
 

# TITLE 

NUMBER OF 

PATTERNS 

S1 A Classification of Design Patterns to Support Mobile Groupware Systems 3 

S2 A Two-Phase Method of User Interface Adaptation for People with Special Needs 3 

S3 Automated Usability Testing for Mobile Applications 4 

S4 Design patterns for touchscreen-based mobile devices: users above all! 1 

S5 Design Patterns for User Interface for Mobile Applications 14 

S6 From Requirement to Design Patterns for Ubiquitous Computing Applications 2 

S7 HCI Design Patterns for PDA Running Space Structured Applications 4 

S8 Interaction patterns for Windows 8 tablet applications 5 

S9 Method for mobile user interface design patterns creation for iOS platform 15 

S10 

Musical interaction patterns: communicating computer music knowledge in a 

multidisciplinary project 4 

S11 Patterns for Interactive Line Charts on Mobile Devices 4 

S12 Patterns of trust in ubiquitous environments 1 

S13 

RUCID: Rapid Usable Consistent Interaction Design Patterns-Based Mobile Phone 

UI Design Library, Process and Tool 1 

S14 Spatial data and mobile applications - general solutions for interface design 2 

S15 Speech Augmented Multitouch Interaction Patterns 6 

S16 Test Patterns for Android Mobile Applications 2 

S17 Towards User Interface Patterns for ERP Applications on Smartphones 1 

S18 
UI Design Pattern-driven Rapid Prototyping for Agile Development of Mobile 

Applications 108 

S19 Usability-Improving Mobile Application Development Patterns 1 

S20 User Interface Patterns for Multimodal Interaction 12 

S21 Web design patterns for mobile devices 21 

B1 Designing Mobile Interfaces- Steven Hoober, Eric Berkman 76 

B2 
The Essential Guide to Mobile Design Patterns: A Deeper Look At the Hottest Apps 

Today 46 

  

https://www.designwithkiwi.com/
https://www.designwithkiwi.com/
https://www.oreilly.com/library/view/designing-mobile-interfaces/9781449318451/
https://s3.amazonaws.com/uxpin/uxpin_mobile_ui_design_patterns_2014.pdf
https://s3.amazonaws.com/uxpin/uxpin_mobile_ui_design_patterns_2014.pdf


S1 - ARTICLE: A CLASSIFICATION OF DESIGN PATTERNS TO SUPPORT 

MOBILE GROUPWARE SYSTEMS 

PATTERN: #1 

4.4.1 Pattern 1. Communication dimension  
Pattern name: Participation request.  
Problem: What  to  do  for  a  group  member  who  request  to  speak  in  a 
synchronous  communication process  through mobile  groupware interface?  
Usability principle: Match between the system and real world.  

Context: Interaction  is  one of  most  important factors  to  consider  in the 

communication  process.  Group  members  can  intervene  in  a conversation  by 

raising their  hand when  interested in speaking. Such interventions encourage 

participation among members  of a group, a defined characteristic for a group to 

be effective. Campos [5] defines this type of intervention as  a bodily  gesture 

kinesic gesture, interaction regulator− used to regulate interventions in a 

conversation.  

Solution: The  groupware user  interface should  provide group  members  a symbolic  
object  that  allows  them  to  generate  this  kind  of interventions.  The  user  interface  
should  represent  the  users’ language, verbal (oral  and written) and non-verbal 
(symbols  and signs, which are familiar to users). 
Example: Figure  5  shows  the  (raise-hand) button  on  an interface,  which allows 
the group to claim the floor during a conversation. 

 
Gesture: Touch, tap.  
Related patterns: Activity request, mediate the participation. 

PATTERN: #2 

4.4.2 Pattern 2. Coordination dimension  
Pattern name: Activity request.  
Problem: How  to make  a  team member  requests  an activity  through the interface?  
Usability principle: Match between the system and real world.  
Context: In the context of a meeting, activities and tasks are an approach of group  
work, and that  work is focused  on achieving the  group's goal. The activities and 



tasks can be requested by group members in different ways, e.g. several participants 
share a list of  tasks in which they have to work on, and each member takes an 
activity or task in which he/she will work on.   
Solution: The  interface  should  allow  the  group  members to  request  and select 
an activity within the assigned group tasks.  
Example: Figure 6 shows two examples of design patterns that can be used to 
design the interface.  

 
Gesture: Vertical swipe, horizontal swipe, touch, tap.  
Related patterns: Participation request, activity select. 

PATTERN: #3 

4.4.3 Pattern 3. Collaboration dimension  
Pattern name: Complementary collaboration tools.  
Problem: A group member cannot carry out his/her activities, collaborate or 
communicate  with  other  group  members  because  the  interface does not allow 
these actions.   
Usability principle: Match between the system and real world.  

Context: Complementary  tools  are  all  materials  and  technological equipment 

that allows group members to collaborate. These tools serve to reinforce verbal 

communication −stimulation of the left hemisphere of the brain− and nonverbal 

−stimulation of the right hemisphere  of  the  brain−,  therefore  both  

hemispheres  are stimulated. This pattern deals with interactions, collaborations 

and support among group members.  

Solution: The  interface should  provide  group members  the right  tools to allow  
them  to  participate  and  collaborate  synchronously  or asynchronously, that is, it 
should provide the needed resources to achieve the goals of the group.  
Example: Figure 7 shows two examples of design patterns that can be used to 
design the interface.  



 
Gesture: Touch, tap, vertical swipe, horizontal swipe. Related patterns: Participation 
offer, activity delegation, encouraging feedback.  

 

 

  



S2 - ARTICLE: A TWO-PHASE METHOD OF USER INTERFACE ADAPTATION 

FOR PEOPLE WITH SPECIAL NEEDS 

 

PATTERN: #4 

Pattern name  
Interface element audio output  
Problem  
User can’t recognize Interface Element to read text on it  
Context  
Vision Impairment Range > Medium and User’s Device has speakers  
Solution  
Replace Interface Element with Audio Output Interface Element 

PATTERN: #5 

Pattern name  
Interface element audio input 
Problem  
User can’t use Interface Element to input data into it 
Context  
(Vision Impairment Range > Medium or Motorics Impairment Range > Low) and 
User’s Device has microphone 
Solution  
Replace Interface Element with Audio Input Interface Element 

PATTERN: #6 

Pattern name  
Audio output volume increasing 
Problem  
User can’t hear Feedback from application 
Context  
Time of Waiting >30 s and User’s Device has speakers 
Solution  
Repeat Last Command with Current Volume + 20% 

  



S3 - ARTICLE: AUTOMATED USABILITY TESTING FOR MOBILE APPLICATIONS 

 

PATTERN: #7 

Name  
Fitts’s Law  
Problem Specification  
User misses UI-Element (e.g.,  button) several times   
Solution  
Make UI-Element bigger  and/or move to center   
Weighting  
Major usability  problem (3)   
Reference  
(Fitts, 1992)  & (Henze and  Boll, 2011)  
 

PATTERN: #8 

Name  
Silent Misentry  
Problem Specification  
User repeatedly touches UI elements without functionality  (e.g., imageview)   
Solution  
Analyze pressed UI-element  and figure out which functionality the user intended; 
e.g.,  imageview: image-zoom; add  functionality or make clear  function is missing   
Weighting  
Cosmetic problem only (1)   
Reference  
-   

PATTERN: #9 

Name  
Navigational  Burden  
Problem Specification  
User switches back and forth between two views multiple  times (e.g., master-
/detailview)   
Solution  
User is looking for some information which is presented in  detailview; needs the 
way over  the masterview to open a new  detailview  
Weighting  
Minor usability  problem (2)   
Reference  
(Ahmad et al.,  2006)  

PATTERN: #10 

Name  
Accidental Touch   



Problem Specification  
User touches the screen accidentally and and activates view  change; he 
immediately revokes input   
Solution  
Check accidentally touched UIelement; move/resize/remove it   
Weighting  
Cosmetic problem only (1)   
Reference  
(Matero and  Colley, 2012) 

  



S4 - ARTICLE: DESIGN PATTERNS FOR TOUCHSCREEN-BASED MOBILE 

DEVICES: USERS ABOVE ALL! 

 

PATTERN: #11 

3.1 The Patterns 
TMDP1.1 The thumb rule 
For: Smartphones/phablets. 
Use When: Designing the interface. Placing main elements/options on the screen 
How: Place main elements within a range of a semicircle with a 2,7 inches’ radius 
from the right-middle side of the screen. 
Why: The average length of a human thumb is 2,7 inches. Considering that 
statistically, most of users hold the phone with their right hand and use their right 
thumb to interact with the device, main elements should be placed within user’s 
reach. 
 
Figure 1 shows difference between an Apple iPhone 3GS and a Samsung Galaxy 
Note II device. Writing with one hand in the Samsung device is almost impossible. 
Associated Heuristic(s): TMD12. 

 
TMDP1.2 The thumb rule #2.  
TMDP2 Performance and feedback  
TMDP3 Explicit user control  
TMDP4 Recognizable icons  
TMDP5 Clean form fields  
TMDP6 Shape of buttons  
 

 

 

  



S5 - ARTICLE: DESIGN PATTERNS FOR USER INTERFACE FOR MOBILE 

APPLICATIONS 

 

PATTERN: #12 

3.1.2. Design pattern: Change the screen orientation 
3.1.2.1. Use when 
If this is an option on the platform, it will by default reduce the need for horizontal 
(and increase the need for vertical) scrolling, as illustrated in Fig. 1. An important 
choice if this solution is used is whether the user should be given the opportunity to 
switch between landscape and portrait, or if only landscape should be available. The 
first choice imposes a number of new problems. The latter choice is easier to realize, 
but offers less flexibility for the user, and may reduce which devices/versions of the 
operating system that may be used to run the application. 
 

 
Fig. 1. Changing screen orientation to reduce horizontal scrolling. 
 
3.1.2.2. How 
Provide a version of the UI in landscape format, alone or in addition to a version in 
portrait format. 
 
3.1.2.3. Why 
Horizontal scrolling should be avoided in all UIs, but is probably worse on mobile 
devices than on larger displays, partly because the amount of context information is 
larger when the screen is larger. Also, on a larger screen, it is usually possible to 
make the window larger to decrease the need for horizontal scrolling. And even 
worse, because the screen is smaller, the need for horizontal scrolling occurs more 
often. 
 

PATTERN: #13 

3.2.2. Design pattern: Add or adjust scroll bars 
An obvious and simple solution to this problem is to add or adjust scroll bars when 
the keyboard appears, as illustrated in Fig. 2. The other solutions presented below 
are solutions where the need for adding scroll bars are removed or reduced. 
 
 



 
Fig. 2. Adding scroll bar when keyboard is shown. 
 
3.2.2.1. Use when 
This solutions should be used when a simple and inexpensive solution is sought, or 
when none of the other patterns are useful. 
 
3.2.2.2. How 
Provide two sizes of the view for the dialog. 
 
3.2.2.3. Why 
The solution is simple and inexpensive, yet easy to understand. 
 

PATTERN: #14 

3.2.3. Design pattern: Let the keyboard cover part of the UI 
How “bad” this solution depends on what is placed on the part of the screen that will 
be covered by the keyboard, as illustrated in Fig. 3. 
 

 
Fig. 3. Keyboard covers part of UI. 
 
3.2.3.1. Use when 
If this part is occupied by output fields, the solution may work fine as long as the 
keyboard is removed when not needed. If this part of the screen contains important 
input fields or tab folders the solution is useless. 
 
3.2.3.2. How 
This solution is in essence “doing nothing”. 



 
3.2.3.3. Why 
The solution is simple and inexpensive, though not always very user friendly. 
 

PATTERN: #15 

3.2.4. Design pattern: Only use the part of the screen that will not be covered by the 
keyboard 
In practice, what this solution does is to reduce the size of the part of the screen that 
may be exploited. 
 
3.2.4.1. Use when 
This solution may be OK for dialog boxes as illustrated in Fig. 4, but is seldom 
practical for normal windows. 
 

 
Fig. 4. Dialog box which leaves room for keyboard. 
 
3.2.4.2. How 
Restrict the amount of information in the dialog. 
 
3.2.4.3. Why 
The solution is simple and inexpensive. 
 

PATTERN: #16 

3.2.5. Design pattern: Use one large UI control as a buffer 
By this we mean that when the keyboard is added, one of the controls is reduced 
vertically to be just as much smaller as the size of the keyboard, as illustrated with 
the list box control in Fig. 5. 
 
 



 
Fig. 5. List box control that shrinks when keyboard is added. 
 
3.2.5.1. Use when 
The solution is relevant when the UI contains one or more controls that may be used 
as a buffer. 
 
3.2.5.2. How 
General controls that may be used for this are primarily list boxes and multi line text 
boxes. 
 
3.2.5.3. Why 
The solution is simple and inexpensive, yet it usually does not confuse the user. 
 

PATTERN: #17 

3.2.6. Design pattern: Keyboard as part of layout 
Instead of using a built-in software keyboard that the application have to adjust to, it 
is also possible to have an application specific keyboard that is designed to be part 
of the layout, as illustrated in Fig. 6. 
 
 

 
Fig. 6. Keyboard as part of layout of an application. 
 
3.2.6.1. Use when 
The solution is most appropriate in mass market products where the extra costs for 



designing application specific keyboards will pay off, or when such solutions are 
supported by the OS (like on the iPhone platform). 
 
3.2.6.2. How 
An application specific keyboard must be developed. 
 
3.2.6.3. Why 
The solution may provide both very efficient, and user – as well as finger–friendly 
UIs. 
 

PATTERN: #18 

3.3.2. Design pattern: Auto complete 
This is a mechanism that tries to guess what the user is about to write and suggests 
this by filling in the suggested text ahead of the writing of the user, as illustrated in 
Fig. 7. 
 
 

 
Fig. 7. Auto-complete in a notes application. 
 
3.3.2.1. Use when 
The solution is relevant when there are some patterns in what the user writes that 
are repeated over time. 
 
3.3.2.2. How 
On the Windows Mobile platform an adaptive auto complete mechanism is included 
in all the generic input mechanisms. Specialized applications specific auto complete 
mechanisms in certain field are usually more efficient. This is common when writing 
an URL in most web browsers and when writing names in an email client. Common 
for such solutions is that they use the history of values used earlier to suggest the 
new ones. 
 
3.3.2.3. Why 
The solution reduces the amount of repetitive typing. 

PATTERN: #19 

3.3.3. Design pattern: Predefined values 
By this we mean having a list of all (or the most common) texts to enter in a field. 
 



3.3.3.1. Use when 
The solution is relevant when there is a small set of words or phrases that are used 
more often than others. 
 
3.3.3.2. How 
The list of values may be accessed from a menu or from a combo box, as illustrated 
in Fig. 8. The values in the list may also be dynamic based on user behaviour. 
 
 

 
Fig. 8. Using predefined answer alternatives in a messaging application. 
 
3.3.3.3. Why 
The solution reduces the need for typing commonly used words and phrases. 
 

PATTERN: #20 

3.3.4. Design pattern: Alternative input mechanisms 
By this we mean using UI controls that are operated directly on the screen as an 
alternative to keyboard, as illustrated in Fig. 9. 
 
 



 
Fig. 9. Using clock and spinners for adjusting the time. 
 
3.3.4.1. Use when 
Most of the relevant mechanisms require that there is some sort of restrictions on 
the domain of the attributes that should be entered through the mechanism. 
 
3.3.4.2. How 
In addition to radio buttons, combo and check boxes, spinners, sliders, and menus 
are the most common controls for this. 
 
3.3.4.3. Why 
Direct manipulation is usually more efficient and easier to perform than typing. 
 

PATTERN: #21 

3.3.5. Design pattern: Specialized input mechanisms 
By this we mean using (a combination of) existing controls in a new way to implement 
a creative solution. 
 
3.3.5.1. Use when 
The solution is appropriate in most situations, specially when other patterns are not 
relevant. 
 
3.3.5.2. How 
An example of this approach is the mechanism used in an application for service 
technicians, where the user may write common fault description in a natural 
language like syntax by choosing from a set of drop down list with commonly used 
nouns, verbs and preposition expressions. 
 
3.3.5.3. Why 
Having a restricted number of values in each dropdown list still facilitates entering a 



very large number of possible sentences in a simple way. 
 

PATTERN: #22 

3.4.2. Design pattern: Finger friendly menu choices 
There are design patterns for finger friendly interaction for a number of interaction 
mechanisms, like finger friendly lists, menus, buttons, keyboards, tab folders etc. 
Here we include finger friendly menu choices as an example of such design patterns. 
 
3.4.2.1. Use when 
The solution is appropriate when the user wants or is required to operate an 
application using finger interaction. 
 
3.4.2.2. How 
An alternative to standard menus or buttons that are always visible is to provide 
menu choices in a small popup panel at the bottom of the screen, as illustrated in 
Fig. 10, showing how this is done in an iPhone application. Similar solutions are 
applied on HTCs TouchFlo 3D user interface on Windows Mobile. 
 
 

 
Fig. 10. Finger friendly menu in photo application on iPhone. 
 
3.4.2.3. Why 
Menu items, both used as part of pull-up menus and context menus are difficult to 
operate using fingers. The solution also uses less screen space than buttons that 



are always visible. 
 

PATTERN: #23 

3.5.2. Design pattern: Brand the standard 
By this we mean adding branding elements to the platform standard instead for 
building the elements that make up a brand from scratch, as illustrated in Fig. 11. 
 
 

 
Fig. 11. Adding branding elements within a standard UI. 
 
3.5.2.1. Use when 
The solution is appropriate when both branding and compliance to standards are 
needed. 
 
3.5.2.2. How 
This should be done using subtle means, like changing background colours or 
adding a pattern or an abstract image as part of controls and/or backgrounds. Also, 
using a specific font may be a good branding mechanism. The main problem with 
this solution is that the branding may be difficult to recognize. On the other hand, 
implementing it does not need to be too costly. 
 
3.5.2.3. Why 
The solution combines having controls that are close to platform standards with 
branding. 
 

PATTERN: #24 

3.5.3. Design pattern: Branding the controls 
By this we mean generalizing the principle to also cover branding that is further from 
the standards, as illustrated in Fig. 12. 
 
 



 
Fig. 12. Compact RSS client with branded controls. 
 
3.5.3.1. Use when 
The solution is appropriate when branding is more important than compliance to 
standards. 
 
3.5.3.2. How 
Specialized controls need to be developed. 
 
3.5.3.3. Why 
This will usually take up less screen space than adding additional purely visual 
elements (like icons and advanced borders) as the main branding means. Doing 
more “radical” branding of UI controls may be quite expensive to implement. Using 
purely visual elements as branding means is less expensive to implement. 
 

PATTERN: #25 

3.6.2. Design pattern: Inform the user about what is happening 
Informing the user about what is happing (in addition to indicating progress). 
 
3.6.2.1. Use when 
The solution is appropriate when this level of information is required or easily 
obtained. 
 
3.6.2.2. How 
This may be done as a scrolling text that the user can browse back in, just a small 
list showing the latest events, or as single text changing as events happen, as 
illustrated in Fig. 13. Independent of how the information is shown, it should be 
presented in a way that is comprehensible by the user – i.e. related to user concepts 
and user tasks. 
 
 



 
Fig. 13. Informing the user what is happening. 
 
3.6.2.3. Why 
Providing information about level of progress as well as what is happening will make 
the user more patient. 
 

  



S6 - ARTICLE: FROM REQUIREMENT TO DESIGN PATTERNS FOR UBIQUITOUS 

COMPUTING APPLICATIONS 

 

PATTERN: #26 

Pattern name  
Control of Autonomous Adaptation 
 
Problem  
Autonomous adaptations can result in usability problems. The goal of the pattern is 
to prevent the feeling of loss of control. Users may sense a loss of control if the 
behavior of an application is not comprehensible or if the behavior disturbs the 
current interaction with the application. The pattern helps to create understandable 
autonomous adaption and prevents the feeling of loss of control. 
 
Forces and Context  
Informational self determination: To support the user's self determination in case of 
autonomous adaptation, the ultimate decision-making authority has to remain with 
the user - otherwise the system can adapt to unintended and irreversible states.  
Transparency: The autonomous adaptation is a black-box concept to the user. If the 
user does not receive information about next adaptation steps nor the possibility to 
govern automatically executed actions, he will experience loss of control and a 
missing overview on the different states and steps.  
 
Solution  
The user should be enabled to keep control of autonomous adaptations. This 
prevents the feeling of loss of control. Two cases have to be distinguished:  
1) The user is currently interacting with the application. In this case, the application 
should notify the user about the upcoming adaptation and enable the user to 
determine if the application should adapt. The user should have a choice to accept, 
decline or delay the adaptation.  
2) The user is currently not interacting with the application. This means that the 
adaptation can be performed. However, the application needs to provide the user an 
option to revert the adaptation. Adaptations with substantial effects on the system 
should be recorded in a history. Such a change may be the switching off of a 
surveillance system or of a ringtone. The adaptation design needs to be tailored to 
the application domain, development platform, and target user group. The 
cooperation with a usability engineer and/or a trust engineer is recommended.  
 
Consequences  
The pattern is influenced by and influences the user interface design of the 
application. The adaptation notifications need to be integrated into the user interface 
design.  

PATTERN: #27 

Pattern name 
Emergency Button  
 



Problem 
This pattern should be applied if the application collects and uses personal data. It 
enables the user to halt collection and use of his personal data in a simple manner 
at any time. 
 
Forces and Context 
Informational self determination: The appliance of this pattern supports the user's 
right to informational self determination by disabling any use or gathering of personal 
data by the application. It enables the user to maintain control of his/her own data.  
Trust: By providing a mechanism to the user to disable the collection and use of 
personal data, the user's acceptance and trust into the application can increase. This 
holds especially true in that situations where the user wants to be invisible to the 
application.  
 
Solution 
The implementation and the user interface design of an emergency button depend 
on the application domain and development platform. The button should be easily 
accessible at all times. It is important to give feedback to the user after activating the 
button. After pressing the button, the system stops immediately collecting and using 
personal data. Herein, all data from which other personal data can be inferred is 
included. If pressing the button impairs application functionalities, the application 
highlights these functions to provide visual feedback.  
 
Consequences 
When pressing the button, all functionalities, which require personal data, need to 
be deactivated to prevent errors at runtime. The Emergency Button Pattern can be 
combined with the Enable/Disable Functions Pattern which addresses similar 
concerns.  

  



S7 - ARTICLE: HCI DESIGN PATTERNS FOR PDA RUNNING SPACE 

STRUCTURED APPLICATIONS 

 

PATTERN: #28 

4.1 Orientation Patterns   
This category introduces HCI patterns to help users to get oriented into a physical  
space. These patterns improve virtual/physical synchronization of space in order to  
locate users within the space. They cope with the issues described in point 1 of SSA  
characteristics. Patterns belonging to this category are the following:  1. You are 
here (aka Address): A user tries to identify any space somehow. Usually,  public 
spaces are identified by names; so they should be supplied to the user. This  pattern 
is widely used on Web.   
2. Multi-Layer Map: Sometimes users need to know their physical position within a  
space. Physical spaces are structured as a hierarchy and user position can be  
determined by user space position on each level.  
3. Signs: This pattern helps users to get oriented when they spend a long a time into 
a  space and get lost in there. So, a sign is used to synchronize virtual and physical  
space  4. Door at back: This pattern helps users to get oriented when a space 
transition  occurs. A space transition happens when a users moves virtually and 
physically  from one space to another; for instance form a room to another.  As an 
example of this category we present Door at Back. 
 
Door at Back 
1. Synopsis: Spaces are graphically represented by maps. Large buildings have 
several rooms. As all rooms of a building do not fit on screen at once, each one is 
represented by a different screen, producing space transitions when a user moves 
from one space to another. 
2. Context: Users pass through different rooms while visiting buildings. When users 
move from one space to another, a transition on screen occurs. 
3. Forces: This interface transition leads to user disorientation between physical and 
virtual space. 
4. Solution: Virtual space orientation is usually represented by a map. This map 
should be automatically oriented according to the door used by the user is at the 
bottom of screen. The door should be clearly marked, as an arrow, pointing the 
same direction the user; as seen on Fig. 1. 
5. Consequences: User gets oriented on space by recalling at first sight the room he 
had when he entered first time. 
6. Schematic Description: 

 



Fig. 1. Sample of “Door at back” pattern 
7. Related Patterns: It can be used jointly with Address. Map orientation may be 
combined with layout changes depending on map shape (Layout patterns). 
Based on W3C Common Sense Suggestions for Developing Multimodal User 
Interfaces principles [18] this pattern focuses on: 
• Satisfying Real-world constraints taking into account physical suggestions and 
environmental suggestions (physical space orientation is treated in this pattern). 
• Communicating clearly, concisely, and consistently with users (an arrow represents 
user entrance direction). 
Making users comfortable by easing user’s short term memory (the arrow help 
users to get “back to the basics” - the moment he / she entered the room -).  
1210 R. Tesoriero et al. 
We can relate this pattern with Tidwell’s HCI patterns [13] [14]. So, the following 
sublanguages may apply to this pattern definition: Go Back One step and Go Back 
to a Safe Place (arrow may be used to go to a safe place to orientate user); 
Bookmark 
(entrance is automatically as a safe place) and; Remembered State (at the time user 
entered into the room). 
From Van Welie et al. [16] point of view, we can relate this pattern with feedback 
(user gets oriented based on a previous known position) and visibility (User 
guidance) problem. So, it improves Learnability and Memorability. 

