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Abstract: Knowledge graph completion (KGC) models are a feasible approach for manipulating facts
in knowledge graphs. However, the lack of entity types in current KGC models results in inaccurate
link prediction results. Most existing type-aware KGC models require entity type annotations,
which are not always available and expensive to obtain. We propose ProtoE, an unsupervised
method for learning implicit type and type constraint representations. ProtoE enhances type-agnostic
KGC models by relation-specific prototype embeddings. Our method does not rely on entity type
annotations to capture the type and type constraints of entities. Unlike existing unsupervised type
representation learning methods, which have only a single representation for entity-type and relation-
type constraints, our method can capture multiple type constraints in relations. Experimental results
show that our method can improve the performance of both bilinear and translational KGC models
in the link prediction task.

Keywords: knowledge graph; knowledge graph completion model; representation learning;
unsupervised learning

1. Introduction

Knowledge graphs store facts about the real world in the form of triples. For example,
“Tokyo is located in Japan” can be expressed as (Tokyo, locate_in, Japan). These facts can be
auxiliary information to help downstream applications such as recommender systems [1]
and question answering [2]. Triples in knowledge graphs are in the form of (head, relation,
tail). Generally, head and tail are entities in the knowledge graph. (There are cases where
the subject or object is not an entity but a literal (e.g., a link or number) in the knowledge
graph. Research on KGC models does not include such cases). A knowledge graph can
be expressed as a tensor G = E ×R× E , where E andR are sets of entities and relations,
respectively.

An important task related to knowledge graphs is link prediction. Given a query triple
with one missing entity, namely (head, relation, ?) or (?, relation, tail), the goal is to
predict the missing entity (i.e., provide candidates) from existing entities. Many knowledge
graph completion (KGC) models have been proposed for this task [3–17]. KGC models
use embeddings to represent entities and relations in their feature space and have a score
function to estimate the plausibility of a given fact. By transferring the query triple into
the feature space and searching for plausible answers via embeddings, KGC models are an
effective approach for link prediction.

Relations in knowledge graphs have type constraints on their heads and tails. Con-
sider a fact related to the relation act_in: (Carrie-Anne_Moss, act-in, The_Matrix).
The head should be the type actor_actress and the tail should be the type film. Most
KGC models ignore entity type and relation type constraints, which degrades their link
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prediction performance. Many studies have attempted to alleviate this issue by learning
type representations from annotated type information [18–22]. However, unlike ontologies,
there is no guarantee of type annotation in knowledge graphs. Even in cases where such
annotation exists, the granularity may be coarse or inaccurate. Moreover, annotated type
information cannot reflect a dynamic entity type [23], which limits its application in down-
stream tasks. For example, a recent study found that relations between companies can help
forecast market volatility [24]. However, WikiData provides only a very general type of
entities with the instance_of relation. For example, WikiData marks Apple Inc. (Q312
on 24 May 2022). as: business, brand, corporation, technology company, enterprise,
and public company. The granularity of these types is too general to help prediction.
Take the relation manufacturer_of as an example. If tail entities in triples of this relation
are mobile phones, Apple Inc., as the head entity in this relation, should be the type
mobile_manufacturer. If tail entities are hardware products (e.g., CPU and GPU), Apple
Inc. should be the type chip_manufacturer.

Some recent work [23,25,26] has focused on adding type information to KGC models
by unsupervised learning. These methods do not assume the existence of type information;
to learn-type representations, they require only the triples in knowledge graphs. They
take one or more type-agnostic KGC models as their base model and modify the score
function to consider entity type compatibility for evaluating fact plausibility. Different from
the supervised approach, in which entity type is explicit, these methods provide implicit
entity type representations. That is, they can distinguish entities of different types but
cannot identify the specific type. Type and type constraint representations are learned from
facts in knowledge graphs. Each relation is associated with embeddings that represent the
type constraint, and each entity is associated with embeddings that represent its type in
relations. Entities with similar type representations tend to appear in facts about different
relations. TypeDM and TypeComplEx [25] and AutoEter [23] separate type embeddings
from the feature space in which the entity and relation embeddings are located and evaluate
the compatibility of entities and relations based on type embeddings. PMI-DM and PMI-
ComplEx use the co-occurrence of entities to learn the type and type constraints of entities.
The entity type is represented by the location of entity embeddings, and type constraints
are represented by two vectors in each relation. In unsupervised type representation
learning methods, the compatibility of entities for a relation is evaluated based on the
representations of relation type constraints and entity type. The type compatibility is used
along with the score from a type-agnostic KGC model for evaluating a triple’s plausibility.

