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Abstract: Recently, Transformer-based models have shown promising results in automatic speech
recognition (ASR), outperforming models based on recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs). However, directly applying a Transformer to the ASR task does not
exploit the correlation among speech frames effectively, leaving the model trapped in a sub-optimal
solution. To this end, we propose a local attention Transformer model for speech recognition that
combines the high correlation among speech frames. Specifically, we use relative positional embed-
ding, rather than absolute positional embedding, to improve the generalization of the Transformer
for speech sequences of different lengths. Secondly, we add local attention based on parametric
positional relations to the self-attentive module and explicitly incorporate prior knowledge into the
self-attentive module to make the training process insensitive to hyperparameters, thus improving the
performance. Experiments carried out on the LibriSpeech dataset show that our proposed approach
achieves a word error rate of 2.3/5.5% by language model fusion without any external data and
reduces the word error rate by 17.8/9.8% compared to the baseline. The results are also close to, or
better than, other state-of-the-art end-to-end models.

Keywords: end-to-end model; speech recognition; Transformer; local attention

1. Introduction

With the development of deep learning techniques, end-to-end speech recognition
models have received significant attention because they simplify the training and decoding
process considerably. Indeed, they directly learn speech-to-text mapping with purely neural
network systems, while the traditional HMM-based methods need a hand-crafted pronun-
ciation dictionary, an independent acoustic model, and a complex decoding system [1].

End-to-end models can be broadly divided into three different categories depend-
ing on their implementations of soft alignment: connectionist temporal classification
(CTC-based) [2–5], recurrent neural networks-transducer (RNN-T) [6–9], and attention-
based encoder–decoder (AED) [10–13]. CTC [2] uses a single network structure to map
input sequences directly to output sequences to solve the problem of data alignment and
direct modeling. Essentially, CTC is a loss function, but it solves a hard alignment prob-
lem while calculating the loss. CTC assumes that the output elements are independent
of each other, so interdependencies cannot be modeled in the output sequence. Graves
proposed the RNN-T [6] model to solve the dependency modeling problem. The RNN-T
model consists of three sub-networks—a transcription network, prediction network, and
joint network—using a different path generation process and path probability calculation
method to that of CTC. However, the RNN-T and CTC calculation processes include many
evident unreasonable paths. To solve this problem, the AED method [10] uses the atten-
tion mechanism to calculate the soft alignment information between input and output
data directly.

In 2017, Vaswani et al. proposed a network Transformer [14] based entirely on the
attention mechanism and successfully applied it to natural language processing (NLP).
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With the flexibility of the Transformer, data can be processed with the Transformer when
they have a serialized nature. Therefore, having a typical encoder–decoder structure,
Transformers have been widely used in speech recognition [15–18].

Transformers have the advantage of flexibility, but they also have the problem of
insensitivity to data. Unlike the recurrent neural networks with sequential and time-
domain invariance brought about by Markovian structures [19], Transformer structures
lack explicit inductive bias [20]. For speech recognition, Transformers cannot exploit the
high correlation of speech frames in speech data and capture insufficient local contextual
information. Therefore, the question of how to accurately focus on the local context in a
Transformer speech recognition system is a problem to be solved.

At the same time, due to the number of time frames of an audio sequence being
significantly larger than the number of output text labels [11], inputting the speech frame
sequences into the basic Transformer leads to the problems of high computational effort
and excessive redundant information. To address these problems, current mainstream ap-
proaches use convolutional subsampling to reduce the length of the input speech sequence
during the encoding period and obtain an embedded representation of the speech frames.
However, using operations such as convolution and pooling to reduce the data size of the
input speech frames introduces the problem of data loss from the speech frames, leading to
performance degradation [21].