PATTERN: #29 

4.2 Layout Patterns 
Layout patterns were introduced to organize SSA. Screen resolution on mobile 
devices are restricted, information to be displayed is increased due to virtual / 
physical space relationship and objects extra information. Point 2 of SSA 
characteristics can be designed using the following patterns in this category: 
• Landscape: This pattern proposes to use PDA in Landscape direction. 
• Vertical-Horizontal Layout: Modify the application layout according to the 
information to be displayed. 
• Layout Transition: It shows layout change transition. 
As an example of this category we present Vertical-Horizontal Layout. 
Vertical-Horizontal Layout 
1. Synopsis: Information to be displayed on a portable devices screen should be 
optimized because screen space. 
2. Context: Usually, there are two types of information to be displayed: main 
information (information that fulfil screen objective) and secondary (additional 
information to perform other operations). 
3. Forces: Main information shape and size vary. For instance, maps, photos and 
videos may be displayed in portrait or landscape. 
4. Solution: To optimize screen visualization for main information, screen layout is 
changed to fit main information the best way as possible. Secondary information is 
displayed “around” main information to have it available. 
5. Consequences: Primary data information is optimized to fit screen and secondary 
information is displayed on available space. 
6. Schematic Description: 



 
Fig. 2. Sample of “Vertical-Horizontal Layout” pattern  
7. Related Patterns: This pattern is close related to Landscape and Layout 
Transition. 
This pattern satisfies the following principles of W3C Common Sense Suggestions 
for Developing Multimodal User Interfaces [18]: 
• Communicate clearly, concisely, and consistently with users by switching 
presentation modes when information is not easily presented in the current mode. 
Screen layout adapts interface to main information. It keeps interface as simple as 
possible, changing control layout instead of controls themselves. 
• Make users comfortable by reducing learning gap of a new user interface. 
Relationship to Tidwell’s HCI patterns [13] [14] sublanguages are: Disabled 
Irrelevant things (although secondary items are not disabled, they are not treated in 
the same level of relevance as main information) and Good Defaults (information 
default layout changes according to main information to be displayed). 
If we analyze this pattern from [16] perspective, the problems it affords are related 
to Conceptual Model and Natural Mapping (user knows exactly how to perform 
operations, if the user had previous experience with the interface - before layout 
transformation -). We try to cope with Learnability and Memoability usability issues.  
 

PATTERN: #30 

4.3 Guide Patterns 
Design patterns on this category are used to model routes and paths that users may 
follow to guide users through any physical space based on user preferences. So, 
point 
3 and slightly 1 of SSA characteristics are boarded here. Patterns belonging to this 
category are the following: 
• Free Will Navigation: This pattern provides a method to access spaces at any level 
through the application using cursor keys only. 
• Routes: Routes pattern provides routes to focus a visit on user preferences. 
As an example of this category we present Free Will Navigation. 
Free Will Navigation (aka Up-Down and Left-Right or No Guide) 
1. Synopsis: Virtual space navigation is performed by cursor keys only. 
2. Context: Usually, people using SSAs do not have both hands free (carry 
baggage). 
So, people should be able to hold and operate a device with one hand only. 
3. Forces: As one of the most important things to be performed by this kind of 
applications is space navigation, it should be easily performed by one hand and be 



learned quickly. 
4. Solution: To cope with this navigation problem we propose to control navigation 
by cursor buttons using: Left – Right keys to navigate across space levels 
(interlevel). Right button goes one level into selected space (if a piece is selected on 
a showcase, when right button is pressed, it goes into selected piece). While Left 
arrow cursor button goes one level up (if a showcase is being shown, when left 
button is pressed, it goes to the room enclosing this showcase). And Up – down 
buttons are used to navigate across same level spaces (intra-level). It selects a 
subspace into the same space. Up and down buttons changes selection to labelled 
items. Labeling actions representing cursors on screen provides action feedback to 
user. See fig 3.  
5. Consequences: User is aware of navigation destination using cursor keys. If 
proposed control is accepted as a standard on SSAs, learning gap will be 
minimized. A disadvantage of using labels is the fact that they may obscure map. 
6. Schematic Description 

 
Fig. 3. Sample of “Free Will Navigation” pattern 
7. Related Patterns: Main relationship is established with Landscape Layout pattern 
because portable devices, as PDAs, can be used with one hand only, if they are in 
landscape position. It is also related to Right-Left handed users. 
On W3C Common Sense Suggestions for Developing Multimodal User Interfaces 
principles [18] this pattern satisfies the following principles: 
• Satisfy real-world constraints by assigning cursor key to most common operation 
on this kind of application. It also applies physical suggestions by using one hand 
only instead of both hands. 
• Communicate clearly, concisely, and consistently with users by using the same 
keys through navigation system regarding of space level (keeping interface 
simple). 
According to Tidwell’s sublanguages [13] [14] this pattern is related to: Optional 
Detail On Demand (user access information according to space level); Short 
description (information about navigation is displayed on screen) and Convenient 
environment Actions (people usually goes one level up and down only). 
Finally, according to Van Welie’s [16] perspective, the problems it affords are 
related to Visibility (user guidance, navigation can be used to guide users across 
building); Affordance (it uses the space metaphor); Feedback (operations are 
labelled). And usability issues we try to cope with are Learnability and Memoability. 
Note: We propose this pattern as a standard way of navigating across SSAs.  
 

PATTERN: #31 



4.4 Accessibility Patterns:Right – Left Handed users 

Accessibility category is used to group patterns that can be applied to improve 
application access to disabled people. Patterns related to Point 4 of SSA 
characteristics are grouped here. 
• Space Audio Perception: A voice tells the user which space has selected 
• Right – Left Handed users: It adapts a SSA application designed using the 
Landscape pattern to be used by right or left handed people.  
• Zoom: It provides controls to change font size when users are reading documents. 
As an example of this category we present Right-Left handed users. 
Right-Left Handed Users 
1. Synopsis: This pattern adapts the system to be used by most skilled hand of the 
user. 
2. Context: Usually people do not have the same skills on both hands. So, if an 
application that should be used with one hand only, it is logical that the hand used 
to perform operations be the skilled one. 
3. Forces: Right – Left handed users 
4. Solution: Solution lays on two issues: mirroring screen horizontally and Change 
cursor control behaviour (Up - Down) (Left - Right). 
5. Schematic Description: 

 
Fig. 4. Sample of “Left-Right handed users” pattern 
6. Related Patterns: On W3C Common Sense Suggestions for Developing 
Multimodal User Interfaces principles [18] this pattern satisfies the following 
principles: 
• Satisfy real-world constraints by using the easiest mode available on the device to 
perform each task. 
• Communicate clearly, concisely, and consistently with users by making command 
consistent and organizational suggestions keeps interface simple. 
Relating this pattern with Tidwell’s [13] [14] we found it is related to Convenient 
environment actions (actions are adjusted to user’s perspective).This pattern 
improves 
flexibility providing explicit control. It also improves learnability and memorability.  
 

  



S8 - ARTICLE: INTERACTION PATTERNS FOR WINDOWS 8 TABLET 

APPLICATIONS 

 

PATTERN: #32 

4. PATTERN: HOT AREAS FOR INTERACTION ELEMENTS 
4.1 Context 
When the user interface designer designs Windows 8 applications that are to be 
interacted with touch gestures, she must carefully consider where to place the 
interaction elements (that touch gestures can be applied on). For the sake of brevity, 
we’ll call the areas referred to by “where” as the “hot areas”. These user interface 
elements can be split in two major categories; elements that can be pressed or held 
(e.g. TAP FOR PRIMARY ACTION), thereafter called “single point interaction 
elements” (i.e. the interaction involves only one screen point) or that can be dragged 
or swiped (DRAG, SWIPE), thereafter called “multipoint interaction elements” (i.e. 
the interaction involves many screen points, such as movement of the finger). 
Furthermore, the interaction designer has the option to support either landscape or 
portrait orientation or, of course, both. However, most (if not all) Windows 8 tablet 
devices’ aspect ratio is 16:9 (whereas, for instance iPad’s is 4:3) at the time of 
writing, so they offer much better experience in landscape mode. Consequently, we 
encountered few apps in the Windows 8 Store that support portrait view. 
 
4.2 Problem statement 
When designing a Windows 8 app, the user interface designer has to carefully select 
the hot areas for single point interaction elements (e.g. buttons, checkboxes) and 
multi point interaction elements (such as swiping pages in order to read a digital 
magazine) in the supported app orientations (landscape or portrait, 
or both). The problem that arises is where these elements should be placed in order 
for the app to have the best usability possible. 
 
4.3 Forces 
User ergonomics forces 
x The users can hold tablets either in landscape or portrait mode 
x Interaction elements can either be single point or multi point 
x The users usually hold the tablets along the side [24] 
x The screen should not obscured during the touch gesture. If this is unavoidable, 
the obscuration during the course of the gesture should be minimal 
x The user feels comfortable when she does not have to move her fingers a lot, in 
order to perform a gesture 
x The placement of the interaction areas should be aligned to the hands’ position 
(i.e. in the way the user is holding the tablet device) 
x The interaction elements should be well suited to how a user usually holds a tablet. 
This, owing to the fact that the user should feel comfortable in moving her fingers 
from where she’s holding the tablet to the interaction area, where these elements 
are located  
Windows 8 standards/requirements regarding edges swipe forces 
x The interaction designer should not place interaction areas that can be dragged or 
swiped close to the edges of the screen, because swipes on all four edges can 
activate Windows 8 system commands and a user could easily activate them by 



mistake 
x Whether an app has App Bars is up to the interaction designer 
x App Bars can be activated with gestures on top and bottom of the screen 
x Interaction areas that can be dragged or swiped should not be placed extremely 
close to the screen edges, because the user may mistakenly activate “App Bar” 
(swiping from top or bottom, if the view supports it), navigate to the previously 
opened app (swiping on the left edge of the screen) or open the “Charms Bar” 
(swiping on the right edge of the screen)  
Tablet orientation implications forces 
x Most Windows 8 apps support only landscape display mode. If, however, the 
application supports 
portrait display mode, the interaction areas should move accordingly. In this way, 
they should 
locate themselves towards the user fingers’ position 
 
4.4 Solution 
The solution is based on the fact that elements closer to the user’s fingers are easier 
to interact with. We are proposing three solutions, in relation to whether the 
application view in question supports App Bars or whether we are discussing single 
or multi point interaction elements. All three solutions can be illustrated in a special 
figure, modified from the one found in Windows Interaction Guidelines [25]. 
 

 
Of course, if the view has both single and multi-point interaction elements (which is 
the most common scenario), the interaction designer can resort to a combination of 
the proposed solutions. 
a) The “OK” area. As the name implies, it is an “OK” hot area to place interaction 
elements (i.e. not a bad one, but not the best). However, elements are usually far 
from where the user’s fingers are located and large parts of the screen could be 
obscured in subsequent attempts to interact with them. 
b) The “Better” area. It’s not that bad of a design decision to place interaction 
elements here. The elements are not that close to where the user is holding the 
device and some parts of the screen could be obscured 
while the user is trying to perform touch gestures. 
c) The “Best” area. This is the best hot area for interaction elements. They are pretty 
close to the user’s fingers, and obscuration upon interaction is extremely limited, if 
any at all. 
 



 
4.5 Rationale of the solution  
There is an interesting analysis of how tablets are usually held (using both hands) in 
Microsoft’s user experience guidelines for Windows 8 [24]. Microsoft recommends 
placing interaction elements according to a special way, found in Windows 8 
Interaction Guidelines [25]. There, one can find the recommendation for app views 
in landscape orientation and portrait orientation. In both cases, the screen is split 



into different areas separated by gray color variants, categorized as “Best”, “Better” 
and “OK”, according to the usability they offer (described in the pattern’s solution 
section), if an interaction element is placed upon them. However, as already 
described in the solution, we decided to go one step further than this and take into 
account whether the app view supports app bars and whether it has single or multi-
point interaction elements. Therefore, the solution we propose must be aligned to 
the above way users are usually holding their Windows 8 tablet devices while taking 
into consideration Windows 8’s edge swipe gestures. By viewing the above way the 
user is holding her tablet, we can easily notice that  
1. The areas that are more accessible to the user’s fingers (either thumb or index) 
are close to where she has them, while holding the tablet  
2. Parts of the screen can be obscured if the user moves the fingers to an area that 
is far away from the point she is holding the tablet Windows 8 operating system 
guidelines propose the exact scheme that we presented about the placement of 
interaction elements/areas. This is aligned to the before mentioned ways users are 
holding their tablets and can also work for other tablet operating systems. Generally, 
this scheme does a pretty good job in describing the ideal placements for single point 
interaction elements in an app. However, as previously mentioned, in Windows 8 the 
user can swipe from the edges of the screen to reveal system or app commands, 
launch a previously opened app or open the “Charms Bar”. So, if the user interaction 
designer places a multi-point interaction close to the edges of the screen, there is a 
high risk of the user mistakenly activating the respective system command, instead 
of performing those gestures on the required element on the screen. Consequently, 
regarding the placement of multi point interaction elements in Windows 8 we 
propose a differentiation of this figure, depending on whether the specific app view 
supports App Bars. This differentiation can be viewed in Figures 1 and 2, where the 
areas marked with 1, 2, 3 or 4 (which act as an extension to the “OK” area) can be 
seen in all edges of the screen. Those areas offer “OK” usability for interaction 
elements placement. The areas marked with 2 or 4 can be ignored, depending on 
whether the specific app view supports App Bars. If the app view in question does 
not support App Bars, then the areas marked with 2 or 4 can be ignored and the 
area below them offers placement usability depending on the color area it originally 
belonged. If there are App Bars, then areas marked with 1, 2, 3 or 4 offer “OK” 
usability for interaction elements placement. Consequently, multi point interaction 
elements should be placed somewhat far away from the edges of the screen that do 
support swipes (left and right always do whereas top and bottom may or may not), 
to enhance accuracy of user’s gestures on them. Of course, there can be 
combinations of the three solutions if the app view has both single point and multi 
point interaction elements.  
Moreover, we propose that the size of the “OK” area close to the edges should be 
large enough in order to minimize the risk of the user performing the wrong gesture, 
if an interaction element is placed near it. Microsoft recommends that the minimum 
touch size for accuracy should be 9x9mm [24], so it is our estimation that this area’s 
width or height should be at least equal to it. In this way, it would be easier for the 
user’s fingers to correctly perform touch gestures, either on the multi-point 
interaction elements or to the edges of the screen.  
 
4.6 Known Uses  
First Puzzles: Animal Kingdom  



In this application, the draggable puzzle pieces are scattered towards the bottom of 
the screen and are to be dragged all over the screen in order to complete the puzzle. 
Moreover, a single point interaction element (“go back” button) exists on the top left 
of the screen. We observe that multi point interaction elements are placed towards 
the bottom edge of the screen, where is the best interaction area. Furthermore, this 
app has no App Bars, so the extra “OK” gray bars cover only the left and right side 
of the screen.  
Letter & Spelling Fun! for Preschoolers and Early Readers  
In this application, interaction elements that can be tapped are placed on the “Best” 
part of the screen and have some gap between the screen edges.  
Tots PlaySchool  
In this application, interaction elements that can be dragged are placed on the “Best” 
part of the screen.  
First Words with Phonics  
In this application, letters are initially scattered towards “Better” area of the screen 
and are to be dragged to the bottom of it, in order to complete the required word. 
The target area for this is on the “Best” part of the screen. This app could be 
improved by placing the target area on the “Better” or “OK” part of the screen and 
the letters on the “Best” part. Furthermore, the dolphin image on the left that can be 
dragged is mostly on the “Better” and “Best” areas. Finally, two single point 
interaction elements, a “select animal” button and a “next animal” button are located 
on the top cornes, thus among the “Best” and “Better” area.  
Kindergarten8  
In this application, there is a color/paint mini-app. In this mini-app, the color selection 
control is located on the bottom of the screen whereas the tool selection control is 
located on the right. Plus, there is a “go back” button at the top left of the screen. All 
these controls are single point interaction elements and are located on “Best” and 
“Better” parts of the screen, allowing for easy and accurate input by the user.  
Animal Sounds  
This application is one of the few that we encountered and supports portrait 
orientation. In this app, the main interaction elements (the three animals) are mostly 
located on the Best and Better screen areas and they are big enough, allowing for 
easy interactions. The interaction designer could further optimize the app by moving 
the “previous” and “play sound” buttons lower, towards the Better area.  

PATTERN: #33 

5. PATTERN: INTERACTION BETWEEN SNAPPED AND FILLED VIEW 
5.1 Context 
A Windows 8 app that its user interaction designer wishes to implement interaction 
functionality between two apps that are running at the same time. 
 
5.2 Problem statement 
A user interaction designer wants to design a snapped app in a way that it is able to 
interact with a filled app. Interaction could be of any sort, including (but not limited 
to) copying and pasting data and opening a filled app from a snapped one. 
 
5.3 Forces 
x The interaction will take place either to or from a snapped app 
x Interaction is limited to what Windows 8 operating system currently offers 



(copy/paste and hyperlink tapping) 
x At the time of writing, Windows 8 Software Development Kit allows only the launch 
of the default browser on filled view, when the calling app is on snapped view and 
the launch is implemented via a hyperlink-like control 
x At the time of writing, the only possible way to transfer data between an app 
running in snapped view and an app running in filled view is by using the classic 
mechanism of copy/paste 
x The user may want to copy some data from the one app and paste it into the other 
x The user can only copy and paste textual data between snapped and filled apps 
 
5.4 Solution 
In the current version of the Windows 8 Software Development Kit, two options are 
available for interaction between a snapped and a filled app. The first one is to copy 
text from the snapped app to the filled app (or vice versa) and the second is to launch 
the default browser from a snapped app. These options are thoroughly explored in 
the following sections. 
Copying and pasting from a snapped to a filled app (and vice versa) 
The user interaction designer will have to implement copy/paste friendly controls on 
respective apps. For instance, a TextBox (control accepting text input) is a user 
interface control that accepts paste, whereas a TextBlock (control presenting text) is 
a control that can have part of or its entire content copied via tap and hold gesture 
[TAP AND HOLD]. In this way, user can select and copy part of the text presented 
and paste it in the other app. 
Launching the default browser from a snapped app 
The user interaction designer can use hyperlink-like controls in the snapped app to 
allow the launch of the default browser by tapping on this control. These hyperlink 
controls have to contain a link that points at a web page (URL). Upon user tapping 
[TAP], the default browser will launch in filled view, browsing the specific web page 
pointed at by the hyperlink control’s content. 
 
5.5 Rationale of the solution 
As described, this solution is twofold related to the kind of the desired interaction. 
a) In regards to the copy/paste interaction, the only necessary implementation is the 
use of 
copy/paste-friendly user interface controls (such as textboxes for text input and 
blocks of text 
(TextBlock controls) for text presentation). User can also copy text from a web page, 
displayed on 
a web browser. 
b) In regards to the app launch interaction, the only allowed app that can be launched 
is the default 
browser. Hence, the user interaction designer has to use a hyperlink-like control that 
points to an 
internet address (URL). Upon tapping, the default browser will automatically launch. 
 

PATTERN: #34 

6. PATTERN: SNAPPED VIEW TRANSFORMED FROM HORIZONTAL TO 
VERTICAL  



6.1 Context  
Windows 8 app (or app view) that contains independent or grouped pieces and they 
are displayed in a horizontally panning view (horizontal list). This may include (but 
not be limited to) the “master” section of master-detail apps. Examples are the 
articles list section of a news reading app, the customers’ list section of a customer 
relationship app, games list page of an app that contains mini-games etc.  
 
6.2 Problem statement  
User interaction designer needs to design the snapped view of the app (or of one of 
the app’s views) in order for the app to be as functional as possible.  
 
6.3 Forces  
x App (or app view) contains pieces (either independent or grouped) laid out on a 
horizontal list that can be dragged either left or right  
x Snapped view must allow scrolling  
x Snapped view should display as many items as possible  
x In snapped view, height is greater than width  
x Horizontal scrolling is unacceptable when the height of the app is greater than its 
width x Snapped app must remain active  
 
6.4 Solution  
Shift data lists from horizontal to vertical orientation.  
 
6.5 Rationale of the solution  
Many Windows 8 apps are designed in order to “slide” from left to right. This is 
evident in the operating system’s Start Screen, on the preinstalled apps that come 
with the operating system and last but not least, in the default project templates in 
the Visual Studio 2012 development environment (the prominent development tool 
for Windows 8 apps). Horizontal orientation and scrolling is certainly not functional 
in the case an app goes to snapped view because of the limited width this state 
supports. However, the height of the snapped view is exactly the height of the 
device’s screen (768 pixels minimum). Consequently, for “slide left to right” kind of 
apps, the user interface designer could alter the layout so as it appears in a vertical 
list with minimal information. As an example, the Kindergarten8 app displays a 
vertical list with rich information when running on full-screen and gets its layout 
transformed on snapped view. Plus, the user interface designer has opted to 
minimize the presented information, displaying only images respective of the mini-
game they represent. Windows 8 Software Development Kit has user interface 
controls for data display that allow for orientation conversion from horizontal to 
vertical.  
 
6.6 Known uses  
Kindergarten8 app uses a horizontal list to display image shortcuts for the various 
mini games it contains. When the application goes into snapped view, the list 
becomes vertical and the images become much smaller, thus allowing for more 
selections.  
Moreover, CNN app displays a horizontal list with data (each list item can contain 
another list) on full screen. When the app goes on snapped view, every item in every 
list is grouped in a single vertical list. 



PATTERN: #35 

7. PATTERN: UNWILLING TO BECOME SNAPPED 
7.1 Context  
Windows 8 apps that look good only when displayed in full screen mode (or at least 
in filled mode), such as games. These apps usually have an absolute necessity of 
screen space, in order to be displayed correctly and offer a great experience. This 
may include (but not be limited to) classic games apps, apps that require as much 
screen estate as possible in order to operate correctly (such as drawing apps) etc.  
 
7.2 Problem statement  
User interaction designer has to design the snapped mode for apps that look good 
and work efficiently only on full screen.  
 
7.3 Forces  
x These apps do not offer the anticipated experience if redesigned for snapped view 
(i.e. scaled down graphics, smaller items so difficult to use touch gestures)  
x These apps require lots of screen space (in a specified width and height manner) 
in order to function correctly  
x Since these apps cannot work in snapped mode, their state should be maintained 
and the app should be paused  
x User must be informed that the app cannot work properly in snapped view  
 
7.4 Solution  
Allow snapped view and show a “played only in full screen” like message. The app’s 
state should be paused. The app could display relevant messages along with the 
“go to full screen” one, such as current game level, global/local scoreboards, 
achievements, any notifications etc. Most games should stick to this solution.  
 
7.5 Rationale of the solution  
Some Windows 8 apps (especially games) have been designed from the ground up 
in order to take advantage of entire screen estate by spreading into its width. These 
apps could have their usability degrade severely if, for example, they got scaled 
down in order to fit into the snapped view. For these cases, we highly recommend 
that the app, when into snapped view, shows a message that it should move to full 
screen (or filled view) in order to continue its execution. This message should 
obscure the entire app screen. Moreover, app could provide some useful data (such 
as a user’s current score, a list of high scores etc.).  
 
7.6 Known uses  
First Puzzles: Animal Kingdom app would have its usability degraded if it scaled 
down its graphics in order to work in snapped view. Thus, the user interface designer 
has opted for a full size image that informs the user that the game is not playable in 
snapped view and she should transform it into full screen view.  
Additionally, Cut the Rope app would be unusable in a “height much bigger than 
width” layout (such as snapped view) because of its gameplay engine. Therefore, 
when it is transformed into snapped view, it informs the user that she needs to switch 
the app into full screen (or filled view, of course) in order to continue playing. The 
app is paused during the time it is on snapped view. 



PATTERN: #36 

8. PATTERN: SHRINKING AN APP WHEN SNAPPED  
8.1 Context  
Apps running in Windows 8 that can afford to have their content and interactive 
elements scaled down and/or rearranged and/or hidden when in snapped view. 
Examples are the “details” section of “master details” apps, the article details section 
of a news reading app, the customer view/edit section of a customer relationship 
management app, board games etc.  
 
8.2 Problem statement  
User interaction designer needs to design the snapped view for apps or app pages 
that can have their content scaled, layout arranged and/or interaction elements 
hidden when in snapped view in order to fit as many elements as possible plus 
minimize the impact on user experience.  
 