Although unsupervised methods can capture type information without annotations,
there are several issues with current methods. First, entities and relations are assigned with
only one embedding to represent the type and type constraints. Relations with multiple
type constraints cannot be processed. Second, the inconsistency of feature spaces results
in difficulties in balancing type adequacy and triple plausibility because the entity and
relation embeddings are not in the same feature space as that of type embeddings. Third,
the requirement on base models and the special sampling method of negative examples
in training restrict the further generalization of these approaches with type-agnostic KGC
models. In addition, acquiring auxiliary information such as entity co-occurrences is
difficult because knowledge graphs often have a large number of entities.

To alleviate these issues, we propose ProtoE, an unsupervised method for learning
type representations for translational and bilinear KGC models. ProtoE uses the locations
of entity embeddings as their type representations, and multiple prototype embeddings are
assigned to each relation to represent type constraints. Prototype embeddings represent the
local areas in the feature space in which the density of entity embeddings that are suitable
for the relation is high. The contributions in this paper are:

1. Our method can capture multiple type constraints in relations using the prototype
embeddings. For example, for facts about the relation created_by, the head entity is
various types of art (film, music, paint, game, etc.) and the tail entity is various types
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of creator (director, musician, painter, game designer, etc.). Unsupervised models
with only a single type embedding cannot capture the diverse types in this case.

2. Our method balances triple plausibility and type compatibility. The feature space
is consistent in ProtoE, and thus the entity embeddings are decided based on the
entity type and the facts related to the corresponding entities. This property prevents
false triples with correct entity types (e.g., (Tokyo, is-located-in, the U.K.) and
(London, is-located-in, Japan)) from dominating the prediction results of
given queries.

3. Our method does not rely on global statistics in knowledge graphs and can be ex-
tended to translational and bilinear models. ProtoE does not require time-consuming
global statistics such as entity co-occurrences over all relations and does not restrict
the specific KGC model to be its base model.

The rest of this paper is organized as follows. Section 2 briefly reviews work re-
lated to KGC models and type inference. Section 3 describes the proposed method in
detail. Section 4 presents the experimental settings and results for link prediction and
entity clustering. Finally, Section 5 gives the conclusion and suggestions for future work.
Supplemental experimental results are given in Appendix A.

2. Related Work

This section reviews research related to KGC and efforts to integrate type into KGC
models.

2.1. Knowledge Graph Completion Models

KGC models are categorized based on the approach used for learning embeddings and
the type of score function. KGC models can generally be divided into (1) bilinear models
(also referred to as semantic matching models), (2) translational models, and (3) models in
other forms. The following subsections describe each category of the model in detail.

2.1.1. Bilinear Models

Embeddings in bilinear models are established by factorizing the knowledge graph
tensor G. The score function has a bilinear form. A classical bilinear KGC model is
RESCAL [8]. Let (h, r, t) denote a triple in the knowledge graph, where h, t ∈ E and r ∈ R.
If the fact (h, r, t) is true, the corresponding tensor element Gh,r,t = 1. Otherwise, Gh,r,t = 0.
RESCAL factorizes a slice of G by

G:,r,: ≈ fRESCAL(h, r, t) = 〈h, R, t〉 = hTRt, (1)

where h, t ∈ Rd and R ∈ Rd×d. 〈h, R, t〉 is the bilinear form defined by R. Entity embed-
dings h and t are vectors, and relation embeddings R is a square matrix. G:,r,: is the tensor
slice (a matrix) that contains facts with respect to relation r.