To address these problems, we propose the LAS-Transformer (local attention speech-
Transformer). Specifically, we use depthwise separable convolution [22] for subsampling,
and there is no pooling layer in the subsampling layer to ensure the maximum integrity of
speech information at the embedding layer. Moreover, we propose a local attention module
to explicitly incorporate the highly correlated features of speech frames into the attention
calculation, which can effectively extract local contextual information and significantly
compensate for the defects of the basic Transformer’s local feature extraction. Additionally,
the absolute positional embedding method is replaced by relative positional embedding
to improve the representation of location information, which calculates the self-attention
score more accurately.

The main contributions of this paper are as follows:

1. We propose a local attention module based on the highly correlated features of speech
frames. The local self-attentive module uses a high correlation of speech frames as a
priori knowledge to quickly capture the local information of the speech sequence.

2. We propose a depthwise separable convolution subsampling layer, which reduces the
parameters of the model and preserves the position information to a great extent.

3. We replace the Transformer’s native absolute positional embedding with relative po-
sitional embedding. The relative position encoding method can enhance the position
information representation, which not only contains the relative position relationship,
but also expresses the direction information.

We compare the proposed method with other end-to-end models on the public dataset
LibriSpeech [23]. The experimental results show that the proposed LAS-Transformer re-
duces the word error rate by 17.8/9.8% compared to the baseline. We further explore the lo-
cal attention model and perform ablation experiments to demonstrate the effectiveness of lo-
cal attention, relative position encoding, and depthwise separable convolution subsampling.

2. Related Work
2.1. Transformer

NLP has made significant progress in recent years, much of which is attributed to
the Transformer [14]. A typical encoder–decoder structure captures sequence order de-
pendencies using a multi-head dot product self-attention mechanism, represents sequence
positions with absolute positional embedding, and uses fully connected layer computation.
It significantly reduces the training time compared to traditional CNNs and RNNs.

The dot product self-attention focuses on the similarity between the query vector and
each of the key-value vectors as weights and then sums the weights over all the real-valued
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vectors, as defined as Equation (1), where Q, K, V ∈ RL×d denote the query matrix, the
key-value matrix, and the real-value matrix, respectively; L denotes the length of the input
vector; d denotes the dimension of the input vector; and QKT is the attention matrix. To
prevent backpropagation from falling into regions with a small gradient, the variance of
the attention matrix is reduced by the

√
d.

ATT(Q, K, V) = softmax
(

QKT
√

d

)
V (1)

Multi-head attention is based on self-attention and takes advantage of the attentional
representation of different subspaces, defined as Equations (2) and (3). Multi-head attention
calculates h times self-attentions, where h denotes the number of self-attention heads. Before
calculating each self-attention, Q, K, V are converted into more distinct representational
vectors by three linear projections. Each self-attention is computed independently, and then
their outputs are concatenated and projected linearly.

MHA(Q, K, V) = Concat[H1, H2, . . . , Hh]W
h (2)

Hi = ATT
(

QWQ
i , KWK

i , VWV
i

)
(3)

Equation (3) has the same dimension as Equation (1). The projection matrix is
WQ

i ∈ Rd×dq , WK
i ∈ Rd×dk , WV

i ∈ Rd×dv , Wh ∈ Rhdv×d, dq = dk = dv = d/h.
Absolute positional embedding is used to represent the position information as a

way for the model to learn the sequential relationship of the sequence. As shown in
Equation (4), pos and k represent the position and the dimension. Each dimension of the
position encoding U has a sinusoidal signal, and each position can be represented by other
positions through triangular transformation.

Upos,2k = sin
(

pos
10002k/d

)
Upos,2k+1 = cos

(
pos

10002k/d

) (4)

2.2. CTC-Transformer

The attention mechanism in the Transformer is too flexible because it allows extreme
out-of-order alignment before the input and output sequences. This mechanism is extremely
suitable for certain tasks, such as machine translation, where the input and output words
are not in the same order; however, in speech recognition, the output text sequences and
the input speech sequences correspond to each other in the same order. The Joint CTC-
Transformer [16] is improved to address this problem. First, the CTC structure is introduced
to constrain the optimization direction of the encoder in the Transformer with the help of
the monotonic property of CTC so that the output sequence and the input sequence can
be aligned quickly. Secondly, individual speech frames in a speech sequence, unlike units
such as words and phrases, have no evident meaning. Only several adjacent speech frames
can form a more meaningful unit, such as a phoneme or character. The length of the input
speech sequence is several times longer than the length of the output sequence.

