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Abstract

:

State-of-the-art Earthquake Early Warning systems rely on a network of sensors connected to a fusion center in a client–server paradigm. The fusion center runs different algorithms on the whole data set to detect earthquakes. Instead, we propose moving computation to the edge, with detector nodes that probe the environment and process information from nearby probes to detect earthquakes locally. Our approach tolerates multiple node faults and partial network disruption and keeps all data locally, enhancing privacy. This paper describes our proposal’s rationale and explains its architecture. We then present an implementation that uses Raspberry, NodeMCU, and the Crowdquake machine learning model.
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1. Introduction


Many countries perform earthquake detection through a national network composed of hundreds of high-precision seismic stations. Each seismometer in a station has high sensitivity and can perceive low magnitude or very distant earthquakes (sometimes from other countries). By interpolating signals from three or more seismic stations, it is possible to localize the epicenter and compute the magnitude. These seismic networks are costly, and building them might be a decades-long process. Some countries use such networks to provide an Earthquake Early Warning (EEW) system, such as the Japanese one by the Japan Meteorological Agency JMA [1].



An alternative that has been gaining traction in the last decade is the crowdsensing EEW network, based on the availability of low-cost Micro Electro-Mechanical Systems (MEMS) sensors together with the widespread Internet connection. Volunteers can participate in crowdsensing using their smartphone or an Internet of Things (IoT) sensor as a seismometer. Crowdsensing EEW tackles the problem of MEMS’s low precision by trading quality with quantity. By leveraging the lower cost of intelligent devices and distributing such costs among participants, these systems have a large user base and thus many seismometers, i.e., thousands or more. This approach has proven to be successful, for example, in [2], at least to estimate the epicentral area and an approximated intensity.



Existing crowdsensing EEW networks adopt a centralized processing approach: seismometers send the collected data to a fusion center that processes it to understand whether the report is a quake signal or not. In some cases, the sensors send the MEMS raw signal to the fusion center (dumb approach). Other times, the edge sensors perform partial calculations (limited due to resource constraints) and send preprocessed data. The fusion center performs the detection work, adopting a post-processing filtering that involves signals from many local seismometers to exclude false positive or false negative earthquake detections.



As explained in the next section, this architecture has some drawbacks that motivate our work.



This work proposes a peer-to-peer distributed EEW architecture that is radically different from existing architectures. It is based on edge computing, where each node in a mesh network can sense the environment and detect a local earthquake without relying on a fusion center or a leader node. It can share this information with its neighbors, propagating the detection. This system keeps all data locally and can tolerate multiple node faults and partial network disruption.



Motivation


Ideally, an EEW system should be fault-tolerant, which means that if one or a few of its components fail, the overall system can continue to work seamlessly. In the absence of fault tolerance, the High Availability property (HA) might be helpful: HA systems tolerate a stop or downtimes between the fault and its recovery. However, if a fault occurs during an earthquake, the EEW system might be unavailable at a critical moment.



EEW systems currently built or proposed in the literature do not have a fault-tolerant architecture, as the fusion center constitutes a Single-Point-of-Failure (SPoF) that, if unavailable, prevents the entire system from working. We should also consider the connections to the fusion center, such as international internet links with sensors, as a system component that can fail, causing the isolation of the fusion center and thus the unavailability of the EEW system.



The first motivation behind our proposal is to solve the availability problem. As we describe in Section 4.6, our system can tolerate multiple node faults and some partial network disruption.



The mainstream EEW architecture also has a privacy-related issue. It is possible to process raw accelerometric data to extract information other than seismic data. For example, it is possible to detect some spoken words using the accelerometer in place of the microphone [3]. As another example, we experienced in our work that we could correlate the noise level of seismometers in our homes with the presence of people at home. So, sending raw seismic signals to a fusion center might expose them to unwanted processing that can violate the users’ privacy: An attacker could discover information about a family’s life habits or even extract words of private conversations.



Our proposed architecture enhances the privacy of the detection, keeping the sensitive data locally collected in private places by a crowdsensing EEW system.