It is difficult to optimize the matrix R in Equation (1). To overcome this issue,
DistMult [7] restricts the relation embeddings to be a diagonal matrix. The score func-
tion of DistMult is

fDistMult(h, r, t) = 〈h, r, t〉 =
d

∑
i=1

hiriti. (2)

r in Equation (2) contains the main diagonal elements. Because the score function is
symmetric, i.e., f (h, r, t) = f (t, r, h), DistMult cannot model asymmetric relations, i.e., if
(h, r, t) is true, then (t, r, h) must be false. ComplEx [9] transfers the embeddings from the
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real domain to the complex domain to break the symmetry in the score function. The score
function in ComplEx is

fComplEx(h, r, t) = Re(〈r, h, t〉) = Re(
d

∑
i=1

rihiti)

= 〈Re(r), Re(h), Re(t)〉+ 〈Re(r), Im(h), Im(t)〉
+ 〈Im(r), Re(h), Im(t)〉 − 〈Im(r), Im(h), Re(t)〉, (3)

where h, r, t ∈ Cd. t is the conjugate of complex embedding t. Re(·) and Im(·) are functions
that take the real and imaginary parts of a complex number, respectively. The last term
in Equation (3) breaks the symmetry in Equation (2) and enables ComplEx to efficiently
represent asymmetric relations. ANALOGY [13] generalizes the DistMult and RESCAL
models by restricting the relation matrix R in Equation (1) to be a normal matrix. Entity
embeddings in ANALOGY can recover embeddings in ComplEx, and ANALOGY itself
can support analogical inference in knowledge graphs. Other bilinear models such as
TuckER [10] and SimplE [12] factorize G using approaches different from RESCAL. TuckER
uses Tucker factorization [27] and SimplE utilizes CP factorization [28].

2.1.2. Translational Models

In contrast to bilinear models, whose embeddings are obtained from tensor factoriza-
tion and which use a score function in bilinear form, translational KGC models are inspired
by language models such as Word2vec [29] and GloVe [30]. Relation embeddings translate
the head entity to the tail entity, and the score function uses the distance between the head
and tail entities as the implausibility of given triples.

A representative translational KGC model is TransE [4]. It is inspired by the following
relationship of word embeddings: eking − emale + efemale ≈ equeen. The score function in
TransE is

fTransE(h, r, t) = −‖h + r− t‖1,2. (4)

In Equation (4), ‖ · ‖1,2 is the `1 or `2 norm. Because of the score function, TransE
cannot distinguish entities in N-to-1 relations, i.e., if (h1, r, t), (h2, r, t), . . . , (hk, r, t) are true,
the embeddings h1, h2, . . . , hk would be approximately the same. The same situation occurs
in 1-to-N relations. TransH [5] and TransR [6] project the embeddings of the head and
the tail to solve this problem. TransH projects entity embeddings to a relation-specific
hyperplane and computes the distance in the hyperplane to represent the incredibility of
triples. It takes the normal vector of the hyperplane as a parameter in the model.

TransR uses another approach to process the N-to-1 and 1-to-N relations. Instead of a
normal vector, TransR utilizes matrices to project entity embeddings. The score function of
TransR is

fTransR(h, r, t) = ‖Mrh + r−Mrt‖2. (5)

where Mr ∈ Rm×n is a relation-specific projection matrix. h, t ∈ Rn and r ∈ Rm.
Other translational models focus on the projection matrix to improve link prediction

performance. For example, TransD [3] associates two embeddings per entity, and the
relation-specific projection matrices on the head and the tail are different to mitigate the
impact of entity types.

