We denote
f : (ai, oj, V−i, Pτ)→ S to be a function that maps each combination as a specific world
state. Thus, an agent is faced with uncertainty on two levels: (1) the opponent agents’
choice of operation (Pothers); (2) the potential combinations of the chosen operations (Pτ).

Due to the stochastic nature of the problem, while choosing an operation, the agent
must consider all possible world states and their probabilities to calculate the expectancy
of both the benefits and costs that result from the chosen operation. Since the limitations of
currently available solutions mainly stem from unrealistic assumptions or abstractions of
the information-sharing world, we introduce a novel framework called online information-
sharing assistance (OISA) that inherently considers and faithfully represents the interactive
nature of the information-sharing trade-offs, aiming to consider major costs and pay-
offs for generating “bottom line” utility. As described in the following section, OISA
provides a formal, close-to-reality representation of the information-sharing costs and
benefits considering both the soft and rigid factors included in the interaction, offers
a comprehensive game theory representation of the interaction itself, and enables the
generation of smart AI-based agents who can help the users improve their performance.

3.2. Information-Sharing Benefits and Costs

Each possible operation might benefit the agent performing it, e.g., by providing a
social benefit. We denote the myopic benefit function as bt

i (o
t
k,i), where i is the agent who

performed the operation, t is the interval of time in which the operation was performed,
and k is the operation index out of the set O. The function bt

i (o
t
k,i) is myopic in the sense

that it only measures the benefit gained in the interval following the one in which the
operation is performed. The overall benefit function is additive, obtained by summing the
benefits earned in each interval, i.e., bi = ∑∀t bt

i (o
t
k,i). On the other hand, as a consequence

of performing an operation, an agent may also incur some costs, e.g., the burden of the
operation (amount of time spent and cognitive efforts). We denote the myopic cost as
ct

i(o
t
k,i) (myopic in the sense that it only measures the cost in the interval in which the

operation is performed) and the overall cost as ci = ∑∀t ct
i(o

t
k,i), where i, t, ot

k,i are defined
as in the benefit function. In addition, for any operation, the agent risks losing some privacy
or security, e.g., when disclosing information to a malicious actor who can exploit that
information. We denote the future privacy or security losses at time t′ resulting from opera-
tion ot

k,i (t < t′) as plt′
i (o

t
k,i). The accumulative privacy and security loss by operation ot

k,i is

given by pl(ot
k,i) = ∑t′=D

t′=t+1 plt′
i (o

t
k,i), where D is the finite time interval of the interaction.
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The overall privacy loss function is additive and obtained by summing the privacy loss
in every time interval, i.e., pli = ∑∀t pl(ot

k,i). We consider the DoNothing operation as a
neutral operation that does not cost anything, does not cause privacy loss, and does not
benefit the agent in any way, i.e., ct

i(DoNothing) = plt
i (DoNothing) = bt

i (DoNothing) = 0.
Each of the above-mentioned calculations (cost, benefit, and privacy loss) is made based on:
(1) the users’ personal preferences and characteristics, e.g., “how much time does it take
for the user to share a piece of information?” “how much does sharing this information
improve their popularity?”, or “how much privacy did the user lose due to sharing this
information?”; (2) the user’s chosen action and its possible realizations; (3) other users’
actions (with the proper probabilities) and their possible realizations.

An example of a classic privacy threat may be an unwilling leakage of sensitive infor-
mation to undesired entities, while a classic security threat may be using social engineering
to tempt a user to click on a harmful web link or URL. Notably, while it is often hard
to distinguish between privacy and security costs, our scheme does not require such a
distinction; we will, thus, accommodate both cost types in one holistic model in order to
produce a single bottom line utility. Hence, as a generalization, we use the same units
to measure both the benefits and the costs, which enables us to calculate the degree to
which an agent performed well (produced utility) throughout the entire interaction. To this
end, we use the function Ri(ci, pli, bi) to calculate the bottom line utility of agent i from
the interaction.