8.3 Forces  
x Snapped app or app view must maintain state and remain active  
x App has some elements that could have their size decreased while on snapped 
view  
x There are interaction elements on the app that could be hidden while on snapped 
view  
x User interaction designer can add additional interaction elements on the snapped 
app to enhance usability  
 
8.4 Solution  
Scale and rearrange content while possibly hiding not absolutely necessary user 
interface elements. This is suitable for views that can afford to have their content 
scaled, change position or collapsed (hidden), provided the usability does not 
degrade dramatically.  
 
8.5 Rationale of the solution  
This pattern attempts to transfer the whole experience to the snapped view, by 
resizing (scale to fit) user interface elements and transforming the layout by moving 
interaction areas in the app. Plus, it may hide content or interactive elements 
otherwise visible in the full screen version of the app. This solution might be suitable 
for apps such as board games, where the board will be scaled down in a way that 
the game is still playable. Plus, graphics should be scaled down no more than 
necessary, in order to be absolutely visible and (if possible) usable. There should be 
some user acceptance testing in this view, though. If the result is less than satisfying, 
then user interaction designer should revert to the other patterns related to snapped 
view.  
 
8.6 Known uses  
“News” app initially has the two game boards displayed on horizontal orientation. 
When it is transformed into snapped view, the game boards are scaled down and 
displayed in vertical orientation, which does not degrade the app’s usability.  
When a user uses the MetroTube app in full screen and watches a video, she is 
presented with the video being watched, comments and lists with related videos and 



this video’s YouTube channel. If the user snaps the app, the video becomes smaller, 
some user interface controls get a bit smaller whereas the lists with related videos 
and channel videos are completely hidden. 

  



S9 - ARTICLE: METHOD FOR MOBILE USER INTERFACE DESIGN PATTERNS 

CREATION FOR IOS PLATFORM 

 
 

PATTERN: #37 À #51 - https://doi.org/10.1109/JCSSE.2015.7219787 

 

  

https://doi.org/10.1109/JCSSE.2015.7219787


S10 - ARTICLE: MUSICAL INTERACTION PATTERNS: COMMUNICATING 

COMPUTER MUSIC KNOWLEDGE IN A MULTIDISCIPLINARY PROJECT 

 

PATTERN: #52 

3.1 Pattern: Natural Interaction / Natural Behavior  
 
Solution: Imitate real-world, natural interaction.  
 
Description: This pattern corresponds to musical interaction which imitates real 
interaction with a sound-producing object, or with an acoustic musical instrument. 
Thus, all musical gestures that we might regard as “natural” may be explored herein: 
striking, scrubbing, shaking, plucking, bowing, blowing, etc. One advantage of 
designing interaction as a reproduction of natural musical gesture is that it will 
generally include a passive haptic (tactile) feedback, similar to the one we have when 
interacting with real sound-producing objects. This “primary” feedback (linked to the 
secondary feedback of hearing the resulting sound) [10] may be important for a “fine-
tuned” control of the musical interaction – that “intimate” control suggested by 
Wessel and Wright [21], which allows the performer to achieve a sonic result that is 
closer to the intended, and that also facilitates the development of performance 
technique. For example, a rhythm performance activity may be implemented using 
the touchscreen of a PDA, where sounds are triggered when it is gently striked with 
the stylus, like on a real drum. Or, one may implement a shaker-like instrument by 
using accelerometer sensors of some mobile device, and musically interacting with 
this instrument by shaking the device. But exploring “naturality” in musical interaction 
design refers not only to designing user input as natural musical gestures, but also 
to simulating, through user interface (UI) output, any natural behavior which is 
expected from real-life objects when they produce sound (i.e., behavior that is linked 
to sound producing phenomena). This can be implemented either through 
representations on the graphical interface (GUI), or through an adequate mapping, 
applied to the physical UI, between possible gestures and their naturally expected 
sonic results. In our “Drum!” prototype, the user “strikes” the PDA screen and hears 
a percussion sound, what would be naturally expected. In our “Bouncing Balls” 
prototype, little “balls” are constantly moving horizontally on the device’s screen, 
making sound every time they “bounce” on “obstacles” (a barrier or the sides of the 
screen). Notice that this natural behavior has one drawback: it will generally limit 
musical interaction to the “one-gesture-to-one-acoustic-result” rule of nature (except 
for some very particular cases).  
 
Motivation for use: To make musical interaction more “intuitive”, that is, to take 
advantage of what Jef Raskin [14] prefers to call the user’s “familiarity” with the 
interaction. This is justified by the hypothesis that, by designing interaction in a form 
which “resembles or is identical to something the user has already learned” [14], its 
learning curve is reduced, what is a usability attribute (learnability). 

PATTERN: #53 

3.2 Pattern: Event Sequencing  
Solution: Allow the user to access the timeline of the musical piece, and to “schedule” 



musical events in this timeline, making it possible for him/her to arrange a whole set 
of events at once. 
 
Description: In this pattern, users interact with music by editing sequences of musical 
events. This can be applied to any interpretation of these – individual notes, whole 
samples, modification parameters, in short, any kind of “musical material”. Now, it is 
important to state that, although our interaction patterns aim primarily at musical 
control, this does not imply a necessary coupling with performance activities. Neither 
is this pattern, of event sequencing, useful solely for composition. They are all higher 
level abstractions which may be applied creatively to any type of musical activity, 
and should be much more useful if regarded this way. In this sense, it may even be 
preferable to classify them not under “musical control”, but as “music manipulation 
patterns”. Actually, event sequencing is a good example of this flexibility, since it can 
be observed both in CODES (asynchronous, compositional tool;  see Figure 1) [9] 
and, for instance, in Yamaha’s Tenori-On portable instrument (real-time 
performance) [11], where the sequences execution is looped, but they can be edited 
(and so played) in real-time (see Figure 2). This last, synchronous use was also 
added later to our Drum! prototype (described in the next section), the first prototype 
in which we combined patterns.   

 
Figure 1. Asynchronous Event Sequencing in CODES, a music composition tool [9].  
From designing Drum! and Bouncing Balls we conclude that, by combining 
interaction patterns, it is possible to create richer interaction.  
 
Motivation for use: Usually, to extend interaction possibilities  – increase interaction 
flexibility – by explicitly allowing, and facilitating, epistemic actions as a complement 
to pragmatic actions on the system [17, 8]. 



 
 

PATTERN: #54 

3.3 Pattern: Process Control  
Solution: Free the user from event-by-event music manipulation, by allowing him/her 
to control a process which, in turn, generates the actual musical events or musical 
material.  
 
Description: This interaction pattern corresponds to the control of parameters  from 
a generative musical algorithm. It solves that important problem in mobile music, 
which is the repurposing of non-specific devices: how can we “play” a cell phone, 
with its very limited keyboard, not ergonomically suited to be played like a piano 
keyboard? The Process Control solution suggests a mapping from the (limited) 
interaction features of mobile devices, not to musical events, but to a small set of 
musical process parameters. This way, we free the user from manipulating music 
event-after-event, him/her needing only to start the process – which generates a 
continuous stream of musical events, usually through generative grammars or 
algorithms – and then to manipulate its parameters. One possible analogy is with 
the conductor of an orchestra: he doesn’t play the actual notes, but he controls the 
orchestra. For the mapping, we find it useful to follow suggestions given by Wessel 
and Wright [21] when describing their metaphor of a “space of musical processes”. 
Put simple, the idea is that mapping parameters into a key matrix (a keyboard) or a 
touch-sensitive surface does not need to follow much previous planning: an 
“intuitive” arrangement of controls in the “parametric space”, done by a musician or 
computer music expert, is enough to yield a satisfactory mapping. Although it is 
possible to apply the “parametric navigation” metaphor from these authors, as we 
did in our Arpeggiator prototype, we believe that it is also possible to use other 
metaphors they suggest, for the control of interactive musical processes: drag & 
drop, scrubbing,  dipping, and catch & throw [21]. Another useful heuristic for designs 
using this pattern is that of allowing the user him/herself to configure which process 
parameters does he/she wants to manipulate. An example of applying the 
parametric control of a musical process is the Bloom application for iPhones [12]. 
This software was developed in collaboration with musician Brian Eno, and allows 



one to introduce events, through the touch screen, into a generative process. Then, 
the user may alter the “path” of the process, changing parameters while the music 
is playing (see Figure 3). 

 
Motivation for use: To avoid the paradigm of event-by-event music manipulation, 
allowing for more complex musical results through  simpler interaction with a 
process, which in turn deals automatically with the details of generating the definitive 
musical material. This pattern implements HCI principles like “simplicity” and  
“process automation”. Since it simplifies interaction, it is also a sound answer to 
design restrictions imposed by the limitation in interaction features, which is typical 
of standard mobile devices. 

PATTERN: #55 

3.4 Pattern: Sound Mixing  
Solution: Music manipulation through real-time control of the parallel execution of 
longer musical structures (musical material) – i.e. by mixing musical material.  
 
Description: This pattern consists in selecting and triggering multiple sounds, so 
that they may play simultaneously. If a sound is triggered while another is still 
playing, they are mixed and play together, hence the name of the pattern. Here, 
music is made as a layered composition of sounds, but by real-time triggering of 
events, so we may see sound mixing as the real-time version of event sequencing. 
The musical events in this case are sounds or musical structures, and may be of 
any duration. If they are long (one may even be an entire music sample, triggered 
just once, or a small but looped sample), we are again avoiding, with this pattern, 
the traditional note-by-note paradigm of musical control, which is very difficult to 
implement in conventional mobile devices. But remember: this can be applied not 
only to music performance. Our “mixDroid” prototype, for example, is a 
compositional tool where the user records quick, small performances, and 
combines those into a complete composition. Sound triggering may be also not 



necessarily instantaneous. One way to instantiate this pattern is by emulating a 
real sound mixer (see Figure 4). Sounds will be already playing, but all muted 
initially. The user will then combine these sounds by manipulating their intensities, 
maybe gradually. In this form, interaction by sound mixing can be noticed as the 
method of choice in modern popular electronic music.  

 
Motivation for use: As in Process Control, to avoid the paradigm of event-by-event 
music manipulation, that is very difficult to implement in conventional mobile 
devices. Each musical gesture from the user will result in a longer, more complex 
acoustic result, and the user will be focused in combining these “layers” of 
sounding musical material.  

  



S11 - ARTICLE: PATTERNS FOR INTERACTIVE LINE CHARTS ON MOBILE 

DEVICES? 

 

PATTERN: #56 

2.2 DETAILS SLIDER  
Context: Line charts are displayed on a mobile device and the user needs a method 
of interaction with individual data points to view additional details on demand. 
  
Problem: Line charts have multiple data points and displaying all these points on a 
mobile screen makes the screen appear cluttered. Also, the conventional way of 
demanding data on visualizations has been through hover or right click, which is not 
possible on mobile screens due to the limited interaction options of a touch screen. 
 
Forces: This problem is tough to solve due to the following reasons:   
-Smaller Screen Sizes: As mobile devices have much smaller screens, high amounts 
of data cannot be displayed to the users. Additionally there’s always a need to keep 
the number of elements as low as possible to keep things clutter free.   
-Lack of equivalents to conventional desktop interactions: Mobiles offer a variety of 
interactive options like tap, double tap, long press, gestures etc. While these have 
gained traction, there are still no well-defined guidelines for scenarios like data on 
demand. Desktop users would hover on a point in the chart, however on mobiles it 
is a challenge to design the right interaction for this task.   
-Variation in user’s finger size: Unlike at the desktop where the pointer has a fixed 
size, users use their fingers to point to elements on screen. Different users may have 
different finger sizes. This is an additional aspect to consider when designing for 
mobile devices.   
-Possibility of finger obstructing the view: Similarly, unlike an onscreen pointer, the 
user's finger could obstruct the view. Additionally as users would be a mix of right 
and left handed people, it is uncertain what area of the screen would be obstructed.   
-Variation in hand orientation: As users can be right or left handed, they would be 
able to access different regions of the screen easily. Interactive elements would 
hence have to be placed such that both right and left handed users can access it 
with ease.  
 
Solution: Add a slider below the line chart with a vertical line attached such that it 
points upwards over the chart. Let users move the slider and select specific chart 
points using the vertical line. Display precise data about the selected points in a 
dedicated area.  
 
Additionally, the positioning of the slider is such that sufficient space can be allotted 
for the various possible finger sizes of different users thus solving the challenge of 
variable finger sizes. Also, as the slider is placed below the chart, both right as well 
as left handed users would be obstructing the area below the chart, leaving the chart 
itself completely visible to the user. Thus the DETAILS SLIDER helps make selection 
as well as consumption of data in the chart easy and straightforward. Figure-1 
illustrates the pattern concept in greater detail. 
 
Design  



• Design the slider as an interactive element with a vertical line pointing upwards 
overlapping the line chart  
• Place the slider below the chart area  
• Place the legend below the slider  
Interaction  
• The user moves the slider along the xaxis to move the vertical line as required  
• When the vertical lines intersect with specific points on the chart, values are 
displayed in a designated area for the corresponding point  
• The values update as the user moves the slider along the x-axis  
 

 
 
Consequences: This pattern helps make designing and consumption of data easier 
and intuitive when using charts on mobile devices. Key benefits (+) and liabilities (-) 
of this pattern are as follows: 
+ Information is neatly displayed in spite of smaller screen sizes 
+ The user is provided with a useful alternative to hover functionality 
+ Space is allotted for variations in user finger sizes 
+ Slider design does not obstruct the view of the chart 
+ Both right as well as left handed users are able to use the pattern with ease 

− The solution adds one more element to the interface which can add clutter in 

some cases 

− The solution can get complex when there are large number of lines on the 

multi-line chart. However, this can be solved by applying the LEGEND FILTER 

pattern as described in section 2.3 of this paper. 

− User has to put additional effort to point to precise areas if data points occur 

frequently on a line. 

This experience however can be improved by zooming in using the SELECTION 
BRUSH pattern as described in section 2.4 of this paper. Further fine tuning of the 
view can be done using the pinch and spread method [10]. 
 



Known Uses: This pattern has effectively been applied to the CPU Utilization Chart 
depicted in Figure-2. The use case of the CPU utilization chart was to display CPU 
usage data across a timespan of six years. The frequency of data was random, that 
is, some data points appeared very close to each other (two dates within the same 
month) while other data points appeared far from each other (two dates in two 
different years).  
Users were asked to point to specific data values using the slider. It was observed 
that the use of the slider eased these tasks and allowed users to find specific values 
with lesser time and effort. 

BURDEN 
The pattern is also applied in multiple javascript charting libraries like ZingChart[11], 
Highcharts[12], FusionCharts[15] and amCharts[16]. 
 

PATTERN: #57 

2.3 LEGEND FILTER  
Context: Multiple lines are being displayed in a line chart on a mobile device. In order 
to reduce overwhelm the user needs a method of interaction to hide or display 
individual lines on the chart.  
 
Problem: In situations where there are multiple lines on a mobile visualization, the 
interface might become too cluttered to gain any insights out of it. In such cases, the 
user would want to manually filter display of a few less important lines to focus on 
more relevant ones for comparison. However, adding more filtering elements to the 
small mobile screen can add to the clutter and make it difficult to interact and 
consume data from the chart.  
 
Forces: This problem is tough to solve due to the following reasons:  
• Small Screen Sizes: Adding an additional filter element can be challenging due to 
the lack of space on the screen. When working with small mobile screens it becomes 
necessary to keep the number of elements on the screen as low as possible. The 
interface could get quite cluttered especially when the filter has a large number of 
options. While a filter itself is an additional element, the number of options on the 



element (number of lines) would be an additional aspect that could add to the clutter 
of the interface. This is because in some cases the number of lines could be quite 
high.  
• Limited Interactive Features: Unlike desktops, mobiles have a limited set of 
interactive options. While there are options like swipe and pinch, this requires the 
use of additional elements to signify the same. These additional elements can add 
to the clutter on the screen. This also adds more steps for the user, when performing 
the filtering task.  
 
Solution: Create an interactive legend with checkboxes or an equivalent interaction 
that allows users to enable or disable the legend elements. Control visibility of a line 
in the line chart according to the state of the corresponding legend element.  
 
As the legend would be displaying the same data as a filter element, a single element 
can be used to reduce repetition of data as shown in Figure-3. Though there is an 
additional function of filtering that needs to be added, the same is incorporated into 
an existing element (legend) so as to avoid the need to add an additional element. 
The design of the legend should also be scalable as there is no limit to how many 
data points would need to be represented.  
 
This can be done by making the list scrollable and then sorting the list in a logical 
order for example alphabetical, numerical etc. As most users would only want to 
enable a few options, users should be allowed to deselect all at a click in cases of 
high number of options. Users would have to tap on one of the lines being shown on 
the legend, which in turn will toggle the display of the related line in the multi-line 
chart.  
This method will hence help optimize space utilization and reduce the possibility of 
clutter on the interface.  
 
Figure-3 outlines the solution of LEGEND FILTER pattern: user interface structure 
and interaction. 
Design 
• Design the core chart in a conventional manner with a chart area and an interactive 
legend 
• Add a signifier to the legend (like a checkbox or toggle switch) 
Interaction 
• User taps on a legend element to toggle the related line's visibility accordingly 
• The signifier updates according to the current state upon tapping of the legend 
element 



 
Consequences: Key benefits (+) and liabilities (-) of this pattern are as follows:  
+ Removes the need to add an additional element as the existing legend element is 
used optimizing space utilization  
+ Eliminates the need to perform additional steps to filter data, as an element that is 
displayed upfront is reused  

− A large number of options lends itself to confusion, particularly if the layout 

and arrangement of options is not well managed. Hence, sorting and layout 

needs to be given extra attention keeping in mind user’s context to avoid 

confusion.  

 
Known Uses: In the CPU utilization chart as depicted in Figure-4, along with CPU 
usage, the system also displays CPU usage predictions and average CPU usage 
data. Users may need to compare a combination of two or three trend lines (For 
example, CPU and average, CPU and prediction 1, prediction 1 and prediction 2 and 
so on). Check boxes provided next to the category names in the LEGEND FILTER 
can be used to toggle the visibility of respective lines represented in the legend. 
Thus, it was possible to enable and disable the display of lines allowing users to 
reveal only the relevant values for comparison.  
It was observed, that the existence of an upfront filter option on the legend itself, was 
very intuitive to follow. Users were able to enable and disable the display of lines 
with lesser effort and time as it required lesser number of steps to complete. 



 
This pattern is also applied as a feature in various javascript libraries like ZingChart 
[11], Highcharts[13], FusionCharts[15], plotly [18] and amCharts[17]. 

PATTERN: #58 

2.4 SELECTION BRUSH  
Context: A line chart containing data for a large timeframe is displayed on a mobile 
device. The user wants to investigate a certain section in the timeframe without 
losing perspective of the entire chart.  
 
Problem: While investigating a certain section in the chart the user may not want to 
lose perspective of the overall big picture. Enabling this can involve displaying more 
than one version of the same data simultaneously on the same screen. This however 
can be challenging as there would be a need to display more elements and 
interactions on a small screen making the overall visualization cluttered and 
inconvenient to use.  
Forces: This problem is tough to solve due to the following reasons:  
• Small Screen Size: As mobile screens are much smaller than those of a desktop, 
it becomes challenging to add more elements and details on the same view. The 
interface can easily get cluttered and confusing for users. 
• Need to balance details and overview: Getting granular details and at the same 
time not losing the high level view are contradictory in nature. This contradictory 
nature makes even the simplest of charts difficult to design when attempting to meet 
this need.  
• Limited Interactive Features: As mobiles have limited interactive features, 
interactions can be challenging. Incorporating interactions like swipes, pinch and so 
on would also need additional elements to signify the same and would inevitably 
lead to a lot of movement of the interface.  



 
Solution: Add a miniature representation of entire chart below the chart. Allow users 
to select and pan specific areas by dragging over the miniature representation. 
Update the main chart to display the selected area in greater detail. As the brush is 
a miniature version, it does not need a lot of place. The visibility of the entire chart 
in a miniature form gives the user much more context about the section being 
inspected. User can understand trends within as well as out of the selection, 
determine causes for any deviation in chart trends and also understand the current 
location of the section within the entire chart itself. 
 
Design 
• Design the brush element to be a smaller replica of the entire chart 
• Place it below the main chart 
Interaction 
• The user drags his/her finger across the brush to make a selection 
• The main chart area projects the selected section and displays all granular details 
in that section 
• User places the finger on the brush’s selected area and moves to pan the selection 
 

 
 
Consequences: Key benefits (+) and liabilities (-) of this pattern are as follows:  
+ Combines two functionalities, that is, displaying the entire chart and allowing the 
user to select relevant sections in the same element, thus reducing clutter and 
optimizing space utilization  
+ As the brush is displayed upfront, users can directly interact with it, and also use 
it to compare the detailed version with the big picture.  

− Making very precise section selections can still be challenging, especially 

when the range of the data is huge and, in comparison, the selection is smaller. 

The process can however be made a little easier using the pinch and zoom 

method to refine the selection further.  

 
Known Uses: As shown in Figure-6, the chart displays CPU usage data for six years 
with additional measures such as predictions and average data. In this chart, users 



may need to investigate specific sections across the timespan in detail. For example: 
a particular month in a specific year, an entire year, a custom period etc. Users can 
drag across the brush to select specific areas. The main chart area would update to 
display details specific to the selected timeframe. It was observed that users 
navigated different sections of the timeframe easily. They were also able to 
understand specific trends better with the context provided by the miniature version 
of the entire chart. 
 

 
Various JavaScript libraries have also applied this pattern as a feature. Some of 
these libraries include ReactD3 [23], ZingChart [11], Highcharts[14] and 
amCharts[16]. 
 

PATTERN: #59 

2.5 RESPONSIVE DATA GRID  
Context: On mobile screens, charts are used for visualization and a user wants to 
see detailed data of the chart upfront.  
 
Problem: In cases where the user wants to quickly compare multiple data points or 
there are minor differences in values of a line chart, users may want to see all data 
upfront. However, displaying all data on the visualization can lead to an almost 
useless visualization as it would be tough to consume the data in such form. In such 
scenarios, users generally expect a table along with the visualization so the data can 
be navigated and consumed as the user deems fit. However, displaying a 
conventional table along with the visualization would be challenging due to the 
limitations of mobile phones.  
 
Forces: This problem is tough to solve due to the following reasons:  
• Small Screen Size: As mobile devices have much smaller screens, high amounts 
of data cannot be displayed to the users. Granular data would appear extremely 
close to or even overlapping each other when displayed on a small screen. It would 
be tough to derive any insights in such cases. 
• Large amount of Data: Multi-line chart data can get quite complex as it would be 
data about multiple entities (lines) across a variable timeline (often even years). 



Hence, visualization would be equally complex, if all granular data was displayed at 
one time on a small screen.  
• Legibility: As a large amount would have to be displayed on a small screen in a 
single visualization, they would appear extremely close to each other. This would 
make the data illegible.  
• Orientation: Users might hold the device in either landscape or portrait mode. This 
brings in variation as the length and breadth of the available viewport interchange 
the values. In such cases, the entire solution would need to be flexible enough to 
accommodate this variation.  
• High Variation in data: As the data itself is very unpredictable, it would be tough to 
budget dedicated space for each data point. The amount of data points on a line, 
number of lines, variation in the trends of each line and values of each data points 
can differ vastly from chart to chart and hence would need a flexible solution.  
 
Solution: Display a toggle button along with the chart that allows users to toggle 
between a chart view and a RESPONSIVE DATA GRID view. For the RESPONSIVE 
DATA GRID view, display the same data in the form of a table in landscape mode 
and a list in portrait mode.  
 
The table would also adjust its formatting depending on what the screen size and 
orientation of the mobile phone is. This would keep the data accessible in a 
comparatively simpler and easier form. The toggle button would also make it easier 
for the user to quickly navigate between the two versions of data display, thus 
making it easier to view and understand the data as well as the visualization. Figure-
7 illustrates the responsive data grid pattern in detail.  
Design 
• Design the button such that it toggles between "grid view" and "graph view" 
depending on the current view 
• Display data in the form of a table or data list depending on screen size and device 
orientation when in table view the data must be displayed 
Interaction 
• The view toggles between grid and graph when the user clicks on the 
corresponding button 
 
Consequences: Key benefits (+) and liabilities (-) of this pattern are as follows: 
+ A smart table responding to size and orientation would display information in a 
clean and orderly format irrespective of screen size 
+ It would be easier for users to read and interact with the data  

− User would have to scroll a lot horizontally for huge amounts of data, and may 

lose perspective 

− Not suitable for multi-dimensional data 

 
Known Uses: Figure-8 depicts the use case where CPU usage data is displayed for 
six years. This data is served in the form of a chart and also in the form of a smart 
table, on demand. 



 
In some cases, the user would want to view precise data for CPU usage, average 
as well as predictions for a large timeframe like a few months or even years. On 
clicking the "grid view" button, data regarding CPU usage, cluster average, 
predictions for any selected timeframe appears as a table or list depending on the 
device’s screen size and orientation. The data would display as a table in landscape 
mode and a list in portrait mode. It was observed that users found it easy and intuitive 
to read contents from the table/list alternative.  
 