2. Related Work


Decentralized approaches to earthquake detection were studied for years. Tsitsiklis [4] proposed a decentralized detection architecture where a central system (named “fusion center”) collects “messages” from sensors. In EEW, a “message” can be a signal sample that the sensor claims to be a quake signal. Faulkner et al. [5] proposed a new version of this architecture for massive noisy sensors networks, and Cochran et al. [6] presented an implementation using accelerometers connected to laptops and workstations, named QCN (Quake-catcher network). Similarly, MyShake, proposed by Kong et al. [7], is a machine-learning-based EEW system that uses smartphones. The Earthquake Network (Finazzi et al. [8]) is a different research project that uses smartphones and spatial correlation to detect quakes. SeismoCloud ([9]) is another earthquake early warning system built using smartphones and Internet-of-Things devices. All these systems differ from our proposal as they rely on a central system to collect all reports and make the final decision.



Another approach is the one described by CrowdQuake, from Huang et al. [10]. CrowdQuake runs a Convolutional-Recurrent Neural Network on the fusion center, while smartphones at the edge collect different-length samples and stream them to the fusion center. While relying on the fusion center, this system differs from the previous ones because it can perform both the decision and the detection in one step since the accuracy of the Convolutional Recursive Neural Network (CRNN) is very high. It also shows some architectural limits that we will describe in Section 3.



CrowdQuake+ [11] is an extension of the CrowdQuake network: While the original network leverages only on smartphones, CrowdQuake+ is able to process data from Internet-of-Things sensors. However, the overall architecture is the same, as well as the limitations discussed in Section 3.



Fischer et al., in [12], described SOSEWIN, a self-organizing Earthquake Early Warning system using a wireless mesh network. They use a hybrid approach, where nodes act as local fusion centers. Instead, in our proposal, each node is independent of others.



Lee et al. [13] presented a custom-made board for EEW. The board contains common chipsets (like ESP8266) and custom software with an Artificial Neural Network for detection. They propose to send the alert to nearby smart devices (TV, smartphones) via low range transmissions (Bluetooth Low Energy) or Home Automation solutions for early warning alerts. Unlike other solutions, including ours, they do not use a network to send the alert to nearby houses; their alert is “personal”.



QuakeSense, presented by Boccadoro et al. in [14], is an EEW system based on LoRa, a Low-Power wide area network (LPWAN) technology. In their proposal, sensors send information (like vibrations) using LoRa to local base stations “LoRa gateways”, which relays these data to the fusion center of QuakeSense. LoRa, unlike Wi-Fi, allows QuakeSense to be deployed in remote locations with no access to the power grid: LPWAN transceiver’s power consumption is low, allowing deployment with batteries and solar power. However, it leverages the same centralized architecture as others do.




3. State-of-the-Art


We present five different systems of crowdsensing EEW, which cover all the scenarios we can find in the literature. Other networks are similar to those presented here, so we do not cover them.



3.1. Quake-Catcher Network


The QCN, Quake-Catcher Network, is an earthquake early warning system built by volunteers to “fill the gap between the earthquake and traditional networks” [6]. It has been built over BOINC [15]. QCN uses MEMS sensors found in some laptop brands (usually in the anti-shock subsystem) and some USB accelerometer brands. According to [6], the sensitivity of these accelerometers is low, and the network is well suited for an earthquake of magnitude greater than 5.0.



QCN uses a Z-Score to detect potential quakes: when z is above 3, the sensor sends all relevant data to the fusion center, such as the max amplitude or timestamp. Then, the center will again use a Z-Score against the number of reports in a given area and time slice; a value of   z > 6   will trigger an EEW.




3.2. MyShake


MyShake [7] is an earthquake early warning system developed by UC Berkeley Seismology Lab, designed to collect and process data on a smartphone and send possible quakes to a fusion center for confirmation. Volunteers can download a mobile application on their smartphone to join the network.



The MyShake mobile app reads the signal from the smartphone’s internal MEMS accelerometer. Then, it uses an artificial neural network to detect potential quakes and sends quake candidates to the fusion center, where a clustering algorithm reduces false positives.




3.3. CrowdQuake


CrowdQuake, by Huang et al. [10], has a layered approach for earthquake detection. The lower layer, composed of dedicated smartphones or custom Internet-of-Things devices, senses the seismic data and streams it to an intermediate layer of “gateways”. Each gateway is a GPU-equipped server that processes seismic samples from each sensor in a CRNN. Then, it sends data to a third and fourth layer for notification, monitoring, and visualization.



Differently from others, Crowdquake requires a stable and low-latency network connection between sensors and gateways because samples are sent for detection from the accelerometers to the gateways, which act as fusion centers. This requirement is a substantial limitation for the deployment, especially in remote sites.