To address these two problems, the Joint CTC-Transformer introduces a convolutional
subsampling layer, consisting of a CNN with a temporal dimension and ReLU activation
function, to shorten the length of the input sequence significantly and obtain a more
meaningful and efficient audio embedding representation. Since the Joint CTC-Transformer
introduces multi-objective optimization and decoding combines the CTC structure output
and Transformer decoder output, it is well suited for speech recognition.

3. Methods

In this paper, we propose a new speech recognition structure, the LAS-Transformer.
The model structure is shown in Figure 1. In the encoder part, audio features first pass
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through a depth-separable convolutional subsampling layer and then into the stacked
Ne times of encoder layers. Each encoder layer consists of two sub-layers: the first sub-
layer is a multi-head local attention layer fused with relative positional embedding, and
the second sub-layer is a feedforward layer. Each sub-layer has a residual structure [24]
and pre-norm [25], and none of the encoder layer parameters are shared. Finally, the
layer-normalized speech representation is fed to the CTC module to obtain the probability
distribution of the CTC output, which consists of a fully connected layer and a softmax
layer. In the decoder, one-hot encoding first passes through an embedding layer with
absolute position encoding and then enters the decoder layer of stacked Nd. Each decoder
layer consists of three sub-layers: the first sub-layer is a masked multi-head attention layer,
the second sub-layer is a multi-head attention layer that fuses the speech representation of
the encoder, and the third sub-layer is a feedforward layer. Each sub-layer has a residual
structure and pre-norm, and none of the decoder layer parameters are shared. Then, after
layer normalization and linear layers, the final probability distribution output is obtained
using softmax. The three improvements made in this paper are in the encoder module,
as will be described in detail below. The decoder module is the same as the Transformer
decoder and will not be described again.
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Figure 1. The overall framework of the LAS-Transformer. Figure 1. The overall framework of the LAS-Transformer.

3.1. Depthwise Separable Convolution Subsampling Layer

The common convolutional subsampling layer consists of the convolutional layer,
ReLU activation, and a maximum pooling layer, as shown in Figure 2a. The maximum
pooling layer is located at the input layer of the model and is likely to discard some
contextual information. The maximum pooling layer is removed from the subsampling
layer to ensure the integrity of the position information. The position information is
important and contains the position relationship of the speech frames. When the speech
frames are close or equal, the attention module can only use the position information to
distinguish between the different outputs. Layer normalization is added to the subsampling
layer. Layer normalization is able to keep the training and testing sets independent and
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identically distributed, making the loss landscape smoother. Specifically, the gradient of the
loss function after layer normalization processing becomes smaller. The normal convolution
in the subsampling layer is replaced by a depth-separable convolution [22] with a step size
of 2. The depthwise separable convolution reduces the parameters and enables channel and
space separation computation. The first layer is called a depthwise convolution. It performs
lightweight filtering by applying a single convolutional filter to each input channel. The
second layer is a 1 × 1 convolution, called a pointwise convolution, which is responsible
for building new features through the depthwise separable convolution subsampling layer,
and is shown in Figure 2b.
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3.2. Relative Positional Embedding

The original Transformer uses trigonometric absolute positional embedding, and the
attention matrix Aabs can be factorized into four parts as Equation (5), where E ∈ Rd,
W ∈ Rd×d, and U ∈ Rd represent the input vector, the weight matrix, and the absolute
position vector, respectively, and i and j represent the query vector position and the key
vector position, respectively. Among the four parts of abcd, only d contains both the query
vector position and the key vector position and is most likely to contain relative position
information. It has been shown that the relative position information is included in the
absence of Wq and Wk, but the relative position relationship is lost when Wq and Wk are
introduced [18].