3.3. Game Theoretical Representation

In OISA, as in real life, we assume that users’ interactions are not sequential; indeed,
users may be required to choose their operations before knowing what the other users
have chosen to do. An efficient way to represent scenarios in which a participant must
choose an action under uncertainty is using a game tree, a directed graph whose nodes
are positions in the game and whose edges, also called branches, are possible moves [82].
The pay-offs resulting from choosing a certain path through the tree appear next to the
terminal node of that path. In case of uncertainty, which can result either from not knowing
what the opponent’s choice of operation will be or from the possible realizations of the
performed operations, the probabilities are indicated next to the branches representing
each case. Figure 1 depicts a tree representation of an example taken from a specific agent’s
(a1) point of view. In this example, there are two agents and three possible operations, i.e.,
n = 2 and m = 3. A circle represents an operation taken by an agent, and a rectangle
represents a world state. The probabilities for each possible world state are the result of
multiplying all possible realizations of all relevant operations and are displayed next to
each branch.

We define a satisfactory solution to be a series of decisions that maximize or signif-
icantly increase a specific user’s bottom line utility (we do not seek equilibrium for the
entire game). The naive way for an agent to optimize its operation is to scan all possible
routes of the tree and choose the one that yields the highest utility (brute force). A complete
game tree starts at the initial position and contains all possible moves from each position.
For simplicity, we assume that there are m possible operations at any given time interval
for each of the n agents ( ∀i, j ∈ {1 . . . n} : mi = mj = m ) and that each combination

spans |S| world states. The resulting tree complexity is (m·n·|S|)d−1, where d is the tree
depth. This can be concretized by observing the massive tree in Figure 1, which describes a
relatively simple case with only two agents and three possible operations. Hence, finding
the agent’s best strategy by using brute force is inherently difficult, and given both the
time limit imposed by the online environment and the limited computational resources
(e.g., a PC) it is practically impossible. Thus, in the next subsection we will present three
heuristic search algorithms that aim to provide a sufficient solution to the problem given
the described constraints.
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3.4. Heuristic Search Algorithms

As the strategy space of the problem increases rapidly, a brute force algorithm, which
indeed computes all possible scenarios, would be highly time-consuming and unsuitable
for the online environment. Hence, we introduce three heuristic algorithms inspired by
well-known search algorithms: the simulated annealing (SA), hill climbing (HC), and
Monte Carlo tree search (MCTS) algorithms.

Algorithm 1 is a modification of the simulated annealing (SA) algorithm [83], a proba-
bilistic technique for approximating the global optimum of a given function. It does not
search the tree deeply for possible decisions. Rather, SA is a metaheuristic for approxi-
mating global optimization in a large discrete search space. The algorithm receives the
pre-set quota of intervals, the node from which the search begins, and the index of the
relevant agent as an input. In each interval, the algorithm only examines the direct children
of its current state and tries to improve its current utility. First, it randomly chooses one
node out of the current state’s direct children (the number of the node’s direct children
is equal to the number of possible operations at that specific state). Then, if the utility
received from choosing that node is positive, the agent performs the operation leading
to this node. Otherwise, based on the negative utility difference and the interval number
(the higher the interval number is, the lower the probability of the agent selecting negative
values), the agent calculates a probability (e∆R/S) by which it decides between two alterna-
tives: (1) randomly choosing another node and checking whether it improves the utility;
(2) performing the operation that leads to the less preferable node. The latter option was
added to encourage some exploration and prevent convergence to a local maximum. The
iterative process is executed until a selection is made. Note that this algorithm is limited to
a range of rounds because when r � 1 then S→ 0 .

Algorithm 2 is a modification of the hill climbing (HC) algorithm [84], a local search
algorithm that continuously moves in the direction of increasing elevation to find the peak
of the mountain or best solution to the problem. It terminates when no neighbor remains
or when the utility reaches the given threshold Th. HC is considered a greedy local search
function as it only looks to its immediate neighbor state and not beyond that.
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Algorithm 1. Local search, probabilistic first choice
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  𝑂 ←  𝑂\{𝑛𝑒𝑥𝑡𝑁𝑜𝑑𝑒}  
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The algorithm receives the pre-set quota of rounds, the node from which the search
begins, the index of the relevant agent, and the threshold as an input. Here also, in each
round the algorithm only examines the direct children of its current state and tries to
improve its current utility. Due to being a greedy algorithm, it only chooses nodes that
result in a better utility than the one where it is currently located. The threshold Th is
used to reduce the processing time if a “reasonable” result is reached. The reasonability
boundaries can also be set dynamically (although this was not done in the version discussed
in this paper).