3.4. SOSEWIN


SOSEWIN [12] is a decentralized wireless mesh network of sensors built using standard PC boards and external sensors. There is a hierarchy in the network between nodes, built using a leader election algorithm; the two most important kinds of nodes are the sensing node and the leading node. A leading node receives information from five sensing nodes and manages alerts from them and neighbors leading nodes. A sensing node filters the accelerometer sensor information with an Infinite impulse response passband filter and some thresholds, using an internal state machine to refine the detection.



The leading node acts as a fusion center of a cluster of sensing nodes. Using leader election for leading nodes, SOSEWIN obtains High Availability.




3.5. SeismoCloud


In SeismoCloud [9], smartphone apps and Internet-of-Things devices make the sensor network and connect to a fusion center. Both types of sensor nodes run an algorithm based on dynamic Z-Score for candidate quakes detection and send candidate quakes to the central server, where a clustering algorithm filters out false positives.





4. Proposed Architecture


We propose a new architecture for EEW systems based on crowdsensing and the complete detection of earthquakes at the edge. This architecture, called SeismoCloud 2.0, is an evolution of the SeismoCloud architecture [9]. The goal is to achieve fault tolerance using low-cost commodity hardware while enhancing the privacy and scalability of the system. The idea is to use a fully decentralized approach to detect earthquakes, creating a partial-mesh network (with no single point of failure) that can survive multiple network and hardware faults.



We will start describing each component of the system. Then, we will draw a comprehensive picture of the architecture.



4.1. Probes, Detectors, and Local Authorities


There are two roles for edge devices in our network: the probe and the detector. A probe is a sensor capable of picking up the acceleration signal and streaming it to the detector. The main role of the detector, on the other hand, is to run the detection algorithm over the data stream from probes and match if there are any signs of an earthquake wave. One detector can receive data from multiple probes. As the hardware for a probe is very cheap, we expect that some detectors will have multiple probes attached. Having multiple probes can maximize the chance of detection because probes may fail or miss some vibrations (if they are improperly installed).



In addition, the two roles can be assigned to the same detector device if it includes an accelerometer and can both read the accelerometer signal and run the detection algorithm simultaneously. For example, smartphones and some System-on-Chip boards have enough computing power to support such operations.



The detector is also equipped with a local alert device (speakers, blinking lights) to alert its owner locally. Alerts are triggered both by local earthquakes and relevant remote ones.



The Local Authority is a central system that supports the network with non-critical services: It helps nodes discover other nodes and receives EEWs from the network to help local safety authorities prepare rescue operations. The Local Authority is stateless due to the nature of its services. It is possible to have more than one Local Authority instance to obtain high availability or load balancing. They should share available information, although they do not require synchronization but can implement eventual consistency. Such a connection can be implemented, for example, using a gossiping protocol between Local Authorities.




4.2. Network Architecture


The network architecture that we propose is a partial mesh (Figure 1). While a full mesh would be desirable for information exchange between detectors, it is entirely unfeasible due to the resource constraints of Internet-of-Things devices and commodity network connections.



Each node of the partial mesh is a detector. It is connected to neighbor detectors using direct peer-to-peer links. Detectors exchange EEW messages using a gossiping protocol: Each message is forwarded to neighbor detectors until it reaches a certain distance from the reported quake location. Moreover, detectors report all quakes to the cloud service of the local authority to relay this information to other services (e.g., rescue teams, TV broadcasts).



Probes connect to their nearest detector directly. They are not connected among them and do not participate in any message exchange between detectors.




4.3. Bootstrap Sequence


When a detector powers up for the first time (Figure 2), it starts a discovery phase of its neighbors using a registration and discovery service of the local authority. The detector advertises its presence by using that service, providing its location, and in turn, it receives the list of neighbors and details on how to connect to them.



After completing this exchange, the detector will connect to the indicated neighbors and keep those connections alive, ready to relay information about early warnings. Periodically, the detector repeats the registration and receives a new list of neighbors.



Differently, probes query the local authority for the detector they should connect to. They do not advertise any information to the local authority (see Figure 3).




4.4. Detection Pipeline


Figure 4 shows the detection pipeline. Probes stream the signal using their network connection to the detector. The detector has one buffer per probe, where it collects and stores the accelerometer signal for some time. A sliding signal window is extracted and sent to the detection algorithm at given intervals.