This pattern is also been applied as a feature in various JavaScript libraries like 
slacktable [19], Basic Table [20], Responsive Tables JS [21] and Responsive [22].  
 
 

  



S12 - ARTICLE: PATTERNS OF TRUST IN UBIQUITOUS ENVIRONMENTS 

 

PATTERN: #60 

Pattern name: Trust and Authentification **  
 
Pattern Categories: Expectations, Moral principles Illustration: A user wants to 
authentificate himself to enter a room. In order to do so he must identify himself to 
the system. This already assumes that a trust between the user and the system is 
established.  
 
Problem (When used): During the authentification process, it is important that the 
trustor (human or machine) trusts the trustee (machine).  
 
Context: Web-based environment: Imagine a mobile or desktop web-application 
where users have to authenticate themselves before they can use the systems. 
Ubiquitious environment: Imagine a ubiquitous application where users are 
authenticated automatically.  
 
Forces:  
-Security issue: Authenticator can be faked or forgotten.  
-Privacy issue: The system should not provide personal information without the 
accordance of the user.  
 
Solution (How):  
Exchanging Signals: Giving a reason that the trustor might trust the trustee.  
Give early feedback about the system state, i.e. whether the authenticator is 
available and works. To improve understandability and credibility, give the user a 
simple and straightforward advice how to use the authenticator.  
Examples: (1) A user shall enter account data but needs to trust in the webservice. 
An indication might be to use a secure webpage so that the user can check the 
issuer of the security certificate. (2) A user shall be authenticated automatically by 
voice which allows her to enter a room. She needs to trust that the device only 
allows her in the room but not informs a third party that she entered the room 
(privacy protection).  
Trusting Action: Establishing a trust relationship: The trustor risks that his trust 
action will not be fulfilled because the trustee might defect his request or action.  
With respect to understandability, follow typical authentication processes known 
from similar systems. To improve reliability and understandability, ensure that 
similar processes are designed in the similar way. Give feedback by reacting to the 
user action. Design for error to improve fault- tolerance. To improve security, use 
more than one and an alternative authenticator.  
Example: Instead of using one authenticator which can be forgotten or faked, the 
application can use several authenticators. The application can check IP address, 
user name, user password, and might ask a security question.  
Fulfillment: A trust relationship is established, and the trustee fulfills the trustor's 
request.  
The system should work properly and correct. Give feedback that the request was 
fulfilled. If not, give direct and simple advice to improve understandability and 



credibility. 
 
Related Patterns:  
Trust and Authentication is the parent pattern of Trust and Identification and Trust 
and Authorization. Patterns in external pattern languages are for example 
Checking for Correctness, Retrieving Forgotten Passwords [Bass:2001] and User 
Profiles [Folmer:2003].  
 
Known Uses (Examples):  
Online Banking, Mobile Banking, Digital Signatures  

  



S13 - ARTICLE: RUCID: RAPID USABLE CONSISTENT INTERACTION DESIGN 

PATTERNS-BASED MOBILE PHONE UI DESIGN LIBRARY, PROCESS AND TOOL 

 

PATTERN: #61 

Name: 
Soft key Window - Sample Widget pattern 
 
Problem  
User needs to access additional functions that can be performed on a 
screen. 
 
Context  
For a given Screen, a User has more number of actions possible than the 
maximum number of Soft keys. 
 
Solution  
One of the options that can be accessed through a softkey can provide 
gateway to multiple options. The User can move to these options and 
select a desired one. 
 
Rationale  
A limited number of Softkeys can be displayed at any one time. A dedicated key 
cannot be assigned to each option because: 
1) The options and their number keep changing depending on the screen. 
2) The surface area of mobile is small and limited. 
Using a single key to access a variable sized list allows for any number of items to 
be accommodated. 
 
Examples 

 
Related Patterns 
Softkey, List, Scroll 

S14 - ARTICLE: SPATIAL DATA AND MOBILE APPLICATIONS - GENERAL 

SOLUTIONS FOR INTERFACE DESIGN 



 

PATTERN: #62 

Name: 
Infinitive Area + Context. This pattern extends the Infinitive Area.  
 
Problem:  
A complex and/or interactive visual information that should be presented as a single 
image. Consider the need to convey a lot of specific spatial information - either of 
homogeneous or heterogeneous type but interconnected in some way – that are 
located in offscreen space.  
 
Solution:  
The solution is to display coloured visual metaphors, which provide information clues 
about different sectors of the off-screen space. Use different colour intensities or 
dimensions to give qualitative and quantitative information about objects located in 
the corresponding off-screen sector.  
 
Variations:  
Multimodal Infinitive Area + Context Infinitive Area  
 
Interaction Details: 
When users change the spatial focus the information represented by the visual 192 
metaphors are automatically updated.  
 
Presentation Details: 
The visual metaphors position must be significant. It gives intuitive information about 
directions. In a general way they can be inscribed along the borders of the view of 
the application that in many cases corresponds to the whole screen of the device.  
 
Antipatterns:  
Use caution with the size of the metaphors. Graphic objects which are too small may 
be misunderstood by users. Be careful with the number of the graphic objects. A 
large number may reduce the usability of the ordinary user interface. Use Itten's 
theory to choose the right colour combination of the contiguous graphic objects. A 
wrong combination may make users confused.  
 
Examples and figures: 
Consider a high resolution image where the subjects are human faces. Supposing 
that the software automatically recognizes the faces as points of interest, the frame 
can guide users towards them. (fig 8)  
Consider a spread text like the web page of a newspaper wherein users look for a 
particular word through the appropriate search tool. A frame can guide users to find 
the word in the text, the colour intensities could give information about the number 
of the words in the given direction or the distance from the current view. (fig 9)  
Consider the case when people use a map application to find restaurants and bus 
stops around them in a range of 3 km. Restaurants and bus stops are two different 
categories of POIs. Two nested frames – each one related to a specific category of 
POIs – provide users with information about the directions to take. (fig 10)  



In each case the colour intensities of a given portion of the adopted visual metaphor 
can give information about different qualitative elements such as the distance from 
the current focus, the number of elements located outside the screen or a 
combination of them. 

 



 

 



PATTERN: #63 

Name: 
Multimodal Infinitive Area + Context. This pattern extends the Infinitive Area + 
Context.  
 
Problem: 
Consider the need to support users through different senses (to deal with diverse 
users capabilities or with extraordinary environmental situations).  
 
Solution: 
The visual metaphors are associated with auditory or vibro-tactile feedback. Use 
different sound sources for each metaphor or modulate tactile vibration.  
 
Variations: 
Infinitive Area  
Infinitive Area + Context  
 
Interaction Details: 
When users change the spatial focus the information perceived changes 
accordingly. Users interact with the multimodal interface either performing gestures 
on the screen, or triggering the movement sensors off or through the GPS module. 
Presentation Details Different sound sources must be clearly discernible as well as 
vibro-tactile modulation.  
 
Antipatterns: 
Use caution with the usage of vibration, it may annoy users.  
 
Examples and figures: 
Consider the case when a visually impaired user needs to orient himself while 
walking. He can use a mobile map application assisting his impaired sight with 
sounds and vibrations triggered off by his touch on the screen or his movements.  

  



S15 - ARTICLE: SPEECH AUGMENTED MULTITOUCH INTERACTION PATTERNS 

 

PATTERN: #64 

Name: 
AUDITORY MODE SWITCH  
 
Intent: 
Use voice commands to provide mode information to determine the exact operation 
semantics of an user interaction.  
 
Context: 
A number of operations on common operating systems require mode information to 
determine the exact operation semantics. This mode switch is usually temporary in 
nature and only maintained for the duration of the usersystem-interaction. On 
desktop computers it is commonly achieved with key presses. For example, when a 
user drags a file object, the CTRL-key is used to determine whether the file should 
be moved or copied.  
 
Problem: 
Touch-operated devices often do not come with physical keyboards that could be 
used to provide (temporary) mode information to ongoing operations (cf. VOICE AS 
TEXT INPUT; fallback strategies like explicit mode switches or mode selection 
based on timing suffer lower efficient. Thus, the problem remains, how the user can 
be enabled to (temporary) switch the mode of an ongoing operation, e.g. drag&drop, 
with touch based systems.  
 
Forces: 
—Some operation, e.g. drag&drop, may require additional input to give the operation 
a meaning.  
—A second mouse button or keyboard does not exist for touchscreens.  
—A popup-menu requires an additional operation and is thus less efficient.  
 
Solution: 
The solution starts after the user started to drag an object. The start of the dragging 
operation is used to start the recognition process and expect a spoken command 
from the user to give the drag operation a meaning. To implement this strategy, 
consider the following:  
(1) The user performs a multitouch operation, e.g. drags an object.  
(2) Expect a spoken command during the drag operation to select the mode of 
operation, e.g.copy.  
(3) Visualize the selected mode.  
(4) In case of permanent recognition errors, fall back to show a popup-menu to select 
the mode.  
 
Consequences: 
-Provides an efficient way to switch the mode 
-Mode can be flexibly changed during the drag operation 
-Can be conflicting for multiple users  



 
Known Uses: 
The Eee PC [Asus ] is a lightweight PC that can be operated by touch and speech. 
Supported by the Windows 7 operating system it is possible to drag an icon with the 
finger and utter the command Show context menu to emulate the right mouse click. 
As a consequence, a popup menu appears from which the user can select an item 
by simply speaking the label.  
 
Related Patterns: 
Can be combined with VOICE-BASED DISTAL ACCESS to move the target object 
into the user’s reach 
 

 

PATTERN: #65 



Name: 
VOICE-BASED DISTAL ACCESS 
 
Intent: 
Enables the user to efficiently manipulate and link objects beyond his/her immediate 
reach. Context As noted in section 1.2, large displays are very efficient for navigation 
in large datasets. However, when touch input is used to allow easier collaborative 
situation exploration or collaborative decision making, some of the objects displayed 
on the screen may be out of reach for a user who desires to manipulate them or link 
them to other objects (because users have to stand close to the display to use touch-
input).  
 
Problem: 
Touch interaction is a natural and efficient means for manipulating objects as long 
as they are within immediate reach. For objects beyond immediate reach, the user 
either has to change his/her physical location or revert to zoom-and-pan navigation. 
As the latter were found to be inferior to physical navigation [Ball et al. 2007], the 
question arises how the manipulation of objects beyond immediate reach can be 
enabled without requiring the user to move larger distances, but also without 
reverting to a zoom-and-pan interface? 
 
Forces: 
—Efficient touch interaction requires that objects are within the user’s immediate 
reach.  
—Physical movement (of users) towards an object can be time consuming.  
—The physical dimensions of the display may exceed the size of the user.  
—Resorting to voice-only interfaces may decrease efficiency, i.e. the exact 
description of distal objects can be time-consuming; relevant meta-data for the 
description may not be visually present.  
 
Solution: 
If an object is out of reach, the user can provide a description of the targeted object 
using natural language: to avoid the potentially time-consuming comprehensive 
description of the targeted object, the user can use an incomplete description which 
will subsequently be moved into his immediate reach. Using touch- input the desired 
object can then be selected without the need for a comprehensive description via 
speech. To implement this strategy, consider the following:  
(1) The user provides a (potentially incomplete) description of the desired object by 
using attributes from its meta-data (e.g. "last modified", "object/file type"), or its 
location on the screen (e.g. "located in sector x" when a screen grid is used).  
(2) Mark those objects that match the current description and project them into the 
users immediate reach (maintain the original objects’ positions for other users).  
(3) The user selects the desired object, and manipulates or links it to other objects 
via touch-interaction.  
(4) Once the user confirms he/she has completed his operation, remove the 
projected objects.  
 
Consequences: 
-Objects out of reach can be manipulated. 



-Selection based on meta-data can gain new insights into data. 
-Using different types of meta-data, users can progress slowly from novice to expert 
with object selection (e.g. using location-based specifications at the beginning, but 
modification-dates or even combinations with more training). 
-May be cumbersome to describe the location exact enough.  
 
Known Uses: 
While targeting rather standard desktop PCs instead of devices with very large 
displays and geared more towards mouse- instead of touch-input, the Windows 
mousegrid [Microsoft ] can serve as an example for this pattern. The mousegrid is 
invoked by the spoken command mousegrid and partitions the screen into nine 
sectors which can be addressed by their numbers. Using click Xth sector, it is 
possible to navigate nearer to the desired target. For systems with large displays 
and touch control this could be made significantly easier by moving the desired 
sector into the range of the user and proceeding further via touch control.  
 
Related Patterns: 
VOICE-BASED DISTAL ACCESS is a concrete implementation of the (rather broad) 
EXTENDING REACHABILITY pattern [Remy et al. 2010]. 
 



 

PATTERN: #66 

Name: 
VOICE AS TEXT INPUT 
 
Intent: 
Facilitate text input in situations where standard keyboard input is not feasible or not 
efficient.  
 
Context: 
Many touch-operated devices do not feature a physical keyboard. When text input 



is required, fallback solutions, e.g. soft keyboards, have to be employed.  
 
Problem: 
While touch input is quite efficient for selecting and directly manipulating objects, 
touch devices often exhibits less than optimal performance for text input. Especially 
for large vertical touchscreens or multi-user settings on interactive tabletops, the use 
of physical keyboards is often not feasible, or, at least, inconvenient. Soft keyboards, 
which have commonly been used as a replacement, lack tactile feedback and are 
tedious to use in vertical orientations. Speech input, on the other hand, need trigger 
points to distinguish between inter-personal communication, commands and actual 
text input.  
 
Forces: 
—Physical keyboards are not available e.g. for touch devices.  
—Physical keyboards or soft keyboards require additional space.  
—Vertical touch displays may not offer a convenient storage for a physical keyboard 
(near to the display).  
—A typist may not be available or too expensive.  
—Speech recognition is error prone and may require user input for word 
disambiguation.  
—Speech is asymmetric, i.e. humans can speak faster than they type and listen 
slower than they read.  
—Text input via soft keyboards is usually less efficient compared to physical 
keyboards.  
—Vertical touch displays make text input via soft keyboards uncomfortable.  
—Soft keyboards cover display space, thus making it unavailable to information 
presentation.  
—The available space should be used to display information.  
—Current operating systems do not support concurrent text-input of multiple users 
by multiple keyboards.  
 
Solution: 
For objects which allow text input (e.g. for labels or large portions of text as part of a 
document), the user can select the respective input region. Upon activation of the 
text input region, the speech processor can be activated and the desired text 
supplied via voice-input. Given separate voice input channels (e.g. using individual 
headsets) and user tracking facilities, this strategy can also be applied for multiple 
users concurrently. To implement this strategy, consider the following:  
(1) Watch for events that indicate an input region accepting text has become active  
(a) If there is only a single voice input channel, activate it.  
(b) If multiple users are present and the user’s identity is known, activate the 
respective voice channel.  
(2) Start voice recognition and translate voice into text until the user finishes (i.e. the 
text input region becomes inactive again).  
(3) Transfer recognized text into active input region.  
 
Consequences: 
-Provides an alternative way to enter text when physical keyboards are not 
accessible or cumbersome to use 



-Speech is more efficient than typing for text input [Cohen and Oviatt 1995] 
-Given separate voice-channels, multiple users can input text simultaneously, 
increasing overall productivity 
-Requires an error correction strategy  
 
Known Uses: 
This pattern has been implemented in mind mapping scenarios, where the user can 
point somewhere and utter a word to enter the text. One of these implementations 
is WordPlay [Hunter and Maes 2008].  
 
Related Patterns: 
Can be combined with VOICE AS PRIVATE OUTPUT CHANNEL when multiple 
users are involved an private information is also required for reference. Errors can 
be handled via TOUCH-BASED ERROR CORRECTION. PEN INPUT DEVICE, 
PHYSICAL KEYBOARD or ON-SCREEN KEYBOARD as described in [Remy et al. 
2010] offer alternative ways to enter text. Expected to be more suitable with TILTED 
TABLE than with a LARGE COLLABORATION TABLE [Remy et al. 2010]. Offers 
separate input-channels for different users as requested in USER IDENTIFICATION 
[Remy et al. 2010].  
 

 



PATTERN: #67 

Name: 
VOICE AS PRIVATE OUTPUT CHANNEL 
 
Intent: 
Provide a separate channel for the output of private information on shared displays. 
  
Context: 
Large screens are suitable means to display shared visual content, which can be 
consumed by all participants and enable collaborative work and simultaneous 
interactions of multiple users. A common strategy to provide feedback to the users 
is the additional use of auditory feedback, e.g. to indicate errors.  
 
Problem: 
When multiple users engage in an interactive session at a shared display, 
information is public by default. While this is usually desired for shared visual 
content, this is not necessarily wanted for shared audio content. The spatial 
character of audio does not allow for a separation of the delivered information as it 
is possible in graphical interfaces through the means of a PRIVATE SPACE [Remy 
et al. 2010]. It has also been shown that simultaneous audio feedback can confuse 
the user [Everitt et al. 2004] How to provide individual users with separate channels 
on a shared display?  
 
Forces: 
—Information that is relevant for an individual (only) should not be exhibited via the 
shared display.  
—Some information is interesting for all.  
—Semantically separated tasks should be spatially separated [Tse et al. 2004]. —
Individual feedback to specific operations may be desired.  
—In collaborative settings, the users are not always aware about the interaction of 
their peers [Hancock et al. 2005]  
—Audio output to other participant’s actions distract other collaborators.  
—Audio-based feedback can be useful in the absence of haptic feedback.  
—Headsets block the users ear and hinder her from collaborating with others.  
 
Solution: 
At a shared display, information or feedback for specific actions directed at a specific 
user can be supported by using voice output via individual audio channels for the 
respective user. To implement this strategy, consider the following:  
(1) Supply users with individual audio channels, e.g. via mono-aural bluetooth 
headsets  
(2) The USER IDENTIFICATION pattern can be employed to identify individual 
users’ interactions.  
(3) Use the individual audio channel to redirect feedback while interacting with the 
objects.  
 
Consequences: 
-Provides a way to present individual information or feedback for specific actions to 



individual users at a shared display. 
-Can also be used to deliver confidential information (a technique called attribute 
gates can be used to quickly set the corresponding access rights [Sulaiman and 
Olivier 2008]). However, this would require in depth thoughts solutions to determine 
the privacy relevance of information.  
-Users are still able to collaborate with others.  
-Audio information is transient, thus information needs be remembered by the 
respective user, putting additional cognitive load onto this user.  
-Requires headset for each user. 
 
Known Uses: 
The work of Morris et al. [Morris et al. 2004] show that individual audio channels can 
be used to the benefits of collaborative tasks on a shared touch display. Even when 
the information exhibited via the individual audio channels is not strictly private, 
these channels allow an individual participant to listen to information (music in the 
case of the study) without disturbing others.  
 
Related Patterns: 
Uses USER IDENTIFICATION [Remy et al. 2010] to identify the user. Can be 
combined with VOICE AS TEXT INPUT CHANNEL to reuse the headset for text 
input. Offers an alternative solution for some privacy as it is described for graphical 
media in PRIVATE SPACE [Remy et al. 2010] for audio. 
 



 

PATTERN: #68 

Name: 
TOUCH-BASED ERROR CORRECTION 
 
Intent: 
Provide an easy way to select the desired word, when speech recognition fails. 
 
Context: 
The use of speech enables the user with efficient means to enter their data or to 
issue commands which is exploited by all of the patterns in this language. This 
statement is true as long as no recognition errors occur. 
 
Problem: 
Speech recognition is error prone and may lead to new errors when the user tries to 
correct the error. Additionally, voice based error correction turned out to be very time 
consuming. A single misrecognized word may lead to the situation that the system 
is not able to determine the user goals. Here, an efficient way of correcting the 
misrecognized parts of the input is needed. How to disambiguate unclear speech 
recognition results? 
 



Forces: 
—Efficient speech based interaction requires a high recognition accuracy. 
—Voice based error correction is time consuming and may lead to an error spiral if 
new errors occur during the correction phase [Schnelle-Walka 2010]. 
—Users need an efficient means to correct spoken input errors. 
—Multimodal error correction is faster than unimodal correction by respeaking 
[Suhm et al. 2001]. 
—Displaying different recognition hypotheses requires additional screen space. 
—The available space should be used to display actual work artifacts. 
 
Solution: 
The solution deals with a visualized representation of the different recognition 
hypotheses as a word graph, also know as word lattice. The user can use touch to 
rearrange it so that it matches the desired utterance. To implement this strategy, 
consider the following: 
(1) After the user uttered a phrase, the system visualizes the possible recognition 
hypotheses as a word lattice if there is low confidence in the recognition result. 
(2) Add touch based interaction to allow the user to adjust the displayed recognition 
hypotheses as wanted (e.g. by using multitouch marking menus [Lepinski et al. 
2010]). 
(3) End the correction phase either e.g. after the user dragged the lattice to the target 
input location. 
 
Consequences: 
-Easy and intuitive way to correct the spoken input. 
-An input can be accepted although it had a low confidence score. 
-Efficient means of correction recognition errors. 
-Can be time consuming when error rate is high. 
-Cannot be applied when speech recognition fails completely . 
-Cannot be applied when speech recognition did not detect desired word as a valid 
hit. 
-Limited suitability for mobile settings due to the limitations of the available screen 
space. 
 
Known Uses: 
Huggins et al. describe a system that visualizes the word lattice after the recognition 
process [Huggins-Daines and Rudnicky 2008]. The user can select the utterance 
using touch gestures that have been simulated by a mouse. 
 
Related Patterns: 
Can be combined with VOICE AS TEXT INPUT CHANNEL as an error correction 
strategy. 



 
 

PATTERN: #69 

Name: 
SELECT BY TOUCH, OPERATE BY VOICE 
 
Intent: 
Combine the strength of touch (easy selection) and voice (quick shortcuts to 
commands) to allow for an efficient 
interaction. 
 
Context: 
Objects displayed on the screen can be manipulated by touch-based interaction at 
your finger tips. Usually, there are multiple actions that the user may perform from 
which she has to select the wanted action. 
 
Problem: 
Command activations in multitouch scenarios are usually implemented by gestures 
[Dietz and Leigh 2001; Wu and Balakrishnan 2003] or menus [Brandl et al. 2008; 
Wu and Balakrishnan 2003]. However, gestures are not always natural and must be 



learned and memorized [Wobbrock et al. 2009] which make them suitable only for 
only a very limited set of of commands. Menus do not have this limitation but 
consume additional space on the display and ”. . . are potentially awkward to use 
with finger touches”[Hesselmann et al. 2009]. How to efficiently select and 
manipulate objects on the screen with a low learning curve and without the need for 
additional space on the display? 
 
Forces: 
—Exact definition of relevant object via voice can be cumbersome. 
—Selecting an object by touching it is a natural and efficient way to identify an object. 
—Manipulating objects by gestures is not necessarily intuitive. 
—Voice commands provide convenient shortcuts to operations. 
—The system needs an indicator to distinguish between conversation among the 
collaborators (or to others passing by) and spoken commands to interact with the 
system. 
—Displaying the available actions that can be performed with an object requires 
additional screen space, thus putting additional cognitive load onto the users to 
remember the information. 
—The available screen space should be used to display the artifacts. 
 
Solution: 
The solution uses the information given by the selection of an object by a touch 
interaction to operate with it using voice commands. It exploits a common practice 
in everyday life to reference objects by gestures or touches without explicit naming 
them. From a technical perspective, this also helps to determine when a user may 
issue commands. To implement this pattern, consider a three-step approach: 
(1) Provide handlers for selecting an object on the screen via touch 
(2) Once a selection of an object has been recognized limit the expected commands 
that the user may utter to the valid actions that may be performed with the selected 
object [Weinberg and Harsham 2010]. 
(3) Expect a spoken command from the user and distinguish the following cases 
(a) If the user utters a valid command, e.g. (”Delete”), execute the corresponding 
action. 
(b) If the user does not say anything within a predefined time-span or the user started 
a gesture or uses another action (e.g. releases the object), it is likely that the user 
does not want to speak an command to execute an action. In this case, deactivate 
the speech recognizer. 
(c) If an invalid command is detected, either if the user used a wrong command or 
speaks to another person, use RAPID REPROMPT [Schnelle-Walka 2010] to give 
the user another try and restart by expecting a spoken command. 
 
Consequences: 
-Provides a way to perform voice operations on an object without the need to 
explicitly reference via name. 
-Can also be applied to implement HIGH PRECISION INPUT [Remy et al. 2010] 
which is limited to graphical interaction. 
-Using touch selection prior to voice command is proposed to make voice recognition 
easier and more reliable. 
-Voice commands are not visible on the screen and have to be learned.  