Algorithm 3 is a modification of the Monte Carlo tree search (MCTS) [85], a best-first
search technique that uses stochastic simulations. The algorithm builds a tree of possible
future game states according to the following mechanism: selection, expansion, simulation,
and backpropagation. This is also a greedy algorithm, meaning the operation that is chosen
to be executed in the actual game is the one corresponding to the child with the greatest
potential based on the simulations. The algorithm receives the pre-set quota of rounds,
node from which the search begins, depth of search, number of repetitions, and index of the
relevant agent. For each possible operation that might be selected, the algorithm randomly
selects a quantity of repetition tree paths spanning from the selected operation. The path
that yields the maximal utility indicates the utility that may be gained by this operation.
As mentioned above, the chosen operation is the one with the maximal utility.
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4. Empirical Study

In this section, we provide an empirical evaluation of an OISA AI-based agent when
interacting with humans.

4.1. Experimental Environment

To empirically evaluate OISA, we chose to use the Facebook OSN. Facebook is one of
the most popular OSNs worldwide [86,87], making it suitable both as a conceptual selection
representative of an information-sharing platform and for recruiting participants for the
experiment. We define the finite set of agents, A, as the general population of Facebook
users, while the subset G (G ∈ A) contains agents that can potentially interact with each
other. In the experiments, we focused on four major types of operations that are among the
most popular: (1) publishing a post; (2) liking a post, which has two possible alternatives,
namely an (a) unsafe post, e.g., containing a URL (a post containing a URL may expose the
user to an attack such as ransomware, meaning it has a relatively higher cost, although it
may also contain significant benefits, e.g., referencing an interesting legitimate website) or
a (b) safe post; (3) sending a friend request; (4) accepting a friend request (the two latter
operations address the need for an agent to increase its potential exposure). Note that
extending the experimental framework to include more operations is straightforward.

To illustrate the computational complexity of using a brute force technique, we in-
troduce a case study with ten possible actions from which each agent can choose: two
available posts that can be published, three safe posts and one unsafe post that can be
“liked”, two pending friend requests that can be accepted, and two users to which a friend
request can be sent. The number of agents interacting in the described case study is 5 and
the depth of the tree that we are interested in examining is 3. The number of combinations
to be tested is, meaning

(
105)3. From the resulting complexity, it is easy to see that the

brute force approach demands an enormous calculation force, which is impractical in an
online environment.

To demonstrate this computationally, we conducted a series of simulations of applying
brute force with different machines (parameterized by the amount of internal memory
or RAM) and the optimization level (parameterized by the searching depth in the tree).
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The results of the simulations are depicted in Figure 2, in which it is apparent that the
performance time increases exponentially when the tree depth grows, and that achieving
reasonable performances requires a relatively strong machine that is not available to
the public.
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4.2. Experimental Framework

For our experiments, we built a Facebook simulator that captures the essence of the
Facebook application. To this end, both the layout of our Facebook simulator and the
functionality it offers users are similar to the actual Facebook application. For example,
participants using the simulator can publish a post, like posts published by other partici-
pants, offer friendship to other participants, and other functions. The simulator provides
a fully controlled environment, which enables us to test the performance of the human
participants vs. the AI agents. Furthermore, due to the artificiality of this managed envi-
ronment, we can provide incentives for the users to maximize their utilities and challenge
the AI agents. The interaction between the users has a set number of discrete time intervals
(called rounds) that are each limited to a pre-set discrete value. During the first round, each
participant (player) is introduced to all other participants in the experiment (using their
chosen nicknames for privacy preserving). For each round, users are asked to choose one
operation out of those available (as mentioned above, doing nothing is also an acceptable
choice). Next to each operation, users are shown a description of its benefit, cost, and
privacy or security loss. Thus, they are fully informed regarding their choices. In these
controlled experiments, the values were provided and were identical for all participants.
However, in real life, the values (tangibly) can be collected and evaluated for each user [88],
and each agent can be configured accordingly. The OISA model is general enough to
accommodate different values. This simplifying assumption of identical costs and benefits
does not detract from the validity of the results to be presented, but rather it strengthens
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them, because all performances can only be improved by adjusting the costs, benefits, and
privacy loss based on the personal preferences of each user. Once we consider each user’s
personal preferences, we will be able to predict the cost and benefit values each action
carries for a specific agent, meaning we will be able to improve the results achieved so far.
Throughout the game, the appropriate adjustments to the users’ total accumulated points
are made (adding the benefits earned and subtracting the costs and privacy losses). For
this setting, we set Ri to be an aggregation of ci, pli, and bi and Pothers to be a given set of
acceptable probabilities measured on Facebook. The goal of the player is to accumulate as
many points as possible during the game.