Suppose the detection algorithm detects a quake from any of its probes. In that case, the detector relays the earthquake alert, together with its location and the signal data (Table 1) to the local authority and neighbors.




4.5. Scalability


The detectors mesh network can scale to an infinite number of nodes. Each detector of the partial mesh is connected only to a few nearest neighbors. In addition, each message will reach a subset of the whole network as it is geographically limited as described in Section 4.2. There is no need to scale up a central server to handle sensors traffic for detection purposes.



The Local Authority system should be scaled according to the number of sensors. Unlike the fusion center of the server–client model, a local authority instance is stateless and not involved in the detection pipeline or EEW message dissemination. Scaling it is more straightforward than scaling a fusion center.




4.6. Fault Tolerance


The network is fully fault-tolerant. A fault of one or few sensors will not stop the gossiping. An EEW message can be prevented from reaching the entire network only if multiple faults occur so that the network temporarily splits into two or more partitions. However, the more sensors in the network, the less the chance of having such a split. Even if this split occurs, it will not affect messages from other sensors living inside other partitions. If sensors in the different partitions detect the quake, the EEW can still be sent to the whole network (albeit with different origins).



A fault on a specific sensor itself will not stop the detection: neighbors can still detect the earthquake, and they will still be able to pass information to others.



In case of faults in the Local Authority, which causes the unreachability of its service, new nodes will not be able to connect to the network. However, already connected nodes will keep their current connections. The local authority will not receive an EEW during the downtime, but the EEW message gossiping will not stop, and earthquake detection will remain active.




4.7. Privacy


The accelerometer signal is fully processed locally on each detector. The local authority only receives signals classified as earthquakes by the detection algorithm. An attacker who wants to monitor sensors (for example, to recognize spoken words or detect the presence of people in a building) will need to attack specific sensors actively.




4.8. Practical Implementation Aspects


An essential aspect of crowdsensing EEW is an excellent practical implementation. Complex user interfaces and systems that are difficult to understand can create obstacles to widespread adoption, which is fundamental for these systems. Users of the proposed EEW system should be able to use it even without computer science or domain skills. We suggest distributing our system by leveraging mobile apps (for smartphones) and IoT devices to overcome these difficulties.



Mobile apps can introduce users to the system (and, under the hood, they act as a sensor themselves, when and where possible). The app’s User Interface will guide users to configure a new sensor and easily access the sensor’s data. The app’s design must exploit a User-Centered Design (UCD) approach to avoid mistakes that jeopardize the entire project.



Another vital aspect is the simplicity of installing and managing IoT devices. Users with no background in electronics or computer science should be able to install and run one or more detectors or probes. We suggest addressing this problem by leveraging companies that build custom boards on-demand: Users will receive a device that is no different from other smart boxes at home (such as smart TVs, etc.). Once this “box” is connected to the power supply, the sensor will receive its location from the companion app on the user’s smartphone, requiring no further configuration on the user’s part.



We are in the process of designing and testing these implementation aspects: Results will be presented in a forthcoming paper.





5. Prototype Implementation


We present the following implementation as an example of the architecture described above. This implementation is currently running in our test environment.



5.1. Sensors Hardware


The detector device is a Raspberry Pi, made by the Raspberry Pi Foundation. It is a System-on-Chip board with various ports (Ethernet, USB, HDMI, I   2  C, GPIO), Wi-Fi, and Bluetooth wireless chipsets. For the current prototype, we use the Ethernet port to provide an Internet connection to the detector, the I   2  C bus to connect the accelerometer (to implement a Detector/Probe device), and a Wi-Fi card to create a dedicated Wi-Fi network for external probes.



We tested different device versions: 2B, 3B, 3B+, and 4 (Table 2).



The accelerometer is the MPU6050, widely used in low-cost IoT applications involving acceleration measurements. It has been demonstrated by Crisnapati et al. [16] and Lee et al. [13] that this accelerometer can be used in EEW applications. The sensitivity of such accelerometer allows detecting only major earthquakes, and we are experimenting with higher-precision sensors, such as PhidgetSpatial Precision 0/0/3 High Resolution. The experiment’s results, however, are out of scope for the current paper. The MPU6050 provides a 100Hz feed via I   2  C to the NodeMCU board (Table 3) or the Raspberry Pi board. By connecting the MPU6050 directly to the Raspberry Pi, the probe and detector roles merge.