 
Known Uses: 
The SELECT BY TOUCH, OPERATE BY VOICE-pattern has been adopted by a 
number of researchers for efficient and natural interaction: While initial work by Bolt 
[Bolt 1980], as well as newer works in the area of emergency management and 
geospatial data [Rauschert et al. 2002], rely on the combination of freehand gestures 
and voice input, others, such as the work of Zhang and Takatsuka [Zhang and 
Takatsuka 2007], quite literally make use of SELECT BY TOUCH, OPERATE BY 
VOICE, using it for a collaborative task on a large interactive tabletop. AT&T 
developed an application for mobile phones where users could touch a point on a 
map that was displayed on a smart phone and utter a spoken command to query for 
restaurants nearby [Johnston 2009].  
 
Related Patterns: 
Can be combined with VOICE AS TEXT INPUT to label previously unnamed objects. 
Can be a successor of VOICE-BASED DISTAL ACCESS if the object can not be 
reached.  
 
Also Known As: 
In the context of groupware and collaborative work, this pattern is also known as 
DEICTIC REFERENCE, see e.g. [Pinelle et al. 2003]. 
 



 
 

  



S16 - ARTICLE: TEST PATTERNS FOR ANDROID MOBILE APPLICATIONS 

 

PATTERN: #70 

3.2.1 Side Drawer UI Test Pattern. 
 
Context: 
The Android OS provides several forms of navigation through its different screens 
and hierarchy. One of these is the Side Drawer (or Navigation Drawer) UI Pattern, 
i.e., a transient menu that opens when the user swipes the screen from the left edge 
to the centre of the screen or clicks on the application icon on the left of the 
application’s Action Bar. Figure 1 depicts an example of this UI pattern, presenting 
an example of an application before and after opening the side drawer. According to 
Android’s guidelines [Android 2015c], when this menu is open it should occupy the 
full height of the screen. 
 
Problem: 
A good Android developer should follow the Android guidelines in order to provide 
the best application possible to 
the end user. One of those guidelines refers to the position and size of the side 
drawer menu. 
 
Forces: 
—It may not be easy to identify when a side drawer is available to be open; 
—It is not trivial to identify the side drawer element; 
 
Solution 
The UI Test Pattern for this type of behaviour is only applied when the side drawer 
exists and consists in opening the side drawer and checking if it takes up all the 
screen height 
1) Test Goal: "Side Drawer position on screen" 
2) Set of Variables V: {} 
3) Sequence of Actions A: [open side drawer] 
4) Set of Checks C: "side drawer takes up all the screen’s height" 
5) Set of Preconditions P: "side drawer available" 
 
Consequences 
—Assurance that the application follows the guidelines for the Side Drawer design 
pattern 
—In case of a false negative, it may provide the user a false sense of correctness to 
the user 
 
Application Candidates 
—Side Drawer [Neil 2014; Android 2015b] (e.g. Vueling4, Booking5, Google 
Calendar6, Google Keep7) 
 



 
 

PATTERN: #71 

3.2.2 Orientation UI Test Pattern. 
 
Context: 
Android devices have two possible orientations: portrait and landscape. When 
rotating the device, the screen of the application also rotates and its layout is 
updated. However, according to AndroidâA˘ Zs Guidelines for testing ´[Android 
2015a] there are two main aspects the developers should test: custom UI code can 
handle the changes and no user input data should be lost. 
 
Problem: 
When the orientation of an Android mobile device changes, the application should 
adapt to this change without loosing any information previously introduced by the 
user.  
 
Forces: 
—The option of changing the orientation upon the deviceâA˘ Zs rotation must be 
enabled on the device ´  
—It may not be trivial to compare different states of the screen because the items’ 
position may change and they may not be visible without scrolling the screen  
 
Solution: 
In order to check the behaviour of the screen rotation, it is necessary to check if the 
screen elements and the previously input inserted data were not lost after rotating 
the screen.  
1) Test Goal: "Data unchanged when screen rotates"  
2) Set of Variables V: {}  
3) Sequence of Actions A: [rotate screen]  
4) Set of Checks C: "user entered data was not lost"  



5) Set of Preconditions P: "orientation change possible and data inserted"  
and  
1) Test Goal: "UI elements available when screen rotates"  
2) Set of Variables V: {}  
3) Sequence of Actions A: [rotate screen]  
4) Set of Checks C: "elements available before rotation are available after rotation"  
5) Set of Preconditions P: "orientation change possible and a screen change 
detected"  
 
Consequences: 
—Assurance that all the screens handle the change in orientation correctly  
—In case of a false negative, it may provide the user a false sense of correctness to 
the user  
 
Application Candidates:  
—Writing an email (e.g., Gmail)  
—Filling a search field (e.g., Youtube) 
 

  



S17 - ARTICLE: TOWARDS USER INTERFACE PATTERNS FOR ERP 

APPLICATIONS ON SMARTPHONES 

 

PATTERN: #72 

4.4 Example Pattern: Nested Forms  
Name: Nested Form Pattern  
What: A nested navigation between a summarized listing of a business object and 
its attributes or a navigation between related business objects.  
Use when: This pattern should be primarily used to establish a navigation link 
between a selection screen (listing, search, filter) and the screen to display the 
attributes of a selected business object. It should be also used to navigate between 
related business objects.  
Why: Due to limited screen size of smartphones it is generally not possible to display 
the attributes of more than one business object. In order to solve this problem the 
Nested Form Pattern should be used.  
How: To implement this pattern a navigation link between the summarized business 
object and its detail view must be implemented. The summarized business object 
should be presented in a selectable cell. It should have an indicator in form of an 
arrowhead to indicate the cell is selectable. There should be a navigation link to the 
detail view when selecting the cell. There should be also a button on the top of the 
details screen that gives the user the possibility to navigate backwards.  
Examples: This example illustrates the nested forms pattern using the SAP materials 
availability application for the iPhone as example. The left screens illustrated a 
selection screen with different materials. By selecting one material its attributes are 
shown. It is possible to leave the attributes screen by selecting the back button.  

 

  



S19 - ARTICLE: USABILITY-IMPROVING MOBILE APPLICATION DEVELOPMENT 

PATTERNS 

 

PATTERN: #73 

2.1 Client-side Multi-Screen Support **  
Interaction Category/ies: User interface presentation, device independence  
 
Context: 
A mobile application that runs on a mobile device with local data storage and logic 
with no or infrequent access to a server. There are multiple mobile devices and, due 
to short innovation cycles, new mobile devices are launched every day.  
 
Scenario: 
A user wants to access the system using his own specific type of device, and he 
expects the application just downloaded to run on his device. It runs, but the content 
is not rendered properly. Another user downloads the mobile application but it does 
not start at all: the mobile platform on his mobile device filtered out the application 
because it could not display it correctly – his device’s screen size is smaller than 
expected by the application developers.  
 
Problem: 
Mobile platforms run on different devices with different screen sizes and resolutions. 
In order to support all user interfaces, and thus usability, application developers have 
to optimize usage of their applications to be displayed on multiple screens. How can 
developers design their applications for correct display on many devices efficiently? 
 
Forces: 
• The heterogeneity of devices and the short innovation cycles in general make 
designing for all devices a time-consuming task.  
• If variants for each device are provided, the application needs too much hard disk 
storage.  
• Mobile platforms manage most of adaptation of an application to the current screen, 
but for a precise control it is necessary to create screen-specific resources.  
• Some scaling mechanisms for resources as images can be CPU-expensive.  
• Height and length of a UI-element (e.g., a button) are usually defined through pixel. 
A screen’s density is defined as pixel per inch, so that a UI-element is displayed 
bigger on a screen with low density than on a screen with high density. Usage Data 
Recorder Unit Test Application Mobile Application Test Suite Client-side Multi-
Screen Support Model-View Controller End User Test Good User Interface 
Presentation Testing Applications Evaluating Designs Main Goals: General Pattern: 
Test and Evaluate Detailed Patterns: Dialog Flow Manager Content Adaptation • 
Application developers have to carefully consider the possibilities of design, content 
and functionality within the small screen area. Screen layout could seem cluttered 
at a smaller device and offer to much unused space on a bigger device.  
 
Solution: 
Design for standard screen sizes and ratio and use a small number of predefined 
media classes that are scaled to the need of the specific device.  



Scaling mechanisms provided by the platform can display applications properly on 
most devices, especially when the screen is the same size or larger. But it may need 
minor adjustments before they display on smaller screens, because of the reduced 
screen area there may be tradeoffs in design, content, and function. The application 
should therefore be designed for a standard screen of intermediate size and medium 
density. For example, Table 2 shows the range of typical screen sizes for mobile 
devices covered by HVGA (320 x 480) as standard screen.  
 

 
The layout defined should be flexible, using relative units and positions, instead of 
absolute pixels. Also, layout containers should not demand fixed positions, and they 
should position their contents flexible. For the exact control of the application's 
design, specific resources should be prepared and provided. Using media variants 
for classes of devices (high, medium, small density classes) also provides a 
compromise between memory and screen optimization. Instead of using a default 
directory, directories named according to the density provide specific resources for 
classes of devices.  
 



 
Consequences:  
[+] Programming effort is minimized when few variants are used.  
[+] Regarding disc storage, providing only few variants for classes of devices needs 
less space than providing variants for all devices.  
[+] If groups of screen-specific resources are designed, media is only scaled a little, 
which is nearly invisible to the user.  
[+] Flexible layout improves results because then positions can be determined 
directly for the device.  
[+/-] Some scaling mechanisms for resources as images can be CPU-expensive: If 
the mobile application creates a resource internally, e.g., a bitmap, and draws 
something on it, it creates bitmaps at the moment when it is drawn (“draw time”). 
Scaling at draw time is more CPU-expensive, but it uses less memory.  
[+/-] Using the relative layout for a standard screen and scaling, the application will 
be layed out nicely for different devices. But if the screen sizes vary a lot, it makes 
sense to think about different versions of the application with different functionalities 
available.  
[-] Design efforts are higher than providing just one variant, because several versions 
of media (images, video) have to be designed.  
[-] Programming effort is higher than providing just one variant, but usability is 
improved. Usability consequences:  
[+] Utility: The application will be displayed correctly when screen sizes and density 
are considered during the design.  
[+] User experience: the application must be displayed correctly for a good user 
experience. As users expect this, there is no additional benefit for them. A correct 
presentation is a basic usability expectation that must be met. If it is absent, only 
then users will notice, and they will not like it.  
 
Example:  
The Android platform supports the developer in two ways: it selects the variants 
automatically based on name conventions, and it provides a scale mechanism. 
Developers could also make use of their own scale mechanism that adapts 
resources to match the display's density.  
 
Related Patterns:  
The parent pattern is MODEL VIEW CONTROLLER which also refers to alternative 
solutions for client/server systems. Alternatives are the DIALOG FLOW MANAGER 



[6] and SERVER-SIDE CONTENT ADAPTATION [7] for server-side multi-channel 
access and the INTERMEDIATE CONTENT ADAPTATION [7] if a proxy is used. 
The application has to be tested, even during development. The patterns of the 
MOBILE APPLICATION TEST SUITE show how.  
 
Known uses: 
Android applications best practice [8] 

  



S20 - ARTICLE: USER INTERFACE PATTERNS FOR MULTIMODAL 

INTERACTION 

 

PATTERN: #74 

4.1 Voice-Based Interaction Shortcut  
Context.  
The user has to select items from a large set. Consider selecting an action from a 
menu or selecting a list item from a drop-down chooser. In this case, this pattern is 
frequently used as an enhancement of Contextual Menu [10] or Dropdown Chooser 
[12]. Either the number of choices is quite large or screen size is scarse such that 
the items cannot be displayed all at once. The interaction device is supporting 
speech input. 
 
Problem.  
Which interaction style allows the user to quickly select the desired item without 
having to perform tedious navigation and scrolling actions? 
 
Forces  
– Selection via pointing requires almost no learning effort. But if the selection options 
are numerous and cannot be presented simultaneously on screen they have to be 
arranged into scrolling lists or hierarchical menu structures. Menu navigation and list 
scrolling may slow the user down.  
– Shortcut keys are a valid alternative for menu/command selection. However, it is 
difficult to assign shortcut characters that are easy to remember to a wide range of 
commands or menu options. Thus, some shortcut keys seem arbitrary and require 
a certain learning effort.  
– Typing meaningful words is easier to learn than shortcut or function keys. The 
users even might not need to type the whole word, because the list can be pre-
filtered on the first few characters. However, typing is not always appropriate: Not all 
users are skilled typers. Typing with mobile devices is very awkward and slow and 
thus inappropriate for accelerating interaction.  
 
Solution.  
Design the system to support speech input to speed up interaction. The user should 
be able to select the desired action or data object by naming it. Especially frequent 
users to whom the commands, options, parameters and item names are well known 
can profit from speech input.  
When there are more than one appropriate alternative wording for the desired action, 
the designer should check which synonyms should be included into the speech 
recognition grammar. User tests, including tests with simulated speech functionality 
might be useful to elicit familiar wordings for some system functionality.  
Even when the designer has elicited familiar wordings, it is not guaranteed that 
especially first time and occasional users are able to anticipate them, too.  
For this, menus and lists should not disappear from the system. Voice-based 
Interaction Shortcut should instead coexist with these and be one of Multiple Ways 
of Input. The wordings used in the visual menus and drop-down lists should be 
identical to the respective speech commands such that the user’s learning efforts 
can be reduced to a minimum.  



After the user has uttered a speech command the system should update the visual 
display in the same way as it would do after menu or list selection. In addition, it 
might be appropriate to provide spoken system feedback, as it cannot be taken for 
sure that the user is looking at the screen when using speech. In this case the system 
adapts its output strategy according to the user behaviour (cf. the pattern Context 
Adaptation).  
Speech recognisers return recognition results based on statistical calculations. 
Sometimes the actual user utterance does not match the best estimate by the 
recogniser but one among the five or ten best hypotheses. The pattern Mutimodal 
N-best Selection handles these cases by displaying the n-best list. The user can 
select from this (smaller) list via pointing. 
With problematic (very large) sets of options, speech recognition is likely to fail. 
Using the pattern Spelling-based Hypothesis Reduction might help: When the user 
inputs a few letters, the list can be filtered and reduced. It might still be too large for 
being displayed as a whole in a selection list, but the speech recognition vocabulary 
could be now small enough for reliable speech recognition.  
To avoid that background noise or private speech is interpreted as input, a push-to-
talk button might be needed. This way, speech input is activated only while the user 
is holding down the button (cf. Tidwell’s pattern Spring-loaded Mode [12]) or during 
a certain time window after (cf. Tidwell’s pattern Oneoff Mode). When Voice-based 
Interaction Shortcut is used in combination with Context Menu [10], the right mouse 
button or the context menu key of the keyboard can serve as push-to-talk button. 
 
Consequences  
– Screen clutter and the need of menu navigation can be minimised by enabling 
speech input.  
– There is no more need for the user to remember arbitrary action-keymappings or 
to obey to strict menu hierarchies.  
– Typing can be reduced to a minimum.  
– If the selection set is large, speech recognition performance may deteriorate, 
especially when there are similar sounding words. Even worse: some wordings 
might be ambiguous within the application context. If this cannot be avoided, the 
application has to provide clarification dialogs. In the worst case, all speed 
advantages might be lost.  
– The users might actually not learn the exact wording of the items they probably 
would like to select in the future. That’s why menus or dropdown selectors, which 
provide the visual context, should remain available as an alternative interaction 
strategy.  
 
Rationale.  
Users prefer speech input to input descriptive data, or to select objects among large 
or invisible sets [132, 133]. This counts especially when the list is large and the users 
know exactly the wording of the item they want to select.  
 
Known Uses.  
NoteBook is a multimodal notebook implemented on NeXT. The user can edit textual 
notes, and browse the created notes. Content editing is only supported via typing. 
Browsing, deleting and creating notes can be done via button clicks or voice input 
alternatively [19]. VoiceLauncher from Treoware enables speech input for Treos, 



Centro, and Tungsten/T3 devices [134]. Microsoft Voice Command can be used to 
enable speech input for Windows Mobile based smartphones (such as HP’s iPAQ 
514 [135]) Using this software extension, the user can bring up the calendar or 
contact details in one interaction step [136]. 
 
Related Patterns.  
This pattern can be used as an alternative or complement to van Welie’s Continuous 
Filter, Context Menu [10], Tidwell’s Autocompletion, Dropdown Chooser, Hub and 
Spoke etc. [12]. In the same way as Dropdown Choosers are used in Forms [11] 
Voice-based Interaction Shortcuts are used to implement Speech-enabled Forms.  
To adapt the system feedback to the user behaviour, the pattern Context Adaptation 
might be used. In addition, Voice-based Interaction Shortcut should not be used as 
the only but as one of Multiple Ways of Input.  
For error handling and avoidance this pattern can be combined with Multimodal N-
best Selection and Spelling-based Hypothesis Reduction. To control recogniser 
activation either Tidwell’s [12] pattern Spring-loaded Mode or One-off Mode can be 
used. 

PATTERN: #75 

4.2 Speech-Enabled Form  
 
Context.  
The user has to input structured data which can be mapped to some kind of form 
consisting of a set of atomic fields. Devices such as PDAs do not provide a keyboard 
for comfortable string input. In other situations the device may support keyboard 
input but the user has only one hand available for interacting with the system.  
 
Problem.  
How to simplify string input in form filling applications, especially in mobile scenarios 
and with small devices, when there is no comfortable keyboard?  
 
Forces  
– Selecting areas in 2D-space is accomplished very comfortably with a pointing 
device but string input via pointing (with on-screen keyboards) is very awkward.  
– Values for some form items (academic degree, nationality etc.) are restricted and 
can be input by using drop-down choosers (comboboxes). But this may lead to 
screen clutter and additional navigation and scrolling.  
– Speech recognition is very comfortable for selecting invisible items but the input of 
unconstrained text suffers from recognition errors. Speech recognition works more 
reliably with smaller input vocabularies.  
 
Solution.  
Let the user select the desired form field via pointing and dictate the content 
subsequently. The speech input vocabulary can be simplified. Only the vocabulary 
of the respective form field plus some generic commands need to be activated at the 
time and recognition errors can be avoided.  
Whereever possible, determine acceptable values for each form field to reduce the 
input vocabulary to a context-specific subset. As alternative to speech input, support 
value selection via Dropdown Choosers and Autocompletion.  



To avoid that the speech recogniser interprets background noise etc. as input, the 
speech recogniser should be activated only when the user is performing input. One 
possibility is, to activate the speech recogniser only as long as the user is holding 
down the pen or mouse button over the desired form field (cf. the pattern Spring-
loaded Mode [12]). Another approach is to activate the recogniser during a certain 
time window after the user has selected the form field (cf. the pattern One-off Mode 
[12].  
 
Consequences  
– The user can combine pointing input via pen, touch-screen or mouse (for selecting 
an input field) and speech input to fill in this form field. Text input via on-screen 
keyboards can be avoided.  
– Navigation and scrolling in drop-down lists can be avoided.  
– Constraining the speech recognition vocabulary to context-specific data for the 
selected input field helps to avoid speech recognition errors.  
– Speech recognition errors might occur anyway. In case of poor recognition 
performance, all speed advantages might be lost due to the need of error handling.  
 
Rationale.  
Users prefer speech input to input descriptive data, or to select objects among large 
or invisible sets [137, 132, 133]. According to Oviatt et al. [138], a structured (form-
like) presentation of the interface reduces speech utterance length and the amount 
of information input per utterance. Thus, the variability of user utterances is reduced, 
which helps to make speech recognition more robust.  
 
Known Uses.  
Mobile Systems such as Microsoft’s MiPad [120, 121, 122] and IBM’s Personal 
Speech Assistant [123] are good examples.  
In MiPad the user can create e-mail messages via Tap And Talk [121]. When the 
user selects the receiver field the speech recognition vocabulary is constrained to 
address book entries. If the user selects the subject or message field an 
unconstrained vocabulary is activated so that the user can input unconstrained text.  
The multimodal facilities offered by X+V (XHTML and VoiceXML) and supported by 
the Opera Browser are heavily focused on this Speech-enabled Form paradigm 
[125, 126, 139, 140].  
 
Related Patterns.  
This pattern is a multimodal extension of Form [11] and the speech-based Form 
Filling [141, 142]. It is implemented using the pattern Voice-based Interaction 
Shortcut in the same way as Forms are implemented using patterns such as 
Dropdown Chooser and Autocompletion.  
Tidwell’s [12] patterns Spring-loaded Mode and One-off Mode can be used to control 
recogniser activation. For error handling, consider to use Multimodal N-Best-
Selection and Spelling-based Hypothesis Reduction. 

PATTERN: #76 

4.3 Speech-Enabled Palette  
 
Context.  



Direct manipulation with graphic applications allows the user to edit visually 
presented objects directly. In order to manipulate these objects the user has to select 
sometimes special tools. In this context, the patterns Canvas plus Palette [12], 
Contextual Menu [10] and Mode Cursor [10] are used. This means that the user has 
to move the mouse out of the manipulation area (the canvas) in order to select the 
desired tool from the palette and then reenter the manipulation area in order to 
proceed the manipulation action. This might be very annoying, especially in drawing 
applications. Problem. How to enable the user to select tools from the palette without 
having to deplace the mouse between canvas and palette or the hand between 
mouse and keyboard?  
 
Forces  
– Both graphic manipulation tasks and selecting tools from a palette are 
accomplished very comfortably via pointing. But performing both subtasks 
alternately several times as is needed in design applications is very annoying and 
time-consuming.  
– Using context menus which are opened on right clicks may reduce but not avoid 
totally lengthy cursor movements. Additionally the context menu (unless transparent) 
obscures the main manipulation area.  
– Using the keyboard instead of the mouse for selecting commands may solve this 
problem in some cases. However, there might arise a new one: The user has to 
change his right hand between mouse and keyboard which is time consuming as 
well.  
– Another solution would be to assign graphic manipulation tasks to the right hand, 
which controls the mouse, and action/menu selection tasks to the left hand, which 
remains on the keyboard and presses shortcut keys to select the necessary tools.2 
But the user would have to remember awkward key mappings and possibly to look 
down to the keyboard to find the desired key.  
 
Solution.  
Allow the user to select tools using speech input. The palette itself should remain 
visible and allow the user to explore the interface. Each tool on the palette should 
have a meaningful name which is made obvious to the user e.g. via tooltip hints. 
These tool names should be used for the respective speech commands to reduce 
the learning effort for the user.  
To control recogniser activation, Tidwell’s [12] patterns Spring-loaded Mode or One-
off Mode might be needed: Speech recognition should be activated only after the 
user has pressed or while the user holds down e.g. the right mouse button. This way, 
the system is prevented from interpreting background noise as speech input. 
 
Consequences  
– The user can select the desired tool via voice input without the need to replace the 
mouse cursor between tool palette and manipulation area.  
– The screen and especially the main manipulation area is not obscured by popup 
windows or menus.  
– The right hand can stay on the mouse and need not be replaced between keyboard 
and mouse.  
– There is no need to remember awkward key mappings or to look down to the 
keyboard.  



– As users are able to use the motor and vocal channels simultaneously, combining 
spoken commands and pointing speeds up interaction significantly.  
– Speech recognition errors might occur. In case of poor recognition performance, 
some speed advantages might be lost due to the need of error handling.  
 
Rationale.  
Studies conducted by Ren et al. [143] have revealed that the combination of pointing 
devices such as pen or mouse with speech input is fruitful in both CAD systems and 
map-based interfaces. This way, interaction performance can be increased.  
Positive results were also found in experiments with S-tgif [114]. This graphic design 
application offers the user keyboard and voice shortcuts for system commands as 
alternatives to pointing gestures.  
 
Known Uses.  
Graphic applications such as VoicePaint [113], S-tgif [114] and Speak’n’Sketch [115] 
are examples of systems which allow the user to select a tool from the palette via 
speech without removing the mouse cursor from the graphics manipulation area.  
 
Related Patterns.  
This pattern makes use of Canvas plus Palette [12], Mode Cursor [10] and Voice-
based Interaction Shortcut.  
To control recogniser activation, Tiwell’s [12] pattern Spring-loaded Mode or One-off 
Mode can be used.  
This pattern is an alternative to van Welie’s Helping Hands [144]. 

PATTERN: #77 

4.4 Gesture-Enhanced Speech Command  
 
Context.  
Some applications require the input of composed commands consisting of several 
parameters. Consider copying one object to another location which consists of 
inputting the command, the object to be selected and the destination. Consider 
setting up an email message: Input the command, input receivers of the message. 
Consider searching a location in a map-based application: Input the command, input 
area constraints (square C 5), input keywords (italian restaurants). 
 
Problem.  
How to enable the user to quickly input composed commands consisting of several 
parameters of different data types (spatial, conceptual, numerical data)?  
 
Forces 
– Complex commands can be input efficiently via typed or spoken command 
languages. But consindering some parameters such as file names, directory 
locations, positions on a city map, users rather remember where these are than how 
these are named internally. This might lead to typing errors. When speech 
interaction is used, users might not know how to pronounce these (partly cryptical) 
filenames or they would pronounce them in a way that cannot be handled by the 
speech recogniser.  
– Inputting spatial parameters or selecting objects displayed on the screen is most 



easily done via pointing. But inputting actions or textual parameters would lead to 
one or more additional interaction steps (button clicks, navigation in menus, scrolling 
through drop-down lists) or screen clutter.  
– Early systems combined pointing gestures with typed natural language input. This 
way, the user was able to select objects directly via pointing and input commands 
and queries with the keyboard. However, the user has to move his hands repeatedly 
between keyboard and pointing devices which slows down interaction.  
 