Aabs
i,j = ET

xi
WT

q WkExj︸ ︷︷ ︸
(a)

+ ET
xi

WT
q WkUj︸ ︷︷ ︸
(b)

+ UT
i WT

q WkExj︸ ︷︷ ︸
(c)

+ UT
i WT

q WkUj︸ ︷︷ ︸
(d)

(5)

Therefore, following Transformer-XL [26], the absolute positional embedding is re-
placed by the relative positional embedding, defined as Equation (6). Relative positional
embedding replaces both the projection UT

i WT
q of the query vector position in part c directly

with the learnable parameter u ∈ Rd and the projection UT
i WT

q of the query vector position
in part d directly with the learnable parameter v ∈ Rd. Since the query vectors are the
same for all query positions, the deviations of different positions are represented by the
same learnable parameter. The absolute position, Uj ∈ Rd×Lmax , of the key-value vector is
replaced by the relative position vector Ui−j ∈ Rd×Lmax , and i− j is used to represent the
relative position, which is calculated using Equation (4). Relative positional embedding
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can represent not only the relative position information, but also the direction information.
Direction information implies that Ui−j is not equal to Uj−i.

Arel
i,j = ET

xi
WT

q Wk,EExj︸ ︷︷ ︸
(a)

+ ET
xi

WT
q Wk,UUi−j︸ ︷︷ ︸
(b)

+ uTWk,EExj︸ ︷︷ ︸
(c)

+ vTWk,UUi−j︸ ︷︷ ︸
(d)

(6)

3.3. Local Attention Layer

In the NLP field, the lower layers in Transformer tend to capture the short-term
dependencies of adjacent words and higher layers tend to capture long-term dependencies.
In the encoder part of the Joint CTC-Transformer, both the lower and higher levels tend to
capture the short-term dependencies of speech frames, and the self-attention weight matrix
is shaped in the manner of a banded diagonal array, as shown in Figure 3.
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heat map. (c) Encoder eighth-layer attention matrix heat map. (d) Encoder twelfth-layer attention
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Figure 3 shows the results of the normalization of the self-attention matrix of utterance
3081-166546-0015 in LibriSpeech dev-clean at the encoder, in which the rows indicate the
query vector positions and the columns correspond to the key vector positions. It can
be seen that most of the speech frames have strong dependencies only with a number of
neighboring frames. However, the advantage of the original self-attention mechanism is
that it captures global context dependencies and is inadequate for capturing local context
dependencies. To address this problem, we propose a parameterized local attention mecha-
nism that adds location-based a priori information B to the native attention. The structure
is shown in Figure 4.
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The a priori attention matrix is fused with the generated attention matrix according to
Equation (7):

ATT(Q, K) = softmax

(
Arel

Q,K√
d

+ B

)
(7)

where Arel
Q,K is calculated by Equation (6); B ∈ RL×L denotes the location of the a priori

information; L denotes the sequence length; and d denotes the dimensionality of each head
of the model. Due to the exponential operation in the softmax function, adding a bias
bi,j ≤ 0 to the attention matrix is approximated by multiplying the weights w ∈ (0, 1]. bi,j is
calculated by Equation (8).

bi,j =

 −
(i−j)2

l2
i

, i f i− j ≤ s

− s2

l2
i

, i f i− j > s
(8)

where i denotes the position of the query vector; j denotes the position of the key-value
vector; li denotes the window size of the query vector concern, and s denotes the truncation
distance. A priori information is truncated when i and j are far away, relative to each other
to avoid the approximate one-hot output caused by a priori information with an absolute
value that is too large. Considering the variability of different pronunciations, the window
size should be different for different query vector concerns; thus, a parameterized window
size calculation method is used rather than a fixed window size. The calculation method is
shown in Equation (9).

li = I·σ
(

UT g(W(Exi + u + v))
)

(9)

where Exi denotes the query vector at position i; u and v are the trainable relative positional
embedding parameters in Equation (6); and W ∈ Rd×2d, U ∈ R2d are the learnable param-
eters. g denotes the tanh activation function; σ denotes the sigmoid activation function;
and I denotes the length of the sequence. Following the Transformer feedforward layer,
the window size information is first projected to a higher-dimensional space (2d) so that,
using the tanh activation function, the sparse data are easier to obtain, and then they are
linearly transformed to the original dimension. Finally, the data are normalized to [0, 1]
by the sigmoid function and then multiplied with the sequence length to obtain the final
window size.