Probe sensors use an MCU board and an accelerometer, packed to run on 5v from a power supply or battery. They transmit values using the Wi-Fi connection to the detector. The MCU board is the “NodeMCU DEVKIT” that contains a ESP8266 SoC [17], based on ESP-12 hardware. It has multiple GPIO ports and an integrated Wi-Fi network connection.




5.2. Software


The Detector runs Raspberry PI OS (previously known as Raspbian), a Debian-based GNU/Linux distribution. We use “Podman” to manage the lifecycle of our software, an Open Container Initiative (OCI) image runner alternative to “Docker” that we chose as it is daemon-less. The absence of a central process makes Podman more robust and less resource-hungry than Docker. Podman runs a container with the code we are presenting and the Crowdquake CRNN [10] detection algorithm. We built the main container executable using Go (and TensorFlow C bindings). The use of containers simplifies the deployment of new algorithms for testing.



The Probe runs a customized firmware that we built using the Expressif SDK for Arduino. The firmware reads data from the accelerometer sensor and sends the stream via WebSocket to the detector. The connection uses WebSocket to be compatible with HTTP middlewares, such as network proxies and firewalls. The firmware checks for updates and configuration at probe boot, querying the local authority. If it fails, it still connects to the detector. We chose this Probe software architecture after comparison with an Message Queue Telemetry Transport (MQTT) implementation. In our tests, we found MQTT too complex for this scenario: while MQTT requires a broker, different publisher and subscriber roles, and topics, in our case, we only had a publisher (the Probe) and a subscriber (the Detector) with no need for topics. Thus, the MQTT implementation was overly complex for our purpose, with no advantages.



We developed the Local Authority software using the Go language. It exposes Application Program Interfaces for sensor discovery and debugging web pages. This implementation is not fully scalable yet, but we successfully tested it with more than 1000 detectors.




5.3. Detection Pipeline


The main container exposes a WebSocket endpoint for probes, and it reads the accelerometer connected to the GPIO of the Raspberry Pi. The code spawns multiple processes (based on the number of cores/CPUs of the Raspberry Pi) so that reading a local sensor while receiving a network stream does not interfere with each other.



The probe data stream is buffered in memory by the main container to have a 2-second signal window (200 values), with a 1-second sliding window, as shown in Figure 5. The signal window is then sent to the detection algorithm, the Crowdquake CRNN (running on the CPU). The structure of the Crowdquake CRNN is briefly reported in Figure 6 and presented by Huang et al. in [10].



The detection CRNN is run every second (as it receives a new set of samples each second), and it looks for quakes in the last 2 s in the probe signal buffer. Each probe has its independent buffer, and CRNN is run in parallel on each buffer.





6. Results


We ran our prototype in three different scenarios: First, we tested the pipeline using a single software-only detector, feeding it with dummy accelerations to verify the system’s soundness. Then, we built an actual probe to test the detection speed in real hardware. Finally, we tested a network of sensors to measure the elapsed time between the first detection and the EEWs.



The system’s soundness was tested using the Crowdquake dataset [10]. The dataset comprises 174 tracks from natural earthquakes and 79 tracks from “noise”. Each earthquake track is made of 30,000 accelerations triples (X, Y, and Z), sampled at 10Hz. Noise tracks are recorded using smartphones in day-to-day activities [10].



As expected, feeding the Crowdquake dataset into the pipeline triggers the Crowdquake-based detector in the same way as using their neural network directly (e.g., for evaluation purposes). This result was expected because Crowdquake CRNN runs unmodified in our proposal (so there was no reason to expect different performances).



The detection pipeline is capable of analyzing and outputting the result in a few milliseconds, as shown in Table 4. The detection latency for Raspberry Pi 4 is lower (Figure 7 and Figure 8) thanks to the faster processor and different onboard bus wiring. This lower speed for detection opens up the possibility for incrementing the detection frequency, which is currently 1 Hz, to higher values, depending on the platform and the number of probes for each detector. Further analysis is needed to assess the benefits and limits of having sub-second detections.



We also tested the impact of having multiple probes feeding data concurrently in a detector. We loaded the detection algorithm in memory and streamed the same dataset we used in previous tests. As shown in Figure 7, the impact of having multiple parallel executions is minimal in the latest Raspberry Pi version, while it can be significant in previous versions.



The Go garbage collector is causing a spike that nearly doubles the detection latency when it executes concurrently to the detection algorithm (primarily visible in Raspberry Pi 3B/3B+, Figure 8). It can be further optimized by running the garbage collector manually, rewriting the buffer code (where most of the allocation takes place), or switching to a language with no automatic memory management (e.g., Rust, C).