Solution.  
Let the user interact via spoken language and provide pointing gestures to specify 
locations or interactive objects. Consider folllowing cases:  
– The user selects a file, says “copy this file there” and selects the target location.  
– The user draws a rectangle onto a map and says “are there any supermarkets?”  
– The user clicks the button create mail and says “to Margret Smith”.  
At a first glance, this seems to be simply an application of the pattern Voice based 
Interaction Shortcut. But in the case of Gesture-enhanced Speech Command the 
single interaction steps are seen in the context of a multimodal command language: 
Appropriate gestures and speech commands – which themselves might already 
consist of several parts – are combined into composed commands.  
This requires the application of multimodal recognition technology and grammar 
formats for defining multimodal command languages such as MM-DCG [149] and 
prototyoing frameworks [150, 151, 152] as well as data collection and training 
frameworks for multimodal recognisers [153].  
First time users need a way to explore the interface. That’s why Gesture enhanced 
Speech Command should not be a replacement for alternative interaction styles 
such as direct manipulation but rather be intergrated into them. 3 cf. Shoptalk [145, 
146] and XTRA [147, 148]. 132 A. Ratzka  
 
Consequences  
– Commands and textual data can be input as text.  
– Parameters such as file or directory names, locations on a map etc. can be input 
directly via pointing. There is no need to invent and remember cryptic names.  
– Typing and recognition errors can be reduced as pointing replaces the input of the 
information parts that are hard to formulate as text.  
– The user is able to utter simultaneously spoken language queries and pointing 
gestures: This way, inputting spatial parameters and selecting objects can be done 
using pointing devices. At the same time, the input of textual data can be done via 
spoken language. The user need not change his hands between different input 
devices.  
– Screen clutter, i.e. the need of drop-down menus and popup dialogs which would 
obscure the potentially scarse screen space can be minimised when combining 
pointing with spoken natural language input. There is no need of additional buttons, 
dropdown menus, popup dialogs.  
– Even if user input can be accelerated this way, recognition errors might 
compromise this advantage. Clarification and error handling dialogs have to be 
designed with care. This is especially true when “natural” speech input is supported. 
The system should find a stable way of error handling without discouraging the user 
to make use of efficient interaction styles in future.  
 



Rationale.  
Users prefer speech input to input descriptive data. Pointing devices are preferred 
for inputting spacial or sketch-based data [132, 133].  
Combining direct manipulation with written natural language was shown to be 
plausible for some tasks [146, 154, 155]. A comparison of direct manipulation and 
the multimodal pen- and speech-based interface of QuickSet revealed multimodal 
interaction to be faster [63].  
 
Known Uses.  
This is one of the patterns found in the first multimodal systems. Bolt [156] describes 
a voice- and gesture-based interface which combines pointing with natural language. 
The title of Bolt’s article outlines this pictorially: “Put that there”.  
HOME [157] provides a multimodal interface for home appliances, which takes into 
account special needs of elderly and disabled users and attempts to provide more 
natural communication consisting of speech and free gestures. The user can interact 
by using the touch screen, free gestures and spoken language. These input 
modalities can be combined:  
User: Switch the light on.  
System: Which light?  
User: This lamp? <points to the lamp> 
System: <switches the lamp on> 
The map-based system GEORAL allows the user to input spoken multi-token natural 
language utterances while pointing to the relevant position on the map [158]. The 
user can select a place or an area (by pointing to a single point or encircling a zone) 
while asking questions such as Are there any beaches in this locality?, Where are 
the campsites? or Show me the castles in this zone.  
Further examples are CUBRICON [145], QuickSet [107], MVIEWS [159], MATCH 
[110, 109], SmartKom [160, 161], ARCHIVUS [162], COMPASS2008 [124], RASA 
[163] and DAVE G [164]. 
 
Related Patterns.  
This pattern is together with Location-sensitive Gesture a specialisation of 
Composed Command [11].  
There are similarities to Voice-based Interaction Shortcut but Gesture enhanced 
Speech Command explicitly supports the semantic integration of gestures and 
speech. Furthermore Gesture-enhanced Speech Command combines speech 
commands and gestures that might themselves be already composed of several 
parts. 

PATTERN: #78 

4.5 Location-Sensitive Gesture  
 
Context.  
Some devices support pointing actions being performed with so-called direct 
pointing devices such as graphic tablets and pens. There is no keyboard available 
or the user has only one hand free for interaction and this hand controls the pointing 
device. Speech input is not supported or not appropriate due to context factors.  
 
Problem.  



How to enable the user to input easily and quickly standard commands (such as 
deleting, moving etc.) consisting of selecting items and performing actions on them?  
 
Forces  
– Commands can be input efficiently textually or via speech. Command parameters 
such as the selected files can be mapped onto text, too. But when neither keyboard 
nor speech input is available annoying on-screen keyboards have to be used.  
– Selecting areas or objects displayed on the screen can be done easily via pointing. 
Inputting commands via pointing is possible, too. But this would lead to at least one 
additional interaction step (clicking on buttons, navigating through menus, scrolling 
etc.) and to cluttered screens.  
 
Solution.  
Let the user interact with the system as he would do with paper: draw meaningful 
symbols / pen gestures onto the object of interest – encircle items or cross them out, 
draw arrows and the like. A pattern recogniser transforms the gesture into a 
command. Onset and offset pen positions can be interpreted as positional 
parameters, i.e. they are used to relate the painted command gesture to the 
respective interaction object.  
Pen gestures have to be thoroughly planned. One aspect is that different gestures 
should be designed in a way that they are not too similar and too likely to be confused 
by the system. It might be necessary to restrict the amount of available gestures to 
a few ones, to allow reliable recognition. Furthermore, toolkit-based design support 
might be needed [cf. 165].  
 
Consequences  
– There is no more need to find an awkward textual representation for items 
displayed on the screen. The user does not have to remember strange names, to 
type them in, or to try to pronounce them. He has simply to recognise the desired 
object displayed on the screen.  
– There is no need to require keyboard or speech input.  
– Screen clutter, scrolling and menu navigation can be avoided.  
– The user can input a complex action in one simple step: Drawing a meaningful 
gesture onto an object displayed on the screen leads to opening, copying, deleting 
and the like. In usual graphic user interfaces, the user would have to select the object 
first and then select an action. This would require more steps.  
– The user has to learn and remember a series of gestures. But some users might 
prefer commands instead. The system should provide a command interface as an 
alternative.  
– Gesture recognition is not always fully reliable because of the high variability of 
human gestures. Pen gestures can be misinterpreted: The system can miss user 
input or recognise some, where there is none.  
– Slips of pen can be misinterpreted as gestures and lead to unwanted actions.  
– Although gestures should be designed to be meaningful, first time users will require 
some time of training before mastering the interfaces with all its advantages.  
– When the system supports a wider range of (distinct) gestures, the user is forced 
to remain within a very narrow range of variations for each one of the standardised 
gestures. This increases the learning effort as well as the cognitive load during 
usage.  



 
Rationale.  
Gestures are easy to learn and additionally provide a means of terse and powerful 
interaction, because both position and movement patterns can be exploited to 
convey information [166].  
 
Known Uses.  
QuickSet [107, 63] allows the user to place military units via drawing military icons 
directly onto a map. The form of the icon designates the type of military base and 
the drawing position corresponds to the desired target location. Furthermore 
QuickSet supports specific editing gestures such as for crossing out (deleting) 
objects on the map.  
Further examples can be found in TAPAGE [118] and the systems described by 
Fiore et al. [167] and Ou et al. [168].  
 
Related Patterns.  
This pattern is, besides Gesture-enhanced Speech Command, a specialisation of 
Composed Command [11].  
 
Variant.  
A variant of this pattern uses handwriting instead of gestures, as with handwriting 
you can simultaneously input spatial and linguistic information, too. However, to 
input spacial data more precisely, it is better to combine a separate pointing gesture 
with subsequent (and not parallel) handwriting. Such a combined input is supported 
by map-based systems such as PAVE [169] and MATCH [110, 109]. 

PATTERN: #79 

5.1 Redundant Output  
 
Context.  
Communication channels might be unpredictably distorted or blocked due to bad 
lighting conditions, background noise, technical (network) problems or disabilities 
such as speech, motor or perception disorders.  
Public systems that are supposed to be accessible for everybody should use this 
pattern, especially during the first interaction steps when it is not clear which 
interaction channels are appropriate for the current user.  
The user’s attention may not be focused on the interaction device in situations when 
urgent information has to be conveyed by the system.  
 
Problem.  
How to assure information output when communication channels are distorted in an 
unforseeable way or the user is currently not paying attention to system output?  
 
Forces  
– The system can be configured or adapted to output information using modalities 
that are less affected by channel disorders. However, in some cases several 
interaction channels are distorted to some degree.  
Examples are:  
• Visually impaired or illiterate people who want to interact in loud environments.  



• Deaf people that want to interact in bad lighting conditions or while moving around.  
– Potential channel distortions might be circumvented by selecting alternative 
interaction channels. However, if the potentially distorted channel were otherwise 
the best candidate, abandoning this channel cannot be justified.  
– The system can use those modalities that are most appropriate in the current 
environmental context. However, when the user’s attention does not fit to the 
situation he might miss important notifications. When the system provides for 
instance only visual output due to a high background noise level but the user’s visual 
attention is focused elsewhere, the system fails to notify the user.  
 
Solution.  
Combine several output channels in order to make use of redundancy. Information 
should be output both visually and acoustically and possibly even in a haptic way 
(e.g. using vibration) to raise the probability that it is perceived and can be 
understood by the user.  
 
Consequences  
– The use of several channels raises the probability that the user is able to perceive 
the information conveyed to him by the system. Visually impaired people in loud 
environments or deaf people in bad lighting conditions can process more data when 
output is presented redundantly to them.  
– You don’t need to abandon an output channel totally, only because it might be 
distorted. Visually impaired people might have problems reading a text and 
recognise each letter. After hearing the spoken variant and knowing what the text is 
about, the visual representation can be used as memory hook. The same might be 
true for dark environments or mobile scenarios, when it is difficult to fix visual 
attention to the text.  
– It is more likely to attract the user’s attention when information is output via several 
channels, e.g. both audio and sight, than when only one output modality is used.  
 
Rationale.  
Important and urgent information is more likely to be perceived by the user when 
several channels are used. Reaction times can be reduced by about 30% when 
redundant (visual, acoustic, haptic) signals are used [67]. Independent distortions of 
different channels rarely affect the same aspects of the content. Multi-channel 
feedback of written and spoken text has proven to be effective for elderly [40] and 
visually impaired users [41, 42, 43, 44].  
Plosives ([p], [t], [k], [b], [d], [g]) sound similar and are likely to be confused when 
sound quality is low. At the same time these phones have distinctive lip shapes such 
as open lips (in the case of [g] and [k]) vs. initially closed lips (in the case of [b] and 
[p]). Lip shapes may differ for some similar sounding vowels, too.  
In the context of language understanding, it has been proven that people understand 
spoken language better when they can look at the lips of their interlocutor while 
listening [68, 69, 70, 71, 72, 170, 15], especially in loud environments.  
 
Known Uses.  
Systems that display a talking head such as PPP [73], NUMACK [74], COMIC [75] 
and SmartKom [“Smartakus” 76] can exploit the advantages of audiovisual language 
understanding [13]. Mobile phones combine visual (blinking), auditory (ringing) and 



haptic (vibrating) signals in order to notify the user about phone calls or incoming 
short text messages. Visual and auditory cues are combined to remind the user to 
plug in his laptop or mobile phone so that the batteries are charged.  
 
Related Patterns.  
Tidwell’s Important Message [11] is a concretisation of this pattern. The focus of 
Tidwell’s Important Message is on handling cases where the user’s attention might 
not be directed to the interactive device. The pattern Redundant Output is more 
generic and addresses additionally comprehension problems caused by context 
factors such as bad light or background noise. 

PATTERN: #80 

5.2 Redundant Input  
 
Context.  
Communication channels might be unpredictably distorted due to bad lighting 
conditions, background noise, technical (network) problems or disabilities such as 
speech or motor disorders.  
 
Problem.  
How to assure input when communication channels are distorted in an unforseeable 
way?  
 
Forces  
– The system can be configured or adapted to recognise and interpret the modality 
that is less affected by channel disorders, but in some cases all available interaction 
channels are distorted to some degree.  
• In loud environments users with motor disabilities or illiterate people have problems 
to interact with the system.  
• In dark environments or in hands-free scenarios (e.g. while carrying a bag, 
wandering around, driving a car) people with speech disorders have problems to 
input data.  
• In extreme conditions – e.g. while carrying out an exhausting primary task, both 
speech input and pen gestures are problematic.  
– Interaction can be alleviated if modalities for implicit data input (gaze input, free 
gestures) or authentication (voice recognition, face recognition) are used. However, 
these interaction channels are error prone so that they cannot be applied directly.  
 
Solution.  
Combine several interaction channels in order to make use of redundancy. Input 
coming from several channels (visual: e.g. lip movements, auditory: e.g. the speech 
signal) should be interpreted in combination in order to reduce liability to errors.  
 
Consequences  
– The use of several channels raises the probability that the system is able to 
recognise and interpret the information input by the user in the desired way.  
– Even if several channels are distorted the distortion rarely affects exactly the same 
pieces of information. Fusion mechanisms allow for reconstructing of at least some 
part of the input information.  



– “Imperfect”, error prone interaction channels can be combined to mutually 
disambiguate recognition errors.  
 
Rationale.  
Independent distortions of different channels rarely affect the same aspects of the 
content. That’s why for instance audio-visual speech recognition, which combines 
acoustic and visual (lip movement analysis) signals, leads to better recognition 
performance than unimodal speech recognition in loud environments [cf. 13, p. 24 
f.]:  
Plosives ([p], [t], [k], [b], [d], [g]) sound similar and are likely to be confused when 
sound quality is low. At the same time these phones have distinctive lip shapes such 
as open lips (in the case of [g] and [k]) vs. initially closed lips (in the case of [b] and 
[p]). Lip shapes may differ for some similar sounding vowels, too. Channel distortions 
rarely affect both the recognition of a specific phoneme in the acoustic signal and of 
the corresponding viseme in the visual signal in the same way. Fusion algorithms 
allow to combine sound pieces of information from several channels such that some 
distorted parts can be reconstructed [13].  
Studies conducted by Oviatt [171] revealed that an appropriate recogniser 
architecture that combines gesture and speech recognition can reduce recognition 
errors. This was shown for non-native speakers, in loud environments [172, 173, 
174] and for cases where the users were carrying out an exhausting task in parallel 
[175].  
 
Known Uses.  
This pattern is manifested in very different application areas including data input 
(audio-visual speech recognition), scene analysis [176], person identification [177, 
65, 66, 178, 179], affective computing and emotion recognition [180, 83, 100, 102, 
101] and the like. Following modality combinations are used: 
 – virtual reality and speech [181],  
– gaze direction and speech [182, 183, 184, 185],  
– lip-reading in loud environments [64], e.g. to filter out simultaneous speakers [186],  
– speech and gesture [187, 188],  
– voice, ink and touchtone [189],  
– biometrics, voice and face to identify persons [65, 66].  
 
Related Patterns.  
Spelling-based Hypothesis Reduction as well as Multimodal N-best Selection are 
refinements of this pattern.  

PATTERN: #81 

5.3 Multimodal N-best Selection  
 
Context.  
This pattern can be used in multimodal systems that offer speech input of 
unconstrained text or speech-based selection of items from very large sets such as 
timetable or navigation systems.  
 
Problem.  
Speech recognition is based on statistical processes. The recognition of input 



phrases results in a set of several recognition hypotheses. Usually the recogniser 
returns the best match as “the result”. It is frequently the case that the original user 
input does not match this “best guess” but is included in the list of n best hypotheses 
returned by the recogniser.  
 
Forces  
– When a speech input attempt fails, the user can be prompted to repeat or to switch 
to another interaction modality. But it is inefficient to throw away input data which 
has failed the goal just by a hair.  
– Playing back the n best recognition hypotheses, prompting for (spoken) selection 
and reducing the speech recognition vocabulary to this reduced list of n items can 
correct the error in just one further interaction step. However, items contained in the 
n-best list are likely to have some acoustic similarity so that they might be mixed up 
repeatedly by the recogniser.  
– Playing back just the item on top of the n best recognition hypotheses and 
prompting for accepting or rejecting may resolve this problem in a few steps, but if 
the desired item is only the fifth (sixth, seventh ...) best recognition hypothesis five 
(six, seven ...) error correction steps are needed.  
 
Solution.  
Provide the user a means of selecting the correct result from a set of recognition 
hypotheses via pointing or key presses.  
The number of alternatives should be restricted to a manageable size so that the 
system remains easy to control. In order to satisfy cases where the desired item 
cannot be found in the n-best list there has to be a way of explicitly leaving the list 
selection dialog and to start over the input attempt.  
Disabled users or users in restricted environments might want to use speech input 
as well for this. In order to circumvent recognition problems that arise because the 
vocabulary contains similar sounding words, the list should be presented in a 
standardised way and contain line numbers in addition to the item wordings. The 
user should then be encouraged to speak the line number plus the item name so 
that the system can distinguish better between alternative hypotheses.  
 
Consequences  
– Imperfect recognition results are not thrown away but reused in subsequent 
interaction steps.  
– Instead of re-speaking the misrecognised item, the user can point to the item 
displayed in the list. By changing the input strategy, recurring recognition problems 
are avoided.  
– Frequently, instead of endless error correction loops, this pattern helps to correct 
recognition errors in just one additional interaction step.  
 
Rationale.  
Suhm et al. [190] point out that re-speaking the same word or phrase after 
recognition failure is not the most promising form of error recovery in interactive 
systems, although this might seem to the user to be the most obvious strategy. 
Changing the input modality to list selection seems to be more promising [191, 192].  
 
Known Uses.  



Directory assistance, timetable information systems, speech based driver 
assistance systems, office applications such as MedSpeak [193] and Human-Centric 
Word Processor [194, 195] support n-best selection.  
 
Related Patterns.  
This pattern can be used in conjunction with Speech Enabled Form, Drop-down 
Chooser [12] and Autocompletion [12] to alleviate error handling in speech-
enhanced input forms. This pattern and Spelling-based Hypothesis Reduction are 
refinements of Redundant Input. Multimodal N-best Selection may display the n best 
recognition hypotheses in a Drop-down Chooser [12].  
 
Variant.  
The solution described in this pattern is not restricted to multimodal interaction in a 
narrower sense. Speech-only systems provide similar speech based approaches of 
selecting the desired item from a list of hypotheses.  
If n-best selection via speech is supported, it is important to offer input modifications 
to avoid repeated errors. The user should be given the possibility to select the 
desired option via speaking the line number or re-speaking the item plus some 
distinctive features such as the first letter(s).  
In these cases, the user has to be prompted in a way that reveals alternative 
selection strategies apart from simple re-speaking, e.g.: “Did you mean one 
Jonathan Smith, two John Griffith, three Joseph Reddish or new input”.  
While the list is being read out the user should have the possibility to interrupt the 
playback. In full-duplex systems with cleanly separated channels for audio input and 
output, barge-in can be used. That means that system playback is stopped when the 
user starts speaking. In half-duplex systems, the user should be able to interrupt 
system playback using a push-to-talk button. In the cases of both barge-in and push-
to-talk, the time information when speech output was interrupted can be used as a 
further information source to identify the selected item [196, 197]. 

PATTERN: #82 

5.4 Spelling-Based Hypothesis Reduction  
 
Context.  
Examples where this pattern can be used are systems that offer speech input of 
unconstrained text or speech-based selection of items from very large sets such as 
timetable or navigation systems. Errors are particularly likely in cases, when the user 
has to select from lists with similar sounding words or words with inconsistent 
pronunciation such as foreign names.  
 
Problem.  
Large recognition vocabularies entail error-prone speech recognition, especially 
when many similar sounding words have to be distinguished or a wider range of 
pronunciation variants has to be supported.  
 
Forces  
– Speech input can be used for selecting items from a list that cannot be displayed 
completely on a small screen, but if the list is too large for speech recognition or 
includes several similar sounding or problematic words, speech recognition is likely 



to fail. Problem areas are names in directory assistance systems as well as album 
and song titles in entertainment systems.  
– In the case of recognition failures, the user can switch to text input (typing), but in 
some applications such as driver assistance systems only unhandy (if any) string 
input facilities are available.  
– Typing the first letters can reduce the size of the selection list so that pointing is 
possible again, but in some applications such as navigation systems, a lot of 
characters need to be input (using an impractical input device) before the list can 
reduced to a size feasible for display and list selection.  
– Some speech recognisers, especially those for small devices, have only restricted 
resources such that only small vocabularies e.g. for number recognition or for 
recognising letters of the alphabet are supported. But operating applications this way 
provides only little added value in contrast to using a small keypad, especially since 
some letters sound similar and are likely to be confused by the recogniser.  
 
Solution.  
Offer the user to type the first few letters of the word or list item before speaking it. 
Use this substring to filter the list of selectable alternatives, i.e. to reduce the size of 
the active speech recognition vocabulary. With this smaller vocabulary, speech 
recognition is more reliable.  
Alternatively, record speech input attempts and keep this recording available for a 
disambiguation step. When recognition fails, the user should be encouraged to input 
the first (few) character(s) e.g. via typing. Now the list of alternatives is filtered and 
the size of the active vocabulary is reduced. The speech recogniser can then be re-
run with the previous recording and the smaller vocabulary.  
 
Consequences  
– By inputting quite few letters, the set of alternatives can be reduced to a size that  
– although still unsuited for pointing-based list selection  
– allows robust speech recognition.  
– The user needs to input only a few letters. This is important in cases where typing 
is inconvenient.  
– There is no need to navigate and scroll through lists.  
– Recognition of names, song titles and other problematic words becomes more 
robust.  
– This technique of reducing speech recognition vocabularies simplifies speech 
recognition on platforms with limited resources.  
 
Rationale.  
With an increasing amount of words or phrases activated, speech recognition 
accuracy decreases. By reducing the active speech recognition vocabulary the 
recognition performance can be improved significantly.  
 
Known Uses.  
Marx and Schmandt [127] describe the messaging system Chatter which allows the 
user to input contact names via voice spelling, touch-tone spelling and speech-
based naming in a combined fashion. The prototype of the multimodal driver 
assistance system CarMMI [58] allows the user to input the first letters using a rotary 
knob mounted on the centre console, so that the speech recognition vocabulary can 



be reduced. Similar examples can be found in Suhm et al. [190] and Tan et al. [183].  
 
Related Patterns.  
This pattern can be used in conjunction with Speech enabled Form, Drop-down 
Chooser [12] and Autocompletion [12] to alleviate error handling in speech-enabled 
input forms.  
This pattern and Multimodal N-best Selection are refinements of Redundant Input. 
Spelling-based Hypothesis Reduction uses (or is) some kind of variant of Continuous 
Filter [10]. Instead of filtering the items of a selection list, the recognition vocabulary 
is reduced according to the letters input by the user.  
 
Variant  
Some systems allow the user to dictate (i.e. speak) characters (voice spelling) to 
reduce the active recognition vocabulary [127]. The recognised spellings are 
expanded by using a so-called confusability matrix to avoid that misrecognized 
characters reduce the list of input alternatives too much.  
In addition, phonetic alphabets can be used to reduce recognition failures. But this 
is only feasible if the target user group is expected to be proficient in that phonetic 
alphabet.  
When a phonetic alphabet is supported the user is not proficient in, this might result 
in spontaneous wordings such as Motel instead of Mike or October instead of Oscar. 
This way, recognition errors might even increase. 

PATTERN: #83 

6.1 Multiple Ways of Input  
 
Context.  
Context factors are not always predictable. This holds especially for mobile 
interaction in changing environments or public information kiosks that should be 
usable for quite different user groups.  
 
Problem.  
How can input modalities be adapted to the context of use without burdening the 
user with additional configuration tasks?  
 
Forces  
– The user should be able to interact with the system using preferred and task 
appropriate interaction styles. However, disabilities or changing environmental 
conditions such as lighting or background noise may affect the usability and 
robustness of task-optimised interaction modalities.  
– If background noise is low, speech input and output provide a valid interaction 
style. However, in public environments, bystanders might feel annoyed by persons 
conversing with an interactive system.  
– Environmental factors can be controlled by using special installations:  
• Specially mounted lamps help to overcome bad lighting conditions.  
• Enclosed areas (e.g. phone booths, kiosks etc.) reduce background noise and help 
to assure privacy. But these measures are not viable in every case such as mobile 
interaction.  
– Users might differ according to preferences, language, reading, typing skills etc. 



The system can provide alternative interaction styles and adapt to the user. 
However, the system is not able to predict precisely which input modalities are most 
likely to be selected by the user in the current situation.  
 