4.3. Experimental Design

To measure the effectiveness of OISA, we conducted a set of experiments in which each
includes a group of humans and an AI-based agent. The human participants were unaware
of the fact that one of the participants is an AI-based agent, so this had no implications
for their behavior throughout the experiments. Each user, human or not, is interested in
maximizing its own utility from the interaction. The tangible values of all costs, benefits,
and privacy losses (measured in game points) were fully relayed to the participants both in
the instructions and in real time (by presenting the value on the screen). In each experiment,
several participants were asked to log in to the Facebook simulator in the same time slot.
Once logged in, the participants were: (a) informed about the experiment and asked to
provide their consent; (b) asked to go through a short training, which also included a
short quiz to ensure that they fully understood the game; (c) take part in the interactive
information-sharing Facebook simulation; (d) asked to fill in a demographic survey, as well
as answer questions regarding satisfaction. Throughout the experiment, all players’ actions
were logged.

The participants were recruited through the crowdsourcing platform Amazon Mechan-
ical Turk (MTurk) and among engineering students in their final year of studies. MTurk
has proven to be a well-established method for data collection in tasks that require human
intelligence (known as “human intelligence tasks” or HIT) [89]. To prevent a carryover
effect, a “between-subjects” design was used, assigning each participant to one experiment
only. The compensation included a payment of $4.50 for carrying out the HIT on MTurk.
Participation was anonymous, and the participants were required to be at least 18 years old
and have some experience with Facebook. The research was approved by the institutional
ethics committee.

Both the Facebook simulator and the AI agent were programmed in Python. We
developed the server side by using the Django web framework, the database by using
PostgreSQL, the HTTP server by using Apache, and the user interface by using Bootstrap
plus CSS and JS. Google Cloud was used to host the virtual machine on which the server
side was implemented. We applied two types of non-human agents. The first type, a
“monkey agent”, is an arbitrary agent that uses a uniform distribution to choose an operation
randomly out of the entire decision space, i.e., p(oi ) = p

(
oj
)
∀ oi, oj ∈ O. The second

type, an “AI agent”, is a smart agent that implements one of the algorithms described
in Section 3.4. The threshold for the HC agent was Th = ∞, and the MCTS agent was
implemented with depth = 15 and repetition = 100.

We conducted 45 successful experiments with a total of 157 valid participants; each
included between three and five human participants and one non-human agent. Each
experiment lasted approximately 40 min. Of all the participants, 53% were females and
47% were males; 46% were 18–25 years old and 47% were 26–30 years old; 27% had a
bachelor’s degree, 67% had a high school diploma or higher, and 6% had no diploma at
all. Most participants (63%) were employees, 13% were self-employed, and 34% were
unemployed; 76% of the participants reported that they use Facebook at least once a day,
while the rest used it less frequently; 34% reported that they were “very” concerned about
privacy and security, 32% were “somewhat” concerned, and 34% were “a little” or “not
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at all” concerned. However, only 2% of the participants responded that Facebook is a
safe environment.