The detector code loads the network in memory, and it launches an “empty” run to pre-fill the system cache so that the first latency test is not affected by the cache miss, and it is comparable to all subsequent tests (Figure 8).



Finally, we tested a network of detectors to measure the time between the first detection and the time when the message was received in the network. We built the test network using 20 instances of the node code running in a single machine, each instance connected to 10 random neighbors (partial mesh). Figure 9 represents the network. The test machine is a Dell XPS 15, 6-Core i7 @ 2.20GHz. Delays of 5 to 205 milliseconds were randomly injected into the packet transmissions to emulate the network latency. We performed six tests using the same topology but different points of origin for EEWs.



As shown in Figure 10, in all but two test, the EEW reached every node of the network in less than 450 milliseconds (including simulated network delay).



Limits


In this work, we did not address the security of the network. This area has multiple aspects, mainly related to the trust in early warnings from neighbors’ sensors. Today, any byzantine probe in the network can cause a false alarm by sending an alert with a signal that resembles an earthquake wave (downloadable from public datasets). A byzantine detector can even send an earthquake early warning. We originally designed the protocol message so that a signal could be sent together with the EEW as a primary security measure: We planned to check that the signal attached to the EEW was triggering an EEW by replicating the detection on each detector. However, we did not clearly define or implement this part at this time, so we omitted this from the proposal, and it constitutes future work.



Another limit is that we did not address the problem of setting up a secure transmission between peers. In the prototype, we implemented a plain-text protocol in which attackers can eavesdrop on the message exchange (loss of confidentiality) and even inject or modify messages. However, this problem can be solved trivially by using widely studied and deployed protocols such as TLS [19].



It is worth underlining that the accuracy of the detection algorithm plays a central role in the trust of this system. Users will trust an EEW system with this architecture only if they receive very low false positives and false negatives EEWs. We are working on this by allowing different detection algorithms to plug in to compare their accuracy.



We did not consider epicenter location estimation while designing this proposal. In a dense network, the location of the sensor that detects the earthquake before other sensors can be considered an approximation of the epicenter. However, the approximation error depends on how close the sensor is to the real epicenter, the sensor sensitivity, its physical installation, and several different geophysical characteristics, such as the terrain composition (which influences quake waves). Further analysis should be conducted on minimizing the estimation error.





7. Discussion


We described a crowdsensing EEW architecture that moves the computation to the edge, with detector nodes that probe the environment and process information from nearby probes to detect earthquakes locally. Our approach tolerates multiple node faults and partial network disruption and keeps all data locally, enhancing privacy. We described our proposal’s rationale, explained its architecture, and presented an implementation using Raspberry, NodeMCU, and the Crowdquake machine learning model.



On-going research on this topic focuses on the security of this architecture and its implementations. It is essential to find a viable and secure solution to the problem of trust in peer-to-peer EEW message exchange to use this architecture in crowdsensing networks. At least the system should resist some byzantine nodes.



We are developing an app that will be integrated into this architecture both as a sensor and as a “companion app” for IoT sensors. The app is being built using a user-centered design as we aim to produce an interface that is easy to use. The app will be able to provide the user with all data from its sensors and monitor them. Thanks to the app, we will be able to test the system from the point of view of a typical user, starting from initial configuration, to maintenance, to data access and retrieval.



Another focus of our current research is the implementation of the architecture that we presented over low-power, long-range radio protocols (LPWAN), such as LoRa. These wireless protocols are very effective in long-range transmissions and power efficiency compared to Wi-Fi networks. However, they usually lack coordination, so collision-avoidance algorithms such as water-filling cannot be used (unlike in LoRaWAN, where water-filling can be implemented in BTS [20] or in the control plane [21]), and we will need to overcome this limitation. The detection network can be deployed seamlessly from big cities to remote sites using LPWAN for IoT [14], LTE for smartphones, and FWA/FTTx for others. In the big cities, the Internet is ubiquitous, while in remote sites, LPWAN can be a low-cost, low-latency alternative to satellite links.
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Abbreviations


The following abbreviations are used in this manuscript:



	BTS
	Base Transceiver Station



	CRNN
	Convolutional-Recurrent Neural Network



	EEW
	Earthquake Early Warning



	FWA
	Fixed-Wireless Access



	GPIO
	General Purposes Input/Output



	GPU
	Graphics Processing Unit



	HA
	High availability



	IoT
	Internet-of-Things



	JMA
	Japan Meteorological Agency



	LPWAN
	Low Power Wide Area Network



	MEMS
	Micro-Electro-Mechanical Systems



	MQTT
	Message Queuing Telemetry Transport



	SDK
	Software-Development Kit



	SPoF
	Single point of failure



	TLS
	Transport Layer Security



	UCD
	User-Centered Design









References


	



Hoshiba, M.; Kamigaichi, O.; Saito, M.; Tsukada, S.; Hamada, N. Earthquake early warning starts nationwide in Japan. EOS Trans. Am. Geophys. Union 2008, 89, 73–74. [Google Scholar] [CrossRef]

	



Allen, R.M.; Kong, Q.; Martin-Short, R. The MyShake platform: A global vision for earthquake early warning. Pure Appl. Geophys. 2020, 177, 1699–1712. [Google Scholar] [CrossRef]

	



Zhang, L.; Pathak, P.H.; Wu, M.; Zhao, Y.; Mohapatra, P. Accelword: Energy efficient hotword detection through accelerometer. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 18–22 May 2015; pp. 301–315. [Google Scholar]

	



Tsitsiklis, J. Decentralized Detection-Advances in Syatis—Tical Signal Processing; JAI: Greenwich, CT, USA, 1990. [Google Scholar]

	



Faulkner, M.; Liu, A.H.; Krause, A. A fresh perspective: Learning to sparsify for detection in massive noisy sensor networks. In Proceedings of the 12th International Conference on Information Processing in Sensor Networks, Philadelphia, PA, USA, 8–11 April 2013; pp. 7–18. [Google Scholar]

	



Cochran, E.S.; Lawrence, J.F.; Christensen, C.; Jakka, R.S. The quake-catcher network: Citizen science expanding seismic horizons. Seismol. Res. Lett. 2009, 80, 26–30. [Google Scholar] [CrossRef]

	



Kong, Q.; Allen, R.M.; Schreier, L.; Kwon, Y.W. MyShake: A smartphone seismic network for earthquake early warning and beyond. Sci. Adv. 2016, 2, e1501055. [Google Scholar] [CrossRef] [PubMed]

	



Finazzi, F. The earthquake network project: Toward a crowdsourced smartphone-based earthquake early warning system. Bull. Seismol. Soc. Am. 2016, 106, 1088–1099. [Google Scholar] [CrossRef]

	



Panizzi, E. The seismocloud app: Your smartphone as a seismometer. In Proceedings of the International Working Conference on Advanced Visual Interfaces, Bari, Italy, 7–10 June 2016; pp. 336–337. [Google Scholar]

	



Huang, X.; Lee, J.; Kwon, Y.W.; Lee, C.H. CrowdQuake: A networked system of low-cost sensors for earthquake detection via deep learning. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020; pp. 3261–3271. [Google Scholar]

	



Wu, A.; Lee, J.; Khan, I.; Kwon, Y.W. CrowdQuake+: Data-driven Earthquake Early Warning via IoT and Deep Learning. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 2068–2075. [Google Scholar]

	



Fischer, J.; Kühnlenz, F.; Ahrens, K.; Eveslage, I. Model-based Development of Self-organizing Earthquake Early Warning Systems. Simul. Notes Eur. 2009, 19, 9–20. [Google Scholar] [CrossRef]

	



Lee, J.; Khan, I.; Choi, S.; Kwon, Y.W. A smart iot device for detecting and responding to earthquakes. Electronics 2019, 8, 1546. [Google Scholar] [CrossRef]

	



Boccadoro, P.; Montaruli, B.; Grieco, L.A. Quakesense, a LoRa-compliant earthquake monitoring open system. In Proceedings of the 2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Cosenza, Italy, 7–9 October 2019; pp. 1–8. [Google Scholar]

	



Anderson, D.P. Boinc: A system for public-resource computing and storage. In Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing, Pittsburgh, PA, USA, 8 November 2004; pp. 4–10. [Google Scholar]

	



Crisnapati, P.N.; Wulaning, P.D.; Hendrawan, I.N.R.; Bandanagara, A.A.K.B. Earthquake Damage Intensity Scaling System based on Raspberry Pi and Arduino Uno. In Proceedings of the 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia, 7–9 August 2018; pp. 1–4. [Google Scholar] [CrossRef]

	



Kumar, A.; Sharma, A. Internet of Life (IOL). In Proceedings of the International Conference of Advance Research and Innovation (ICARI-2015), Istanbul, Turkey, 27–31 July 2015. [Google Scholar]

	



OpenStreetMap Contributors. Planet Dump. 2017. Available online: https://planet.osm.org and https://www.openstreetmap.org (accessed on 2 February 2022).