3.4. Training and Decoding

During model training, the decoder and CTC modules calculate the posterior probabil-
ity distributions Patt(Y|X),Pctc(Y|X), respectively. The loss function is a weighted sum of the
negative likelihood logarithms of the posterior distributions, calculated according to Equa-
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tion (10). In Equation (10), − log Patt(Y|X) is the cross-entropy loss and − log Pctc(Y|X) is
the CTC loss. α is the hyperparameter used to measure the weight of the CTC module.

L = −1− α log Patt(Y|X)− α log Pctc(Y|X) (10)

In the decoding phase, given the speech sequence X and the token predicted in the
previous step, the next token is computed by beam search combined with the decoder, CTC,
and language model, as defined in Equation (11). y∗ in Equation (11) denotes the set of
hypotheses for the target sequence, and λ and γ are both hyperparameters used to adjust
the CTC module and language model score weights during decoding.

Ŷ = argmax
Y∈y∗

(1− λ) log Patt(Y|X) + λ log Pctc(Y|X) + γ log Plm(Y) (11)

4. Experiments

We replicated the Espnet Transformer model [16] as the baseline and trained it using
the LibriSpeech public dataset to compare it with other advanced speech recognition
methods. The effectiveness of our proposed model was verified by comparison and
ablation analysis experiments on the LibriSpeech dataset.

4.1. Datasets and Evaluation Metrics

The performance of our proposed model was verified using the LibriSpeech public
dataset [23], which has a total of 980 h of English speech data and corresponding text data
from the Internet Archive and the Gutenberg Project. The dataset is divided into two parts:
the clean part and the other part. The clean part has less noise and is easy to recognize.
The other part has poor audio quality and is more difficult to recognize. Furthermore, the
dataset is further divided into train-clean-100, train-clean-360, train-other-500, dev-clean,
dev-test, test-clean, and test-other.

Word error rate (WER) was used to evaluate the performance of the model, as defined
in Equation (12), where S is the number of words replaced; D is the number of words
deleted; I is the number of words inserted; S + D + I is the shortest edit distance; and N is
the number of words in the correct word sequence:

WER = 100× S + D + I
N

% (12)

4.2. Experimental Details

The input data of the model were 80-dimensional Fbank features. We performed
experiments using Ne = 12 and Nd = 6 Transformer layers for the encoder and decoder,
respectively, with d = 256, h = 4 and s = 10. The number of mask windows in the
SpecAugment layer [27] was 2 in both time and frequency dimensions, and the window
size was 30. Considering the variable length of input data sequences, we used dynamic
Batch to improve the memory utilization. Batchbin is 5,000,000. The gradient accumulation
was 4. We used the Adam optimizer, with a learning rate scheduling similar to [16].
The dropout method in both the position encoding and attention matrix was 0.1. Label
smoothing was used to calculate the cross-entropy loss; the smoothing weight was 0.1;
and the CTC loss weight α = 0.3. The ten models with the lowest error rate were saved to
calculate the average as the final result, according to the word error rate size sorting at the
end of the training.

In the decoding stage, the score weight of the CTC module was 0.3, the score weight
of the language model was 0.6, and the bundle width was 10. The language model used
a Transformer encoder structure, where the number of encoder layers was 6, the model
dimension was 512, the number of heads was 8, and the attention dimension was 256.
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We used the same data enhancement in all experiments to ensure fairness, including
speed perturbation [28] and SpecAugment [27]. The parameters were set to the same case
for all experiments.