2.1.3. Models in Other Forms

There are certain KGC models based on a specific feature space [15–17] or a neural net-
work [14,31]. HoloE [11] uses holographical embeddings to represent entities and relations,
and has been proved to be equivalent to ComplEx under Fourier transformation [13,32].
RotatE uses a complex feature space. The relation embedding r is defined as a complex
vector whose elements have norm 1. The relation embeddings in RotatE rotate the head
and tail embeddings; plausibility is measured based on the distance between the head and
tail embeddings after rotation. QuaternionE [16] extends the idea of RotatE. The feature
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space in QuaternionE is made from quaternion numbers. Mathematically, the space of the
relation embeddings in RotatE is isomorphic to the special orthogonal group SO(2), and
the feature space of QuaternionE is isomorphic to SO(4). The feature space of TorusE [15] is
in the torus manifold. These three methods are related to the same Lie group.

Neural-network-based KGC models benefit from the rapid development of deep
learning techniques. ConvE [14] uses a convolutional neural network to evaluate triples. In
ParamE [31], the relations are represented by neural network weights.

2.2. Type Inference in Knowledge Graph Completion Models

Efforts to integrate type information into KGC models can be traced back to RESCAL.
Krompaß et al. modified an optimization procedure to fit type-related parameters [22]. They
used rdf:type and rdf:range tags to evaluate whether entities satisfy the type constraints
in relations. Only embeddings of the entities that fit the type constraints are optimized.

TKRL [18] considers the hierarchical structure of types. TKRL inherits the structure of
TransE and adds matrices to represent entity types and type constraints in relations. Entity
embeddings are projected by weighted type matrices that represent their types, and in the
score function, they are projected by type constraint matrices for relations. Only entities
whose types match the constraints in relations have high scores.

ConnectE [19] uses two score functions to capture type constraints. They map entity
embeddings by a type matrix to match their corresponding type embeddings. The two
score functions of types and facts are used to evaluate the plausibility of triples.

The supervised type inference methods mentioned above require annotation of entity
types in knowledge graphs, which is not guaranteed to be provided. Recently, unsupervised
type representation learning approaches [23,25,26] have been proposed. AutoEter [23]
extends the RotatE framework and associates type embeddings in the real domain. The
compatibility score of types in AutoEter is similar to that in TransE, and the score function
used to evaluate triples is taken from RotatE.

Jain et al. developed TypeDistMult and TypeComplEx [25] by extending the feature
space in DistMult and ComplEx. They assign one type embedding w ∈ Rm for each entity
and two type constraint embeddings u, v ∈ Rm for each relation, as shown in Figure 1.
Type embeddings wh and wt of entities h and t, respectively, are independent of the entity
and relation embeddings because they are in a different feature space. The compatibility is
measured based on type embeddings and two embeddings for relation type constraints,
namely ur and vr, in relation r. DistMult and ComplEx are used as the base KGC models.
The score function is extended to the following form:

fJain(h, r, t) = σ(〈wh, ur〉)σ( fbase(h, r, t))σ(〈wt, vr), (6)

where h, r, t are embeddings and fbase(h, r, t) is the score function of the base model. σ(·) is
the sigmoid function and 〈·, ·〉 is the inner product. Jain et al. evaluated the link prediction
performance for tails (i.e., given (h, r, ?) as the query, predict the correct t ∈ E ). From
the perspective of logic, the three components in Equation (6) are in the “logical-AND”
form: only plausible entities (evaluated based on the score function fbase(h, r, t) in the base
models) that match the type constraint (by ur and vr in Equation (6)) are ranked higher
when predicting the query (h, r, ?).

Because of the independent feature spaces in TypeComplEx and TypeDM, the entity
embeddings in the base model (i.e., ComplEx and DistMult) are not adjusted to balance
triple plausibility and type compatibility. PMI-DM and PMI-ComplEx [26] alleviate this
issue by counting the co-occurrences of entities across all relations in the knowledge graph
and defining the point mutual information (PMI) of entities to refine the entity embeddings.
The authors implemented a loss function based on the idea in GloVe [30] to make sure that
entities that appear together will be close to each other in the feature space and associated
each relation with two vectors as the representation of type constraints in the head and the
tail. The entity type is represented by the location of the corresponding embeddings, and
the type compatibility of entities in a relation is measured by vectors that represent type
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constraints in the relation. PMI-DM and PMI-ComplEx have a consistent feature space, but
counting the co-occurrence of entities requires iteration over all relations and all entities,
which is difficult to implement for large knowledge graphs. Moreover, the single type
embedding in these models cannot represent diverse-type constraints in relations.