	



Dierks, T.; Allen, C. The TLS Protocol Version 1.0; RFC 2246; IETF: Fremont, CA, USA, 1999. [Google Scholar]

	



Cuomo, F.; Campo, M.; Caponi, A.; Bianchi, G.; Rossini, G.; Pisani, P. EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; pp. 1–8. [Google Scholar]

	



Cuomo, F.; Campo, M.; Bassetti, E.; Cartella, L.; Sole, F.; Bianchi, G. Adaptive mitigation of the Air-Time pressure in LoRa multi-gateway architectures. In Proceedings of the EuropeanWireless 2018; 24th EuropeanWireless Conference, Catania, Italy, 2–4 May 2018; pp. 1–6. [Google Scholar]








[image: Information 13 00195 g001 550] 





Figure 1. Network architecture example: six detectors (three of which have an embedded probe) and three probes. Detectors are linked to neighbors based on their location. 
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Figure 2. Detector bootstrap sequence diagram. 
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Figure 3. Probe bootstrap sequence diagram. 
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Figure 4. Pipeline diagram. Each probe is attached to a buffer that feeds the detection algorithm’s dedicated instance. Probe #3 is internal, as this detector also has the probe role. 
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Figure 5. Prototype pipeline. The detection algorithm is the Crowdquake CRRN, and the time window is set to 2 s. 
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Figure 6. Crowdquake’s Convolutional Recurrent neural network. 
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Figure 7. Detection latency for the ML model when multiple probes are sending data to a single detector. 
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Figure 8. Detection latency changes in time. The model was tested over 300 samples. Each point represents the latency for a single sample. 
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Figure 9. Detector network used in simulations. Lines between detectors represents connections. Detectors are placed in a random pattern. Tile images by OpenStreetMap [18]. 
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Figure 10. Number of detectors warned since the first detection on the source node. Note that the number of detectors is sampled each 10 ms. The y axis represent the cumulative number of detectors alerted. 
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Table 1. Earthquake Early Warning message content. This message is relayed between detectors.
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	EEW Message Content
	Description





	Timestamp
	Timestamp of the detection



	Origin Location
	Location coordinates of the detector which originated the message



	Signal Data
	Accelerometric samples
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Table 2. Hardware specifications for prototype detectors.
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Raspberry Pi




	

	
2B

	
3B

	
3B+

	
4






	
CPU

	
BCM2836

	
BCM2837

	
BCM2837

	
BCM2711




	

	
4 × Cortex-A7

	
4 × Cortex-A53

	
4 × Cortex-A53

	
4 × Cortex-A72




	

	
900 MHz

	
1.2 GHz

	
1.4 GHz

	
1.5 GHz




	
RAM

	
1 GB

	
1 GB

	
1 GB

	
4 GB




	
Disk

	
64 GB SD

	
64 GB SD

	
64 GB SD

	
64 GB SD




	
Wi-Fi

	
-

	
2.4 GHz

	
2.4/5 GHz

	
2.4/5 GHz




	
Ethernet

	
Fast Ethernet

	
Fast Ethernet

	
Gigabit

	
Gigabit




	
GPIO

	
40 pin

	
40 pin

	
40 pin

	
40 pin
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Table 3. Hardware specifications for prototype probes.
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	NodeMCU





	CPU
	106Micro



	
	L106



	
	160 MHz



	RAM
	128 kBytes



	Disk
	4 MBytes



	Wi-Fi
	2.4 GHz



	Ethernet
	-



	GPIO
	13 pin










[image: Table] 





Table 4. CRNN response speed for 2-s signal (200 values), averages on 300 samples.
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	Raspberry Pi
	Average Time
	Standard Deviation
	90-Percentile





	2B
	27.19 ms
	1.61 ms
	28.73 ms



	3B
	27.78 ms
	5.36 ms
	30.74 ms



	3B+
	22.44 ms
	4.29 ms
	24.59 ms



	4
	7.84 ms
	0.41 ms
	8.37 ms
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