4.3. Comparison Experiments

To verify the effectiveness of the models, we used the Espnet Transformer model as the
baseline system and selected several popular speech recognition models for comparison.
We used WER to verify the overall recognition performance of the LAS-Transformer and
the comparison models. The experimental results are shown in Table 1.

Table 1. Comparison of WER of each model on LibriSpeech dataset.

Network Structure Dev-Clean Dev-Other Test-Clean Test-Other

QuartzNet - - 2.69 7.25
Espnet Transformer 2.2 5.6 2.6 5.7
LAS+Specaugment - - 3.2 9.8
LSTM Transducer 2.17 5.28 2.23 5.74

Hybrid model with Transformer
rescoring - - 2.60 5.59

baseline 2.5 5.9 2.8 6.1
LAS-Transformer 2.2 5.2 2.2 5.5

As Table 1 shows, the error rates for our baseline experiments were 2.5/5.9/2.8/6.1%,
with an increase in error rates in relation to the original Espnet Transformer model. On the
one hand, our baseline model dimension (d = 256) is half that of the Espnet Transformer
model, so the number of parameters is half that of the original paper, which must lead to
an increase in error rate. On the other hand, a larger batchbin = 30,000,000 was used in the
Espnet Transformer, and it is noted that a larger batchbin significantly improves the results.
Therefore, in this paper, we avoided long training times with GPU memory limitations and
used d = 256 and batchbin = 5,000,000, which causes performance loss.

Comparing the baseline experiments with our proposed model, our proposed ap-
proach achieves relative WER reductions of 21.4% and 9.8% for the test-clean and 2.2% and
5.5% for the test-other, respectively. This validates the reasonableness and effectiveness of
our proposed LAS-Transformer model. Table 1 shows some advanced speech recognition
models. QuartzNet’s [29] design is a convolutional model trained with CTC loss. Espnet
Transformer [16] is a Joint CTC-Transformer model. LAS+Specaugment [27] is a sequence to
sequence framework with Specaugment. LSTM Transducer [9] improves external language
model and an estimated internal LM. The hybrid model with Transformer rescoring [30]
leverages the Transformer to improve hybrid acoustic modeling. Our proposed model
has a lower error rate than them, a 18.2/15.4/31.2/1.4/15.4% error rate reduction on the
test-clean subset, and a 24.1/3.5/43.8/4.1/1.6% error rate reduction on the test-other sub-
set. Specifically, LAS-Transformer achieves better performance with half the number of
parameters compared to Espnet Transformer. This indicates that there is indeed a problem
in indirectly applying Transformer to the ASR task, and the proposed model solves the
problem to some extent.

4.4. Ablation Experiments

To further determine the effectiveness of our proposed method and explore the contri-
bution of each module, each module was separated for the experiments in this paper, and
Table 2 shows the performance of the proposed LAS-Transformer model and the separately
improved model for each subset of LibriSpeech recognition.
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Table 2. Results of the ablation study of the proposed LAS-Transformer model.

Network Structure Dev-Clean Dev-Other Test-Clean Test-Other

baseline 2.5 5.9 2.8 6.1
baseline + relative position coding 2.3 5.6 2.4 5.7

baseline + local attention 2.4 5.5 2.5 5.6
baseline + depthwise separable

convolution subsampling 2.5 5.8 2.7 5.9

LAS-Transformer 2.2 5.2 2.2 5.5

According to Table 2, the comparison of the baseline experiment and the baseline + relative
positional embedding model reveals that the relative positional model embedding reduces
the error rate of each test subset by 8.0/5.0/14.3/6.5%. This justifies the replacement
of absolute positional embedding with relative positional embedding and indicates the
effectiveness of the relative position in the field of speech recognition, which improves the
representation of temporal information to some extent. Comparing the baseline experiment
and the baseline + local attention model, the local attention model reduces the error rate of
each test subset by 4.0/5.1/10.7/8.2%; adding the local attention module can effectively
improve the performance of the model. Further observation shows that, compared with
relative positional embedding, the local attention on both dev-other/test-other perfor-
mance is improved by 10.0/26.1%. Combined with the unclear characteristics of speech
in these two subsets, this indicates that the local attention module can effectively capture
the local dependencies of speech frames. Comparing the baseline experiment and the
baseline + depthwise separable convolution subsampling model, it was found that the
depthwise separable convolution subsampling model improves the performance to a lesser
extent, reducing the word error rate by 1.6/3.5/3.2% under dev-other/test-clean/test-other.