Figure 1. Structure of TypeDM [25]. Entity embeddings and type embeddings are in different feature
spaces (indicated by their colors).

We propose ProtoE, an approach that learns implicit type representations in knowledge
graphs. Our method can be applied to more general categories of KGC models. Unlike
TypeDM and TypeComplEx or PMI-DM and PMI-ComplEx, which focus on bilinear models,
our method can be integrated into both bilinear and translational KGC models. We improve
these KGC methods by unifying the feature space and dropping the requirement of entity
co-occurrence to balance entity compatibility and triple plausibility. Our method has
multiple prototype embeddings to reflect the diverse type constraints in relations. Details
of ProtoE are given in the following section.

3. ProtoE: Prototype Embeddings for Type Inference in KGC Models

We aim to provide a general approach for improving the performance of translational
and bilinear KGC models by learning implicit representations of the type and type con-
straints of entities via unsupervised learning. Our method uses the location of an entity
embedding as the entity type representation. Each relation has prototype embeddings to
represent type constraints on the head and the tail. The concept of ProtoE is based on two
observations: (1) entities in facts about a relation r have the same type(s) and (2) these
entities tend to form cluster(s) in the feature space. Details of these two observations are
described below.

First, let
Hr = {h1, h2, . . . , hn},

Tr = {t1, t2, . . . , tm}

be sets of head and tail entities, respectively, in the fact set

Fr = {(h1, r, t1), . . . , (hn, r, tm)}.

h ∈ Hr and t ∈ Tr must satisfy the type constraint in r. That is, the head entities and
tail entities with respect to a relation r imply the type constraints in r, and as all h ∈ Hr
and t ∈ Tr satisfy the certain type constraints in r,Hr and Tr can be divided into a group
of subsets

Hr = H1
r ∪H2

r . . . ∪Hi
r,

Tr = T 1
r ∪ T 2

r , . . . ,∪T j
r .

Entities inHx
r or T y

r have the same yet unknown type x, y.
Second, consider the score function and its margin for facts and false claims in bilinear

and translational models. Let f (h, r, t) be a score function in bilinear models, h and t be
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embeddings (vectors) of h and t, and r contain parameters for defining the bilinear form
in r. We can rewrite f (h, r, t) as f (h, t; r) to emphasize that the bilinear form f (h, t; r) is
parameterized by r. Let (h, r, t) be a triple of a fact and (h′, r, t) be a triple of a false claim.
The score margin is

φ(h, h′; (·, r, t)) = f (h, t; r)− f (h′, t; r) = 〈h− h′, t〉r = f (h− h′, t; r). (7)

Equation (7) comes from the property of the bilinear form. The score margin
φ(h, h′; (·, r, t)) must be large so that the model can distinguish (h′, r, t) and (h, r, t). There-
fore, we have

∆h = h− h′ 6= 0.

Similarly, for distinguishing fact (h, r, t) and false claim (h, r, t′), it is necessary that

∆t = t− t′ 6= 0.

Therefore, for bilinear models, embeddings of qualified and disqualified entities in r
tend to be located at different locations in the feature space.

For translational models, let f (h, r, t) be the score function in the form of a distance,
and let h⊥ and t⊥ be the projected embeddings of the heads and tails (for TransE, h⊥ = h
and t⊥ = t). Then, the score margin is

φ(h, h′; (·, r, t)) ∝ ‖h⊥‖2 − ‖h′⊥‖2 + 〈h′⊥ − h⊥, t⊥〉;
φ(t, t′; (h, r, ·)) ∝ ‖t⊥‖2 − ‖t′⊥‖2 + 〈h⊥, t′⊥ − t⊥〉; (8)

where (h, r, t) is a fact and (h′, r, t) and (h, r, t′) are false triples. Hence, entity embeddings in
bilinear and translational models for a relation tend to form cluster(s) in the feature space.