4.4. Results

For convenience, the utility in all experiments was linearly normalized to values
between 0 and 100. The performances of all participants (humans, monkey agent, SA, HC,
and MCTS) are depicted in Figure 3. Overall, the utility score of the human participants
(µ = 44.47, σ = 16.02) was significantly higher than that of the monkey agent
(µ = 23.12, σ = 9.04); t(6) = 5.4, p < 0.01. This finding is important because it demon-
strates that the human participants indeed made efforts to maximize their utility. Despite
these apparent efforts, the utility of all AI agents for SA (µ = 78.13, σ = 11.43), HC
(µ = 75.72, σ = 14.61), and MCTS (100 replications only) with (µ = 77.59, σ = 10.77)
was almost twice as high as that of the human participants, with t(10) = −8.4, p < 0.01,
t(10) = −6.5, p < 0.01, and t(9) = −8.2, p < 0.01, respectively (applying Welch’s
t-test). These results indicate that AI has a significantly better ability to manage cost–benefit
trade-offs in this environment.
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Plotting the differences in performance between the human participants and the AI
agent over the number of rounds through the simulation, as depicted in Figure 4, reveals
that these differences are not uniform over rounds, including instances (e.g., round 14) in
which the human participants performs better than the AI agent. These fluctuations reflect
the strategic approach taken by the AI agent, which sometimes prefers to sacrifice utility so
as to increase it more significantly in future rounds.

To evaluate the effect of the presence of different AI agents in the simulation, i.e., the
extent to which humans in the system are influenced by different “opponent” strategies,
the average human performances were calculated for each group of experiments using
the same type of agent. Figure 5. depicts the findings of this evaluation. The rhombuses
indicate the average human performances (not normalized) for each group, while the
whiskers indicate the standard deviation. The ANOVA analysis shows that the type of
AI agent has a significant effect on the humans’ performance (F(3, 153) = 4.27, p < 0.01).
These findings are quite surprising, since as mentioned above the human participants
were unaware of the fact that one of the participants was an AI-based agent. One possible
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explanation for the differences in the utilities gained may be the reciprocal nature of the
interactions in social networks.
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The different algorithms yield different levels of utility, while a deeper investigation
showed that the algorithm can be dynamically selected throughout the process to fine-tune
the optimization. An ANOVA analysis showed significant correlations between the utility
and the numbers of likes and friendship offers. We drew a Bayesian decision tree based on
these factors and distilled a decision layout, shown in Table 1, to dynamically select the
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algorithm. The numbers of likes and friendship offers were classified according to their
quantiles and are represented as low, med, or high, respectively, for Q1, Q2, and Q3. “Not
applicable” (N/A) indicates a combination that did not appear in the experimental study.
This refinement, however, should be investigated empirically in further research.

Table 1. Algorithm selection layout.

Friend-Ship
Likes

Low Med High

Low SA SA N/A
Med HC HC MCTS
High HC MCTS SA

5. Discussion

In this study, we introduced OISA, a methodology to improve decision-making when
sharing information. OISA addresses the inherent trade-off between the benefits and
the costs in information-sharing by (1) formally representing all realistic factors of the
information-sharing process, (2) modeling the problem as a game using a game theory
concept, and (3) applying relevant custom heuristic search algorithms. Our empirical study
(n = 157) showed that OISA AI agents perform significantly better than human agents,
meaning that AI can be harnessed to handle this delicate task.

To enable OISA to act as an assistant, the values of the benefits and the costs of privacy
must be quantified. The sensitivity level, which directly derived the privacy concern, may
vary from one data item to another [90]. Naturally, these values are approximated and
are achievable [91]. Moreover, the OISA approach is based on calculus theory (pure risk–
benefit analysis), even though the psychological idea of bounded rationality [92] contends
that people do not necessarily make decisions rationally, e.g., as described by prospect
theory [24]. Rational decisions line up with the calculus theory; however, in reality in many
cases, people deviate from rationality [93]. In this paper, we assumed that users deviated
from optimality not because of an underlying desire, but because of limitations such as
those discussed in the introduction.

The OISA strategy relies on real-time analysis. Based on the results of this research,
the representation of information-sharing environments as a formal mathematical model
can also be considered as an offline strategy. In this approach, we propose training the
machine offline and producing a decision layout to be used online. This strategy, which
requires further research, might reduce the heuristic nature of OISA. In addition, the OISA
AI agent was tested as competing with the human user. However, its actual purpose is to
assist the user. Thus, another study is required to test the user acceptance of OISA agents
as a mechanism that makes recommendations.

The proposed model relies on actions taken by the user to balance their trade-off only.
However, a user may also consider other users’ interests, for example based on agreement
technologies [94,95] or collaborative strategies [96]. This approach may be included in
further research to extend the OISA model.
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