Solution.  
Enable the user to trigger each system function by using one of several alternative 
interaction modalities, be it speech, typing or pointing. The alternative modalities 
should be active and ready to use all the time without further configuration needs. 
The system has to be designed in a way, that the user can choose alternative 
modalities wherever sensible, even for single interaction steps of a more complex 
task. Labels, help messages, prompts, console and speech commands should share 
a uniform wording in order to minimise learning efforts and confusion for the user, 
when he wants to sidestep to another modalitiy.  
 
Consequences  
– By providing several alternative interaction styles, the system can be used by 
physically disabled or illiterate people.  
– As the user can choose among several modalities which are each differently 
affected by environmental factors, the system can be used in varying environmental 
conditions.  
• In loud or public environments the users can simply sidestep to pointing or text 
input.  
• When background noise is low users can opt for speech interaction.  
– Expert users can estimate whether speech input or pointing gestures are possible 
or desirable at the current moment.  
– It is up to the users to select their preferred interaction style. They do not need to 
wait for the system to automatically adapt. Instead, they gain self confidence since 
they are controlling the system which leads to higher user satisfaction.  
– First time users might not know which interaction styles are available at all. The 
system must provide effective help and prompting strategies that reveal alternative 
interaction modalities.  
– The more flexible a system is, the more planning, testing and reviewing is needed 
during design since the number of error sources increases rapidly with system 
complexity.  
 
Rationale.  
According to user characteristics, preferences, environment and situation, different 
interaction modalities are preferable [133, 6, 7]. Users can judge better than the 
system, which interaction modality and style is appropriate, e.g. whether background 
noise or bad lighting impedes the use of speech or graphics, whether surrounding 
people might feel annoyed because of spoken interaction or whether private 
information is being conveyed.  
Ibrahim and Johansson [198] have shown for their multimodal TV guide, that users 
prefer, when they can choose to use direct manipulation and speech either 
unaccompanied or combined in order to adapt to the current context of use. Users 
learn to estimate and select the most context-appropriate modality. After recognition 
errors, users tend to switch the interaction modality [133, 199, 200, 171].  
 
Known Uses.  



SmartKom [161] allows the user to interact either via pen or speech. Mobile systems 
such as Microsoft’s MiPad [120, 121, 122] and IBM’s Personal Speech Assistant 
[123] are good examples for systems that allow users to flexibly select input 
modalities.  
The same holds for driver assistance systems such as the ones described by Neuss 
[58] and Pieraccini et al. [201]. Further examples of this pattern can be found in the 
interactive TV guide by Ibrahim and Johansson [198], and MICASSEM [202].  
 
Related Patterns.  
This pattern is on the one hand an alternative to Global Channel Configuration and 
Context Adaptation. On the other hand these patterns can be combined.  
Whereas Global Channel Configuration requires an additional interaction step to 
select the input / output profile of the system, Multiple Ways of Input keeps all input 
modalities activated so that they can be used without additional configuration steps. 
In contrast to Global Channel Configuration, this pattern is restricted to the 
adaptation of user input.  
That’s why this pattern should be used together with Context Adaptation. This way, 
system output can be adapted according to the user’s input behaviour. In contrast 
to system-driven Context Adaptation, Multiple Ways of Input offers, similarly to 
Global Channel Configuration, user-driven system adaptation. 

PATTERN: #84 

6.2 Context Adaptation  
 
Context.  
Examples for this pattern can be found in interactive devices that support different 
alternative and complementary interaction channels such as audio output and input, 
typing and graphic manipulation.  
 
Problem.  
How can interaction (input and output) be adapted to the current situation, 
environment and user without the user having to perform additional interaction 
steps?  
 
Forces  
– Redundant output via several channels can assure information perception by 
users. However, superfluous spoken output might disrupt or slow down the user’s 
secondary task or annoy third persons.  
– Alternatively, one could let the user configure system input and output according 
to the current context of use. But, as long as sufficient information is available to the 
system, additional configuration steps should be avoided.  
– Letting the user configure the system himself seems not to be a problem at first. 
But the user might not be able to remember the current configuration state of the 
system and to reconfigure the system at each situation change.  
 
Solution.  
The system should analyse as much assured context information as available to 
setup system configuration autonomously. One information source that can be used 
is the interaction history:  



– If the user interacts via speech, it is not clear where the user looks. In this case 
speech output should complement display updates.  
– If the user does not want to annoy surrounding people, he will avoid speech 
interaction.  
– If the user is currently typing or using a pointing device  
– might be in order not to annoy surrounding people  
– he is usually looking at the display such that speech output is superfluous.  
Other aspects of system state can be exploited for adaptation, too: A driver 
assistance system should disable touch screen input while the user is driving – the 
driver should keep his hands on the steering wheel. Smartphones should disable 
touch screen input during a telephone call – the ear of the user should not lead to 
unwanted actions.  
In addition to these situational aspects, the system can adapt system output 
according to the user expertise level. For first time users, more verbose speech 
output prompts are necessary. When the user already has proven to use a system 
function successfully several times, shorter prompts are sufficient [203, 197].  
Systems that can be used by several users need a user identification mechanism 
(e.g. a log-in facility) to keep a specific user model available for future interaction 
sessions with this user.  
The system should not be prematurely adapted based on statistical assumptions 
with low confidence scores, but only after enough context information has been 
analysed. In order to keep adaptation predictable for the user, it should take place 
in a transparent way that can be undone easily.  
 
Consequences  
– Information output can be restricted according to the context of use.  
– The user does not need to reconfigure the system repeatedly where this can be 
done by the system itself.  
– The user need not remember configuration states and reconfigure the system at 
each situation change.  
– Automatic adaptation can fail or be unappropriate. That’s why the user should 
always have the possibility to carry over control and perform interaction configuration 
himself.  
 
Rationale.  
So-called plastic user interfaces adapt automatically to the context of use. For this, 
they analyse comprehensive context information [47, 50, 48, 49] and require an 
appropriate runtime architecture [54, 4].  
 
Known Uses.  
SmartKom [161] allows the user to interact either via pen or speech. System 
feedback is adapted in a way that fits to the user’s attention: The TV-guide 
subsystem of SmartKom presents the TV-program usually as a listing. But when the 
user query has been done by voice input spoken feedback is played back. When the 
user is watching TV, the system presents the program list verbally, too, because it 
supposes that the visual channel is occupied. Driver assistance system such as the 
ones decribed by Neuss [58] and Pieraccini et al. [201] offer the user to interact using 
speech or manual input devices. System output is adapted accordingly. 
Smartphones disable touch screen input during telephone calls.  



 
Related Patterns.  
This pattern is an alternative to Global Channel Configuration and Multiple Ways of 
Input but may be used complementarily to those ones. In contrast to those user-
driven adaptation strategies, Context Adaptation implements a system-initiated 
adaptation strategy. This pattern can be used as complement to Multiple Ways of 
Input in order to adapt the system output according to the user input. In addition to 
Context Adaptation, Global Channel Configuration should be supported to give the 
user control over the system. 

PATTERN: #85 

6.3 Global Channel Configuration  
 
Context.  
Interactive devices that offer several alternative and complementary interaction 
channels such as audio input and output, typing and graphic manipulation have to 
be adapted to the context of use. 
 
Problem.  
How can interaction (input and output) be adapted to the current context of use, 
while giving the user control over the system without burdening him with too much 
configuration tasks?  
 
Forces  
– One can keep several input channels active and leave it up to the user to select 
the interaction modality that is most appropriate for the current context. However, 
the system might try to interpret input from unused distorted channels. This might 
lead to situations where the system misinterprets background noise as input.  
– Redundant output via several channels can assure information perception by 
users. However, in public environments, bystanders might feel annoyed by persons 
conversing with an interactive system. In the same way, it is not desirable, that 
private data be read out loudly by the system.  
– The system may analyse interaction behaviour, lighting conditions, background 
noise, movement and position changes and adapt to the user and context of use. 
However, the system does not find out as fast as the user does which interaction 
modalities are most appropriate in the current context of use or for the current user.  
– Even if automatic adaptation works quite well, many users will prefer being able to 
control the system.  
 
Solution.  
Provide several interaction profiles with input and output channel configurations 
tailored to each context of use. Enable the user to select the interaction profile of the 
system (speech input, audio output, verbosity level of speech output etc. or, for 
example, the notification profile of a mobile phone such as ringing, vibrating, mute) 
with only one additional interaction step.  
For this, display for instance always on top buttons or widgets with self explaining 
icons or provide physical push-to-talk and mute buttons. Systems that are used by 
several users require an identification (log-in) mechanism to keep the profile lastly 
selected by a specific user available for future interaction sessions.  



 
Consequences  
– The user can quickly react to context changes and reconfigure the system 
accordingly in one interaction step:  
• Input channels such as speech input can be deactivated when necessary (in loud 
environments) by simply clicking the respective button.  
• In order not to disturb bystanders in public environments, the user can deactivate 
audio output with one click.  
– Users feel better when exercising control over the system instead of being 
delivered to non-predictive system adaptation. – Users have to do at least one 
additional interaction step, which might be annoying anyway. 
– Users might by fault select an inappropriate interaction profile.  
– The users might not be able to rembember the current configuration state of the 
system and forget to reconfigure it at each situation change.  
 
Rationale.  
According to user preferences, abilities, environment and situation, different 
interaction modalites are appropriate and preferred [133, 6, 7]. Users learn to 
estimate and select the most context-appropriate modality. After recognition errors, 
users tend to switch the interaction modality [133, 199, 200, 171].  
 
Known Uses.  
The multimodal map-based system SmartKom Mobile covers the usage scenarios 
of pedestrian and automotive navigation as well as map-based queries [108] and 
allows the user to switch between several interaction modes [cf. 204, p. 59]:  
– Default: All input and output modalities are supported.  
– Listener : Speech and graphics are supported for output, for input only pen 
gestures are possible.  
– Silent: Only graphics for output and pen gestures for input are supported.  
– Speech Only: Only speech interaction is active.  
Some mobile phones – e.g. Nokia E71 – offer the user to select profiles such as 
office or home. In addition to different startup screens, these profiles can be set to 
an appropriate context-dependent notification mode (ringing, vibrating). Some 
desktop applications, operating system environments, and multimedia applications 
provide an audio icon in the system tray for setting the system’s audio 
characteristics. With some restrictions, these can be seen as examples for this 
pattern, too.  
 
Related Patterns.  
This pattern is an alternative to Multiple Ways of Input and Context Adaptation but 
can be used in combination with them, too. In contrast to Multiple Ways of Input, 
which offers the user to select among several alternative input modalities without 
having to perform additional configuration actions, this pattern requires one 
additional interaction step. In addition to Multiple Ways of Input this pattern also 
addresses the adaptation of system output. 

  



S21 - ARTICLE: WEB DESIGN PATTERNS FOR MOBILE DEVICES 

 

PATTERN: #86 

4.1 Linearized Layout 

 
Problem 
On smaller devices with narrow screens, more complex designs with multiple 
columns do not fit perfectly.  
In most cases you end up with a scaled-down page that is unreadable. 
Solution 
Linearize the content, by stacking all blocks of information on top of each other, 
spanning the width of the  
screen. 
*** 
Layouts with multiple columns are a common pattern on web design. However, they 
do not work properly  
on  devices with  narrow  viewports. When  this  type  of websites are accessed  on  
these  devices,  browsers will  
zoom out the page until it fits on the width of the screen; or they will add horizontal 
scrolling. Both alternatives  
are far from satisfying. Column layouts should be optimized for mobile viewing. 
Therefore, you should design  
your  mobile  site  by  assembling  the  page  vertically  and  by  stacking  each  page  
section  on  top  of  each  other,  
which is already the default behavior of a page when no style is defined. 
Because we cannot foresee the size and resolution of the devices that will access 
our website, blocks with  
fixed widths are not a good practice. The LINEARIZED LAYOUT should have a  fluid 
layout  that adapts  to  the  
width of the browser whatever is its effective size. 
This pattern is also a requirement for many of the other patterns proposed, 
particularly VERTICAL LIST, i.e., 
if you want to use it you will invariably need to linearize the content. 



Examples 

 
Related Patterns  

− GRID LAYOUT  

− VERTICAL LIST  

− Vertical Stack in Designing Interfaces (Tidwell 2011) 

 
 

PATTERN: #87 

4.2 Grid Layout 



 
Problem 
Although a LINEARIZED LAYOUT works in most cases, sometimes you have 
content that does not need to,  
or should not, fill the entire width of screen. 
Solution 
Arrange elements in a matrix of one or more rows. 
*** 
While not as recurrent as the LINEARIZED LAYOUT, a GRID LAYOUT can be quite 
effective with some types 
of content. It is typically used with image content such as photos, illustrations or 
icons. The most common case  
is to present a gallery of images, but you can still use it with text, as long you keep 
it to a few words. You can  
still use it with text, as long you keep it to a few words. Long paragraphs of text can 
become almost unreadable  
even if your grid only has two columns. 
A GRID LAYOUT can have as many divisions as needed; however, if  the grid blocks 
work as buttons  they  
should be large enough and adequately spaced so they are easily triggered — use 
a TOUCH FRIENDLY BUTTON  
or an ICEBERG TIP on those cases. Although in most examples blocks have the 
same height and width, they can  
still assume irregular forms. That is, blocks can span multiple columns or rows — 
Figure 3. 



 
Because with  this  pattern  you are  displaying multiple items  side  by  side, in  some  
cases it  can  be a more  
efficient  use  of  the  vertical  space  than  a  LINEARIZED  LAYOUT.  For  example, 
if  you  have  a  VERTICAL  LIST  
where each item is composed by only one word, you can save space by displaying 
several items on the same  
line. 
 

 

 
The GRID LAYOUT can be used as a more structural pattern, or combined with 
other patterns to extend their  capabilities. For example it can be used with a 
TOGGLE MENU to increase the number of items visible on the  screen — Figure 4; 
or with a SLIDESHOW to increase the number of items by slide — Figure 5. 
Examples 



 
 
Related Patterns 

 − LINEARIZED LAYOUT  

− TOGGLE MENU  

− SLIDESHOW  

− Grid in Designing Mobile Interfaces (Hoober and Berkman 2011) 

 

PATTERN: #88 

4.3 Vertical List 

 
Problem A LINEARIZED LAYOUT is a quite common layout  that gives much 
emphasis  to  the vertical orientation.  If  you have information that is organized as a 



list, you need to have a method to efficiently display that content. Solution Display 
these chunks of information stacked vertically, spanning all the width of the screen 
and graphically  dividing each item. *** Along  with  the  LINEARIZED  LAYOUT  this  
is  perhaps  the  most  common  pattern  that  you  will  encounter  when designing 
for mobile. Given that the width of the devices is not generous, you will invariably 
need to rely  on the vertical space to accommodate most of the content. For most of 
these situations, this pattern or one of  its variations will be used, such as: INFINITE 
LIST, THUMBNAIL LIST or EXPANDING LIST. Therefore, most of  the 
recommendations given for this pattern also apply to the related patterns. Generally, 
there are two different alternatives to the implementation of this pattern: one that 
only displays  information; another where each list item works as a link — which 
sometimes can be a LINEARIZED MENU. When  the list items work  as links  you  
should  optimize  them  for  touch,  you  can  use  a  TOUCH FRIENDLY  TARGET  
for  this.  Each  item  ideally  should  only  contain  a  link.  Even  if  the  item  contains  
text  with  different  hierarchies — Figure 7 —, you can wrap all those elements on 
an anchor tag rather than using only the title as  a link. The result is similar to what 
can be attained with an ICEBERG TIP. 

 
For  this  pattern  to  work  effectively,  each  item  should  be  clearly  separated.  
You  can  use  any  design  that  visibly distinguishes items, such as: a horizontal 
line spanning the width of the screen; alternative color rows;  typographic hierarchy; 
or just white space.  
Examples 

 
Related Patterns 

 − INFINITE LIST  



− THUMBNAIL LIST  

− EXPANDING LIST  

− LINEARIZED MENU  

− Vertical List in Designing Mobile Interfaces (Hoober and Berkman 2011)  

− List Menu in Mobile Design Pattern Gallery (Neil 2012) 

PATTERN: #89 

4.4 Infinite List  

 
Problem A very extensive VERTICAL LIST can become quite heavy on mobile 
devices.  It would not be advisable  to  load and display all information in the list at 
once. Solution Design a normal VERTICAL LIST or any of its variations but only 
fetch the beginning of the list, loading the  rest as the user scrolls through the page. 
*** This pattern is based on a homonym pattern from Designing Mobile interfaces 
(Hoober and Berkman 2011). It is very similar to the VERTICAL LIST with the main 
difference that only a portion of the list is initially loaded.  It is most adapted for 
displaying a list of data with an uncountable number of items. For example, when 
loading  all the news of a site in the same page we can be dealing with hundreds of 
items. It would not be a good idea to  load all that information at once. That would 
be extremely heavy in terms of download size and load time, and  probably, users 
would not need all that information  from the beginning. Thus, we can start by loading 
only a  few items, and only load subsequent items when the user provides some 
signal that he wants to keep browsing  through  the  page.  The  number  of  items  
to  load  on  each  action  varies,  but  it  will  depend  on  the  length  and  download 
size of the content. This pattern takes advantage of methods for asynchronously 
loading additional content without the need to  refresh  the  page:  new  items  are  
just  appended  to  the  interface  following  the  previous  ones.  Because  the  
browser  does  not  need  to  reload  the  page,  we  can  get  a  perceivably  faster  
response.  It  can  be  used  as  an  alternative  to a common pagination, which 



normally implies more  touches and a  refresh on each load. Since  there is not any 
refresh, users never lose the context of where they are at the list. There are  two 
main alternatives  that can be used  for its implementation: explicit and implicit 
loading. On  the first, the content is loaded with a direct action of the user; on the 
second, the list is loaded automatically as  the user reaches its end. 
When designing a list in which the user has to explicitly load new content, place at 
the bottom of the list a  button  that indicates  that more data will be loaded on  the 
same page. You can use a label with “more”, “load  more”, or another appropriate 
variation. You can also use that button to indicate how many more items will be  
loaded. While  the  browser  is  loading  the  next  chunk  of  the  list,  provide  some  
feedback  of  the  action  that  is  occurring. In Figure 9, the page displays a ‘More’ 
button that when pressed changes to a loading animation.  

 
In the implicit loading mode there is not any direct action of the user to load additional 
content. Instead, the  browser detects when a user reaches  the end of  the page 
and automatically loads another portion of  the list.  This is  a  type  of implementation  
that is  normally  called  lazy  loading.  To  give  the impression  that  the  list is  really 
bottomless, you can start preloading the adjacent content before the user gets to 
end of the list. Although this pattern is normally used with content that is virtually 
endless, it is still possible for users to  reach its end. Therefore, provide some 
indication when there are no more items to fetch. Because this pattern is a variation 
of the VERTICAL LIST, it can be combined with any of its other variants,  such as: 
THUMBNAIL LIST, EXPANDING LIST. 
Examples 



 
Related Patterns 

− VERTICAL LIST 

− THUMBNAIL LIST 

− EXPANDING LIST 

− Infinite List, in Designing Interfaces (Tidwell 2011) 

− Infinite List, in Designing Mobile Interfaces (Hoober and Berkman 2011) 

 

PATTERN: #90 

4.5 Thumbnail List  

 
Problem It can be difficult  to  find a particular item on a VERTICAL LIST  that is 
composed only by  text because all  items may look identical. You need to make 
each list item more distinct so that the list is easier to scan.  



Solution Web Design Patterns for Mobile Devices: Page - 13 Design a VERTICAL 
LIST where in addition to the textual information, you also display a small illustration  
next to each list item. *** An extensive list of items composed only with text can be 
visually monotonous and harder to scan. You can  minimize this problem by 
complementing each list item with a thumbnail-size image that is illustrative of the  
content. Because  each image  can  have  distinct  shapes  and  colors,  they  are  
easier  to  scan  and interpret.  The  image should somehow be related  to  the 
content of  the item, but you can use either a photo or an icon. This  pattern is based 
on  the patterns Thumbnail List (Hoober and Berkman 2011),  from where it got its 
name, or  Thumbnail-and-Text List (Tidwell 2011). Thumbnails are usually aligned 
to the left. However, if images are optional, you can align them to the right  so  you  
can  create a  better  defined  axis — Figure  11.  You  can  use  a  placeholder  
image  for  instances  where  images are not available, but keep in mind that if most 
images are placeholders the benefits of the THUMBNAIL  LIST are lost. 

 
This pattern can be used with the other variations of the VERTICAL LIST, such as 
the INFINITE LIST and the  
EXPANDING LIST. 
 
Examples 

 
Related Patterns  

− VERTICAL LIST  



− INFINITE LIST  

− EXPANDING LIST  

− LINEARIZED MENU  

− Thumbnail List in Designing Mobile Interfaces (Hoober and Berkman 2011)  

− Thumbnail-and-Text List in Designing Interfaces (Tidwell 2011) 

PATTERN: #91 

4.6 Expanding List  

 
Problem You need to display a series of related information that has a clearly defined 
hierarchy. However, vertically  displaying all that information would lead to a very 
long page. Solution Design a VERTICAL LIST or one of its variations, but display 
only part of the content — usually the heading  — as a toggle to show additional 
content. *** This  pattern  got  its  name  from  a  similar  pattern  in  Mobile  Design  
Pattern  Gallery (Neil  2012) and  is  a  variation of the VERTICAL LIST, in which the 
visible item does not present static information or works as a link  to another page, 
but is rather used to trigger the visibility of additional content in the same page. 
Tapping on  the visible part of the item makes it expand, revealing the hidden 
content. It is most suitable for when you need  to present content with a clearly 
defined hierarchy; for example, when you are designing a LINEARIZED MENU  with 
subitems.  Although it is possible to present more than two levels of information with 
this pattern, it can be confusing  to do so. You should provide some clues  to indicate  
that additional content is available. For example, a downward  arrow that changes 
to an upward arrow when the item is expanded; or a plus sign that changes to a 
minus sign.  You can give emphasis to the fact that the item has expanded by 
implementing a small animation showing the  content appearing. Besides clearly 
distinguish between list items — as it is described on the VERTICAL LIST —, you 
should also  differentiate between the heading of the item and the respective content. 
More important, you should design  them so that the revealed content is grouped to 



the upper heading rather than the order way around. Interactions Details In  terms 
of  the behavior of  the list  there are  two alternatives  for  the implementation of  this 
pattern: one  that works as a toggle; another that works as an accordion. In the toggle 
type each item works independently,  that is, regardless of  the state of all other 
items in  the list, when  you  tap on one it expands, when  you  tap it  again it 
collapses. In the accordion type, elements of the list are connected, when the user 
taps on the header of  the item  the content of  that item is expanded and all others 
are collapsed. These  two different behaviors are  sometimes  described  as  different  
patterns,  for  example, in Designing  Interfaces (2011), Tidwell  presents  the  
patterns, Accordion, and Collapsible Panels.   
Examples 

 
Related Patterns 

− VERTICAL LIST 

− INFINITE LIST 

− THUMBNAIL LIST 

− LINEARIZED MENU 

− Expanding List, in Mobile Design Pattern Gallery (Neil 2012) 

− Windowshade in Designing Mobile Interfaces (Hoober and Berkman 2011) 

− Accordion, in Designing Interfaces (Tidwell 2011) 

− Collapsible Panels, in Designing Interfaces (Tidwell 2011) 

 
 

PATTERN: #92 

4.7 Linearized Menu  



 
Problem Although inline menus are  quite  common  on  desktop websites,  they are 
difficult  to achieve  on mobile.  If  your menu has several items, it will not fit properly 
on the mobile version of the website. Solution List all menu items vertically spanning 
the width of the device. *** Because  of  the  narrow  width  of  mobile  devices,  in  
most  cases  you  do  not  have  enough  space  to  display  items inline. The solution 
involves disposing list items vertically covering all the width of the screen. This type  
of menu is quite easy to implement because it is the default behavior of a list when 
not styled. Be aware that if the menu is extensive and is positioned on top of the 
page it will probably fill most of the page. You can easily cope with this problem with 
a JUMP MENU. You should optimize list items  for  touch by making  the list span 
across  the width of  the screen, and with  height enough so they are easily triggered 
and nicely spaced so the wrong target is not tapped by mistake — TOUCH 
FRIENDLY BUTTON or ICEBERG TIP.  
Examples 

 
Related Patterns 



− VERTICAL LIST 

− JUMP MENU 

− TOGGLE MENU 

− SIDE MENU 

 
 

PATTERN: #93 

4.8 Jump Menu  

 
Problem When  placed  on  top  of  the  page,  an  extensive  LINEARIZED MENU  
will  fill  all  the  available  space  of  the  screen. However, generally, you do not 
want the menu to take precedence over the content. Solution Place the menu at the 
bottom of the page but display a button on top of the page that links to the menu. *** 
A navigation menu with an extensive list of items can fill the entire screen when the 
page loads, relegating  the  content  to  second  place.  However,  it  is  usually  a  
good  practice  to  emphasize  content  over  navigation  (Wroblewski  2011).  This  
pattern  tries  to  overcome  this  problem  by  focusing  on  the  content  while  still  
providing  quick access  to  the navigation.  For  that,  you design a  LINEARIZED 
MENU  that is positioned at  the  bottom of the page while leaving a button on top 
that takes the user to the menu. Besides the button on top, it  is  helpful  to provide 
a link next  to  the menu  to  take  users  back  to  the  top,  so  they  do not need  to  
scroll  the  entire page if they need to go back.  Since the JUMP MENU only uses a 
normal HTML anchor and there is no JavaScritp required, it is extremely  simple to 
implement and probably will work with almost all browsers and devices. The jump to 
the footer can be disorienting because the screen abruptly changes from one state 
to another  without much feedback of what happened. You can decrease the 
problem caused by the sudden jump by using  an animation that scrolls through the 
entire page until the menu. However, depending on the length of the page  and  how  



the  animation  is  done,  you  can  be  unnecessarily  delaying  the  access  of  the  
user  to  the  menu.  Moreover, this type of animations can be sluggish on slower 
devices.  
Examples 

 
Related Patterns  

− LINEARIZED MENU  

− TOGGLE MENU 

PATTERN: #94 

4.9 Toggle Menu  

 
Problem You have an extensive LINEARIZED MENU that takes the entire screen, 



and a  JUMP MENU is not a proper  alternative because it displaces the menu to the 
bottom of the page. You want to display the menu on the top of  the page but do not 
want it to fill the entire screen. Solution Design  the  menu  content  as  a  
LINEARIZED  MENU  but  conceal  it,  then  provide  a  button  to toggle  the  visibility 
of the menu. *** In the TOGGLE MENU we have a LINEARIZED MENU that is 
presented collapsed when the page loads until  there is a direct action of the user to 
expand it. This allows us to display only a small button on top of the page  to  toggle  
the  visibility of  the menu. With  this approach we can present  the content  first while 
still providing  quick access to the navigation. This pattern is somehow similar to the 
SELECT MENU in that, a link to the navigation is presented in the top of  the  site,  
and  the  navigation  is  only  disclosed  when  there  is  a  direct  instruction  of  the  
user.  The  main  difference between both is that the SELECT MENU uses the native 
select menu component of the device while  this pattern uses a custom interface. 
This is a much more clean and elegant approach to the same problem and  should 
rather be used instead of the SELECT MENU whenever it is possible. 