In addition, Table 3 shows that the performance of our LAS-Transformer model is
further improved after fusing three modules (relative position encoding, local attention, and
depthwise separable convolution subsampling), achieving a word error rate of 2.2/5.5% on
test-clean/test-other. This proves the effectiveness of our proposed LAS-Transformer model
and also verifies that local attention can effectively obtain local contextual information to
make up for the Transformer’s shortcomings in this area. LAS-Transformer can incorporate
the highly correlated features of speech frames to a certain extent.

Table 3. Results of the exploratory experiments of the LAS-Transformer.

Network Structure Dev-Clean Dev-Other

baseline 2.5 5.9
baseline + mixed local attention 2.5 6.2

baseline + full local attention 2.4 5.5

4.5. Exploratory Experiments

To further explore the effect of local attention, we designed a comparison experiment
between full local attention and mixed local attention, in which full local attention indicates
that all heads in self-attention add a priori knowledge, and mixed local attention indicates
that half of the heads add and the other half do not add a priori knowledge. This is because
most of the self-attention matrices in the baseline experiments are shaped in the manner
of diagonal arrays. However, there are still small parts of the attention matrices that take
global information into account, so mixed local attention aims to learn information at
different scales in different subspace models and avoid full local attention from introducing
too much a priori knowledge to affect the model’s performance. The variation curves of
loss and accuracy for the validation set dev-other are shown in Figure 5, and the final
results are compared in Table 3
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Figure 5a shows that, after 120 training iterations, the loss value starts to oscillate,
indicating that the neural network model converged after training. After adding local
attention, the loss of the validation set is lower than that of the baseline throughout the
training process, and the change in the loss curve is smoother than that of the baseline. This
indicates that, when adding a local attention mechanism to the model, the model obtains a
more accurate gradient descent direction during training.

From Table 3 and Figure 5b, we can observe that, compared to the baseline experiment,
the hybrid local attention model shows a degraded performance. The dev-other error rate
increases by 5.1%, the accuracy rate is significantly lower than that of the baseline system,
and the experimental results are not as expected. It is conjectured that the distribution
of the attention space with added a priori knowledge and the subspace without added
a priori knowledge are different, and one projection matrix cannot transform these two
representation vectors, which leads to the degradation of the model by adding half of the a
priori knowledge.

5. Conclusions

In this paper, we studied the application of transformers for use in speech recognition
and proposed an enhanced transformer based on a local attention mechanism called the
LAS-Transformer. Specifically, we used depthwise separable convolution for subsampling,
and there was no pooling layer in the subsampling layer to ensure the maximum integrity
of position information at the embedding layer. Additionally, to compensate for the de-
fects of the basic Transformer’s local feature extraction, we proposed a local attention
module to explicitly incorporate the highly correlated features of speech frames into the
attention calculation, which can effectively extract local contextual information. Addition-
ally, we replaced absolute positional embedding with relative positional embedding to
improve the representation of location information, which calculates the self-attention score
more accurately.

We conducted experiments on the LibriSpeech dataset; the experimental results demon-
strate the effectiveness of the approach proposed in this paper.

In the future, we will improve the LAS-Transformer model in the following directions.
LAS-Transformer is a non-streaming recognition method that requires a complete speech
sequence for each speech recognition. Today, streaming speech recognition has better
application prospects; thus, we will further improve the structure of the proposed model
so that it can fulfill the needs of streaming speech recognition. Moreover, as the use
of lightweight networks is becoming mainstream, we will further investigate the use of
knowledge distillation to reduce the network parameters of the proposed model.
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