ProtoE uses multiple prototype embeddings in each relation to capture the cluster(s)
of the head and tail embeddings. Unlike previous works, which use only one embedding as
type constraints, the prototype embeddings in ProtoE can capture multiple type constraints
in relations. The locations of these prototype embeddings represent the type constraints,
and the entity embeddings are calibrated based on the prototype embeddings in all relations
that have corresponding entities as facts. Figure 2 shows the general structure of ProtoE.
Relations in Figure 2 are associated with five prototype embeddings for the head and six
prototype embeddings for the tail. Entity embeddings h, t and prototype embeddings ph

r , pt
r

are used to check whether entities satisfy the type constraints in the relation. The prototype
embeddings (the blue column vectors) and h, t are used to evaluate type compatibility. The
triple plausibility of (h, r, t) is mainly evaluated based on the score function fbase(h, r, t)
in the base model. The type compatibility and the result from fbase(h, r, t) are used to
determine the plausibility of a triple (h, r, t). Details of our method are given in the
following subsections.

Figure 2. Structure of proposed method ProtoE. Each relation is associated with head prototypes and
tail prototypes.
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3.1. Prototype Embeddings

The prototype embeddings represent local areas in which entity embeddings are more
likely to have a high score for relation r. Let Ph

r ∈ Rm×d, Pt
r ∈ Rn×d be two prototype

matrices whose column vectors are prototype embeddings of relation r for head and tail
entities, respectively. m and n are the numbers of prototype embeddings for the head and
tail, respectively, in each relation (Theoretically, our method supports a relation-specific
setting of m and n, i.e., mr 6= mr′ and nr 6= nr′ for r 6= r′.). Our method evaluates the
compatibility of entities to r as follows.

ghead(h, Ph
r ) = max softmax(h, Ph

r )

gtail(t, Pt
r) = max softmax(t, Pt

r). (9)

h, t in Equation (9) are entity embeddings from the base model. For complex embeddings,
the real part and complex part are concatenated, that is h = [Re(hcomplex); Im(hcomplex)], and
for translational models that project entity embeddings, h and t are projected embeddings.
The max softmax function is

max softmax(e, P) = max
( exp(〈e, p1〉)

∑N
i=1 exp(〈e, pi〉)

,
exp(〈e, p2〉)

∑N
i=1 exp(〈e, pi〉)

, ...,
exp(〈e, pN〉)

∑N
i=1 exp(〈e, pi〉)

)
,

where e is the entity embedding and P corresponds to the prototype matrix in Equation (9).
pi represents column vectors (prototype embeddings) in P. N is the number of prototype
embeddings; N = m or N = n.

The essential part in Equation (9) is the inner product between the entity embeddings
and the prototype embeddings. The idea behind Equation (9) is based on the squared distance:

‖e− pi‖2 = ‖e‖2 − 2〈e, pi〉+ ‖pi‖2.

The squared distance ‖e− pi‖2 is disproportional to 〈e, pi〉, so we can use 〈e, p〉 as
a proxy measure for type compatibility. Because entities in a relation have embeddings
that tend to form clusters in the feature space, the combination of the max and softmax
functions aims to associate entity embeddings to a prototype embedding to represent the
cluster. As discussed at the beginning of this section, these entities are more likely to
have the same type because they satisfy type constraints in multiple relations. Therefore,
locations of entity embeddings are decided by the base KGC models and all data in the
training set, and the locations of prototype embeddings pr in r are decided by the number
of training data and entities that are related to r.

For some knowledge graphs, such as those whose facts are about relations between
words, it is difficult to define the type on entities. In this case, the prototype embeddings
lose the identity of the type indicator. They only represent the local areas that contain
embeddings of entities that are more likely to be true for the relation.