 
For the element which triggers the menu you can use any symbol that provides the 
correct affordance that  additional information will be disclosed. Nonetheless, many 
websites use an icon with  three horizontal bars,  which  represent  the list items  of 
a menu — Figure  16. When  the menu is active  you  can  change  the icon  to  show 
that the menu state has changed. For example, the Starbucks website changes the 
icon to an “x” when the  menu is  expanded.  Andy  Clarke  (Clarke  2012) incites  
the  need  to  reach  a  consensus  on  a  standard icon  for  showing navigation, 
settling his support for the three lines because they are widely used and therefore, 
easily  recognized,  unless  your  navigation  is  arranged  on  a  grid,  which,  in  that  
case  you  should  use  a  grid  icon. In  short, the symbol used should map the layout 
of the menu. If you have enough horizontal space you can improve the usability of 
this pattern by appending the title of  the current page to the toggle icon — Figure 
17 This allows us to give feedback of the user’s position in the site  hierarchy and 
provide a larger target. 

 
Examples 



 
Related Patterns  

− EXPANDING LIST  

− SELECT MENU  

− DROPDOWN MENU 

PATTERN: #95 

4.10 Side Menu  

 
Problem Although vertical menus side by side with the main content are fairly 
common, they are almost impossible  to achieve on a mobile device. It would not be 
efficient to reserve an entire column on a small screen just for  the menu. 



Nonetheless, you may still want to get a similar look. Solution Design the menu 
bonded together to one side of the page, but positioned outside the page. Then, 
provide a  button that will show the menu by sliding it in, sliding out the content. *** 
Vertical navigation placed side by side with the page’s main content is a quite 
common pattern on websites.  On mobile, that type of navigation is not practical 
because horizontal space is limited, but this pattern allows us  to achieve a 
comparable layout on both versions. Like the TOGGLE MENU, this pattern allows 
us to focus on the  content while providing quick access to the navigation.  The  idea  
of  this  pattern was  first  formulated  as  a  pattern  by  Frost  (2012b) as  The  Left  
Nav  Flyout,  and  consists of a button on  top of  the page  that allows users  to  
toggle  the visibility of a hidden menu. When  that  button is  tapped it reveals  the 
menu on one of  the side of  the screen by pushing  the main content out of  the  
screen.  You  should  keep  a  small  portion  of  the  page  to  give  some  affordance  
of  how  the  menu  works.  Additionally, you can display an animation of  the menu 
moving  to show users what is happening. Like in  the  JUMP MENU, an abrupt 
change of the context can disorient the user.  
Examples 

 
Related Patterns  

− TOGGLE MENU 

PATTERN: #96 

4.11 Select Menu  



 
Problem On small screens, an extensive menu can fill the entire page. However, if 
you have a menu that has to work  simultaneously  on  wide  screens  and  on  mobile  
devices,  you  want  that menu  to  be  as  efficient  as  possible  regarding the use 
of vertical space. Solution Present  the navigation  on  a menu  that  on narrow  
screen  devices  dynamically  changes  to  a  native select  component. *** This 
pattern is useful for designing a navigation menu with numerous and lengthy items 
that needs to work  simultaneously on the mobile and desktop version. In the desktop 
version of the website the menu is presented  expanded,  on  a  narrow  screen  it is  
converted  through  JavaScript  to  the  native  select  component.  Thus,  this  pattern 
is normally seen in websites that implement a responsive design. This type of menu 
can be a practical alternative  for when vertical space is scarce and you want to 
display  the menu on  top of  the page. However, it is not  the most elegant of  the 
alternatives, because it adds another  layer of information with a distinctive interface. 
A more clean and elegant approach in terms of visual design  can be achieved  
through  the TOGGLE MENU pattern, which uses a comparable  type of interaction 
but with a  custom interface. This type of menu is easier to recognize as something 
selectable because it uses the native controls of each  device.  Likewise,  because 
it  uses  controls  that are  optimized  for  the  respective  device,  you  can  be  
confident  that it will work and be accessible in most of them. Though, as a downside, 
because it uses the native browser  components, it is very difficult to achieve a 
consistent look across platforms — Figure 18. 



 
You  can  also  work  with  subitems,  though,  that  can  be  even  more  confusing.  
In  Figure  20 subitems  are  denoted by an indent, but dashes are also a common 
alternative.  
Examples 

 
Related Patterns  

− TOGGLE MENU 

PATTERN: #97 

4.12 Fixed Content  



 
Problem 
The normal behavior of content on a page is to go off the viewport as the user scrolls 
through. However, you  may need to provide quick access to functions or information 
persistently through the entire page. Solution Present the content positioned fixed to 
the edges of the browser window, over the page, and assuring that it  is visible 
through the entire page. *** FIXED CONTENT allows us to provide quick access to 
functions that need to be present through the entire  page,  or  alert  the  user  of  
some  important  information.  Given  that,  it  is  commonly  used  for  designing  
web  applications or to give a more native look to the interface. A  major  drawback 
with  this  pattern  is  that  it  takes  a  considerable  amount  of  space,  which  is  
already  a  limited asset on these devices. Besides of the already small height of the 
device, we have to account for the OS  toolbar, the browser chrome, and a potential 
keyboard, all those contributing for reducing the effective the real  estate of the page. 
This problem is even more prevalent when the device is oriented in landscape. 
Therefore,  make sure that any FIXED CONTENT is absolutely essential in your 
website.  
Examples 



 
Related Patterns  

− Bottom Navigation, in Designing Interfaces (Tidwell 2011)  

− Fixed Menu, in Designing Mobile Interfaces (Hoober and Berkman 2011) 

PATTERN: #98 

4.13 Slideshow  

 
Problem You  need  to  display a  series  of  related information, with  comparable  
content in  terms  of length, without  consuming a considerable amount of vertical 
space. Solution Reveal  items  one  at  a  time,  by  changing  the  visible  item  
automatically  in  a  specific  time  interval  or  by  providing a method for browsing 
through the entire content. *** When you have a series of related content  that is 



extensive but not considerably important, you can save  vertical space by having all 
pieces of that content arranged horizontally, placed virtually beyond the width of  the  
device,  while  keeping  a  window  — generally  with  the  same  width  of  the  device  
— that  works  as  a  viewfinder for the list. Users can only see one item of the list at 
each time but have some method for traverse  through the list. The SLIDESHOW is 
a common pattern on the web, and was previously formulated as a pattern  for  
mobile  in  Designing  Mobile  Interfaces (Hoober  and  Berkman  2011).  It is 
commonly used  with  images,  although  it  can  be  successfully  implemented  with  
text,  or  image  and  text.  Each  slide  can  be  simply  used  to  display information 
but can also work as a link.   However, do not use this pattern  for presenting critical 
information. Since only one item will be visible at  any  time  and  users  may  not  
understand  that  they  can  scroll  through  the  list,  hidden  content  can  easily  go  
unnoticed. The SLIDESHOW is most suitable for presenting more casual information 
like a gallery of images. Although  you  can  use  slides  with  different  content in  
terms  of length, it is  a  good idea  to  keep  the  slide  height constant across slides 
to prevent the layout from moving up and down between slides.   
Interaction Details 

Signalize that additional content is hidden, moreover, use that sign as a hint of 

how to reveal it. An arrow or  an index of the list — Figure 23 — are commonly 

used to solve this problem. Alternatively, you can display a  portion  of  the  

previous  and  following  images  to  alert  users  that  more  content  is  available  

— closer  to  the  behavior of what is usually described as a carousel.  For 

scrolling through the content you can use one of these approaches or a 

combination of them: − Slides change automatically without any control of the 

user. − A tap on the slide to make it move to the next one; if this is the only 

method for navigating  the SLIDESHOW, it has the inconvenient that if you have 

a long list and want to go back  one slide, you need to scroll through the entire 

list. − You can use a “next” and “previous” buttons for scrolling through the 

slideshow; arrows or  textual descriptions are usually used for this. − Use a 

swipe gesture, which is probably the most elegant and a natural of the 

alternatives  because you are directly manipulating the content; however, 

because of its relative  novelty it is harder to be discovered and more difficult to 

implement. Whenever possible  try to take advantage of the swipe gesture to 

traverse trough the gallery, but it is a good  practice to provide a fallback — a 

button — for devices that may not support gestures;  and for users who may not 

understand it or are not used to this kind of interaction. Nevertheless,  implement  

an  animation  between  each  slide  to  help  users  grasp  what  is  happening.  

A  crossfade is common with this type of pattern, but an animation of the section 

sliding in and out can provide a  better affordance, particularly if a swipe is used 



to move between slides. 

 
Provide some feedback of the user’s position within the list. It can be done by using 
an index of the list — Figure 23—, and if it is important to identity each slide, you 
can number them. Markers can work as buttons that link to the corresponding slide, 
although they need to be large enough to  work efficiently. Thus, you should always 
provide an alternative method for scrolling through the list. 

 
The Airbnb website has two SLIDESHOW galleries in the same page, and each one 
implements a different  method for browsing the gallery: one only works with a swipe 
— Figure 24, on the left  — and one only works  with buttons — Figure 24, on the 
right. Although they are used for different purposes and are visually distinct,  it can 
still confuse users and it would be expectable that at least the interaction worked 
identically. 
Examples 



 
Related Patterns  

− Slideshow, Designing Mobile Interfaces (Hoober and Berkman 2011) 

 

PATTERN: #99 

4.14 Tabs  



 
Problem You have a series of related information with a clearly defined hierarchy, 
and comparable length that needs  to be presented at a similar level without wasting 
too much vertical space. Solution Arrange horizontally the headings of all items in 
the list, but display only the content of one. The visibility of  each module can be 
toggled by users. *** TABS are widely used in web design and are therefore 
recognizable by users. They use a metaphor of the  labels  on  folder  archives  which  
make  them  easy  to  understand.  TABS  should  be  used  to  alternate  between  
views within the same context (Nielsen 2007) rather than between pages. That is, 
they do not take the user to  another page, only the visibility of the content changes. 
You  should  clearly  identify  which  is  the  active  tab.  The  tab  heading  should  
be  visually  connected  to  the  content  for  better  making  this  distinction.  You  
should  take  special  attention  when  there  are  only  two  tabs,  because the 
inactive state can be more easily mistaken as being active. TABS work better when 
you only have a few tab modules that fit on the width of the page, and there is only  
one row of tabs. Two rows or more of tabs are a quite confusing and not very elegant. 
If you have a list of tabs  headings that do not fit the width of the device it is better to 
truncate part of the list and to provide a method  for scrolling through the tabs 
headings — a behavior similar to a SLIDESHOW. Nonetheless, it may be a better  
idea  to  revise  your design  and  think  of  an  alternative  approach.  A  VERTICAL  
LIST  or  a  SLIDESHOW  can  sometimes be an option.  
Examples 



 
Related Patterns  

− Tabs, in Designing Mobile Interfaces (Hoober and Berkman 2011)  

− Tab Menu, in Mobile Design Pattern Gallery (Neil 2012) 

 

PATTERN: #100 

4.15 Dropdown  

 
Problem 
Sometimes you may have information  that is not  frequently needed. To simplify  the 
interface it would be  convenient to remove it; however, you still need to provide 
access to that content. Solution Design an element on the page that toggles the 
visibility of additional content. Keep the content hidden until  the users express a 
direct intention to access it, then, make the content appear over the page. *** You  



should  try  to  not  overload  the  page  and  the  user  with  information  that is  not  
frequently  needed.  A  DROPDOWN allows you to keep the layout simpler and 
cleaner by concealing non-essential information until  there is a direct action of the 
user. You can use it to present small pieces of information that do not exceed the  
height of the screen. That is, you should not add additional complexity to this 
interface component by having  the user scroll the page or the DROPDOWN to see 
truncated content. In a DROPDOWN you have a button or any other element on the 
page that once tapped reveals the hidden  content hovering on top of the page. 
Users should be able to withdraw it by tapping the same button again or  any part of 
the page that is not the DROPDOWN.  
Examples 

 
Related Patterns  

− EXPANDING LIST 

PATTERN: #101 

4.16 Linearized Table  



 
Problem  
Wide tables do not fit seamlessly on small screens. If you try to design a table with 
a considerable number of columns you will end up with a horizontal scroll on the 
page.  
Solution  
Linearize the table by converting each table row to its own table with two columns: 
one  for the headings,  another for the cells. *** Tables can be quite wide, which is a 
problem on small screens. You can scale them down until they fit the  screen, but 
that makes the text unreadable; or you can display them at normal size, but that 
leads to horizontal  scrolling. Both alternatives are far from being desired. To 
overcome this problem you can reformat tables to a  more linear design, in which 
table rows become independent entities stacked on top of each other. In this new  
adapted design,  table headings are removed and each  table row is converted  to 
its own simplified  table with  only  two columns: one  for  the  table headers and 
another  for  the corresponding cells. Like in a normal  table,  you  should  also  use  
alternated  colors  (or  any  appropriate  design)  in  each  new  section  so  they  are  
clearly  distinguished. The idea  for  this  pattern was  proposed  by  Chris  Coyier  
(2012)  on  the article Responsive Data  Tables. This approach works particularly 
well when you have a simple table with bi-dimensional data. With more  complex 
tables — those that have headers with two or more levels — it can be harder to 
clearly linearize all  the information without compromising its clarity.  
Examples 



 
Related Patterns  

− LINEARIZED LAYOUT  

− ABRIDGED TABLE 

PATTERN: #102 

4.17 Abridged Table  

 
Problem  
You  need  to  present  a  table  with  several  columns  that  does  not  fit  on  the  
width  of  a  device.  You  could  reformat the table; however, the spatial relations 
established on the table need to be preserved.  
Solution  
Display the table with some of the columns hidden, but provide a method for users 
to toggle the visibility of  the hidden columns. *** An ABRIDGED TABLE is an 
alternative to the LINEARIZED TABLE, particularly useful when the order and  
relations  established  on  the  table  are  important  for  its  understanding.  This  
pattern  is  most  suitable  for  responsive designs because it allows us to 
automatically conceal columns on a table depending on the width of  the device.  It 
should be implemented in a way  that permits  to specify  the order in which columns 
should be  hidden, so non-essential columns can be removed first. You should also 
provide a method that allows users to  reveal  the hidden columns; a button  that  



triggers a DROPDOWN with a list of all available columns can be a solution to this 
problem.  
Examples 

 
Related Patterns  

− LINEARIZED TABLE 

PATTERN: #103 

4.18 Touch Friendly Target  

 
Problem Because of the small screen, the nonexistence of tactile feedback, and the 
lack of precision of our fat fingers7,  hitting  a  target  on  a  mobile  device  can  be  
a  challenging  task.  You  need  to  design  an  interface  that  must  be  effortlessly 
used by touch. Solution Design all touchable elements large enough and generously 
spaced so they can be easily triggered. *** With a mouse we can easily trigger very 
small targets, on mobile devices, because we are using our fingers  as an input 
device that can be a more changeling task. Our fingers are much more imprecise 
than a mouse, as  such, you should design touchable elements large enough so 



users can easily interact with them. It is frustrating when we press a button and 
nothing happens. Currently devices provide no haptic feedback,  so users cannot 
know  for sure if  they just missed  the  target or  there is a problem with  the website. 
You can  reduce  the  problem  of  the lack  of  feedback  by  providing  some  visual  
response  to  the  fact  that  a  target  was  tapped; for example, changing the 
background color of the target. In addition to larger targets, you need to account for 
the space between targets. You should have generous  space between elements to 
minimize errors. If the implementation of this pattern leads to enormous targets, you 
can use an ICEBERG TIP instead.  
Optimal Size 

The recommended minimum size for a target differs depending on which user 

interface guideline we may  be following. However, the optimal size should be 

approximately that of an adult finger, which largely have a  diameter of 16mm to 

20mm (Saffer 2008), but the size in pixels varies depending on pixel density: − 

The iPhone Human Interface Guidelines (Apple Inc 2012), recommends a 

minimum of  44x44 pixels for targets. Since the release of devices with higher 

DPI, Apple updated that  value to an abstract measure of 44x44 points. − User 

Experience Design Guidelines for Windows Phone (Microsoft 2012) recommends 

a  9mm target as the ideal size for all devices across Microsoft platforms, and 

7mm as the  minimum for the height when the width of the target is larger. It also 

recommends  4.2mm as the minimum visual size for a touchable item; and 2mm 

for the space between  targets. − Nokia Developer’s (Nokia 2012) resources 

recommends that touchable elements should  be no smaller than 10x10mm. And 

the minimum size for target should be: 7x7mm with  1mm gaps for index finger 

usage; 8x8mm with 2mm gaps for thumb usage; and list type  of components 

should have a minimum of 5 mm line spacing.  

Examples 



 
Related Patterns  

− ICERBEG TIP  

− Generous Borders, in Designing Interfaces (Tidwell 2011) 

 

PATTERN: #104 

4.19 Iceberg Tip  

 
Problem Sometimes you need  to design a TOUCH FRIENDLY TARGET, but you 
do not want to have enormous and  inelegant buttons to clutter the interface. Solution 
Design the visible part of your object with whatever size you planned, but make the 
real target invisible and  large enough so it can be easily touched.  *** This pattern 
is inspired on the idea described by Dan Saffer in Designing Gestural Interfaces 



(2008), which,  like  the name suggests, uses  the metaphor of an iceberg  for 
describing a  target  that is larger  than the visible  area. When  designing  touch  
friendly interfaces,  touchable  elements  must  be  large  enough  so  users  can  
easily  interact with  them. However, it is not always practical, or visually pleasing  to 
design big buttons  throughout the  entire interface, in  fact,  touch  friendly  buttons 
may  sometimes look clumsy. This  pattern is  valuable  for  when  we  have  any  
element,  either  text  or  image,  that  by  itself  is  not  large  enough  to  be  triggered  
without  effort;  or  when  designing  big  buttons  may  go  against  what  was  
envisioned  for  the  visible  design  of  the  interface. The solution involves having  
the visible part of  the element surrounded by an invisible padding area  that  also 
works as a target, i.e., only a portion of the target is visible, the rest is hidden. One 
limitation of  this pattern is  that it cannot be used when we have several  touchable 
elements side by  side, without creating additional white space between them. We 
should always try to provide the correct affordances for the interface, but because 
of the small scale that  the visible component can reach,  the simpler design, or just 
because users were not expecting  that elements  that  small  would  work  as  
buttons,  it  may  happen  that  these  elements  are  not  be  perceived  as  touchable.  
Microsoft  (2012)  recognizes  this  downside  and  recommends  that  the  graphic  
component  should  be  at least  4.2mm. 

 
Starbucks — Figure 31 — uses small circles with a diameter of 16px as buttons  for 
navigating  through a  SLIDESHOW. Those buttons  do  not look large enough  for  
being easily  touched;  however,  the  real  target is a  36px square, which improves 
considerably its efficacy, though, it is still below what is usually recommended by 
TOUCH FRIENDLY TARGET. 

 
On the Figure 32, on the left image, we have a menu with links that could be 
improved by using this pattern.  The text is too small, which by itself is not necessarily 
a problem, but the target occupies the same space as the  text,  in  this  case,  as  
low  as  8  pixels  height;  and  there  is  not  adequate  space  between  links,  which  
makes  it  almost impossible  to  hit  the intended  target  on  the  first  try. On  the  
contrary,  on  the  right image, we  have  a  comparable menu, but here, while  the 
visible part is still small, links have plenty of space between  them and  the real target 
occupies the maximum space possible. 



 
Related Patterns  

− TOUCH FRIENDLY TARGETS 

 

PATTERN: #105 

4.20 Dynamic Filtering  



 
Problem  
Searching through an extensive list of items within a page can be a tiresome task. 
Likewise, searching on a  long  dataset,  especially  if  the  user  does  not  remember  
exactly  the  search  term,  can  also  be very  time  consuming. 
 
Solution  
Provide a search form that dynamically filters the results as the user is typing. *** 
The  idea  for  the  DYNAMIC  FILTERING  can  be  found  in  patterns  such  as, 
Dynamic  Search (Neil  2012) or  Search  Within (Hoober  and  Berkman  2011),  and  
you  can  implement  it  on  forms  in  order  to  present  faster  results, by minimizing 
the users’ need to type and scroll. Unlike an explicit search that forces users to type 
the  complete  search  term and  press a  button  confirm it, with a DYNAMIC  
FILTERING they  can get  the intended  result  by  typing  only  a  few  letters.  
Because  users  do  not  need  to  type  everything,  this  pattern  can  also  be  
helpful for cases when they do not remember accurately the desired query. When 
the user types a letter the Dynamic Filtering removes entries  that do not contain  
that letter. As  the  user keeps typing, the system keeps eliminating entries that do 
not fit the pattern entered.   
Examples 
http://www.google.com 
http://www.bing.com 
Related Patterns  

− Dynamic Search, in Mobile Design Pattern Gallery (Neil 2012)  

− Search Within, in Designing Mobile Interfaces (Hoober and Berkman 2011) 

 

PATTERN: #106 

4.21 Clear Entries  

http://www.google.com/
http://www.bing.com/


 
Problem  
Although typing on a virtual keyboard is a difficult task, resetting an input form to the 
default state may be  no less easy. Deleting a long string of text letter by letter can 
be a very tedious error prone task.  
Solution  
Provide a button that resets the input form with one tap.  
***  
You  should  always  strive  for minimize  users’  need  to input  text  on mobile.  Like  
text  entry,  deleting long  strings  of  text can  be a  very  tedious  task and propitious  
to mistakes. While, generally, OS have  some  sort  of  method to facilitate the 
clearing of input fields, such as, faster deleting on long presses, you may still provide 
a  better and faster method for this task. This pattern is based on the patterns Text 
Clear Button (Tidwell 2011)  and Clear Entry (Hoober and Berkman 2011), so you 
can find additional information there. Therefore,  provide  a  button  on  all  free-text  
input  fields  that  allows  users  to  quickly  remove  previous  composed  text.  Place  
that  button  inside  the  input  field  aligned  to  the  right  and  farther  enough  from  
other  Web Design Patterns for Mobile Devices: Page - 41 targets so it is not tapped 
by mistake. If it is needed you can use and ICEBERG TIP to improve the efficacy of  
that button. A button with an “x” is succinct, unambiguous and almost a standard so 
it is usually favored, but if  you have the space you can use a label like “Clear” or 
“Reset”.  
Examples  
http://google.com 
http://bing.com 
Related Patterns  

− Clear Entry, in Designing Mobile Interfaces (Hoober and Berkman 2011)  

− Text Clear Button, in Designing Interfaces (Tidwell 2011) 

 

http://google.com/
http://bing.com/