We extend the score function in our method so that the entity adequacy measured
by g in Equation (9) takes effect in the evaluation of the plausibility of a triple. The score
function in our method is

fProtoE = σ(α× ghead(h, Pr
h)) ◦ fbase(h, r, t) ◦ σ(α× gtail(t, Pr

t)). (10)

σ(·) is the sigmoid function. ◦ represents one of two algebra operations, namely
addition (“+”) or multiplication (“×”). These two operations reflect different strategies for
utilizing type information in a triple plausibility evaluation.

The addition (“+”) strategy follows “OR” logic. The candidate entities appear at the
top locations of the prediction as long as the total score is large. The sigmoid function in g
guarantees that the prediction will not be dominated by entities that are apparently not the
answer ( fbase is low) even if they well match the type constraint (scores from g are high).
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In contrast to addition, the multiplication (“×”) operation follows “AND” logic. Enti-
ties at the top locations must have high scores from all components, namely head entity
type compatibility (ghead), interdependence of the head and tail entities ( fbase), and tail
entity type compatibility (gtail).

α in Equation (10) is a scalar hyperparameter, and fbase is the score function in the base
KGC model. The sigmoid function σ and the hyperparameter α in Equation (10) are used
to smooth scores of entity compatibility. The sigmoid function keeps the sign of the score
from fbase unchanged, and α makes the score function in the base model ( fbase) and the
entity compatibility score (ghead and gtail) consistent, as discussed below.

In Equation (10), the score function in the base model fbase(h, r, t) should always
represent the plausibility of triples. This requirement is satisfied in bilinear models. For
translational models, which use distance to represent implausibility, we multiply the score
function by −1. Take the score function in TransR (Equation (5)) as an example. fbase(h, r, t)
in Equation (10) with TransR as the base model is

fbase(h, r, t) = − fTransR(h, r, t) = −‖Mrh + r−Mrt‖2. (11)

The purpose of this change is to keep the role of fbase and g consistent. For a query in
the form of (?, r, t), gtail(t, Pr

t) ≈ 1 as the correct tail entity is given and it must satisfy the
type constraints in r. All entities in the knowledge graph are evaluated based on fbase(h, r, t)
and ghead(h, Pr

h) to pick appropriate candidates for the missing head. Only entities that
have high type compatibility (σ(α× ghead(h, Pr

h)) is high) and make the triple plausible
(the score from fbase is high) are picked as candidates. Similarly, candidates for the query
(h, r, ?) must have a high score from both fbase and gtail(t, Pr

t). Therefore, in the scenario
where the base model uses distance as a measure of implausibility, the transformation by
Equation (11) guarantees that plausible triples will have a high score in fbase(h, r, t) (i.e.,
the absolute value of | fbase| is low, as fbase(h, r, t) ≤ 0). For the same reason, if fbase is
transformed by Equation (11), the smooth hyperparameter α will be in R− so that if a triple
(h, r, t) is a fact, the score fbase(h, r, t) will be scaled with smaller | fbase(h, r, t)| by ghead and
gtail. For bilinear models, α ∈ R+.

The number of prototype embeddings (m and n) affects the performance of our model
in link prediction. Because the number of types is unknown, it is difficult to know the
explicit, appropriate m and n values for relations. If m or n is too large, prototype embed-
dings may split entity embeddings that should be in the same cluster into multiple clusters
whose locations are far away in the feature space, and some prototype embeddings will
become orphans in the feature space. As a result, prototype embeddings capture the entity
type, but the locations of these entity embeddings are inappropriate for distinguishing facts
and false claims related to them. If m and n are too small, the type compatibility from ghead
and gtail will be inaccurate because the number of type constraints in relations is not well
represented by the associated prototype embeddings. For knowledge graphs that contain
facts about the real world, m and n should be large enough to capture the diverse types
taken by each relation. A few orphan prototype embeddings will not affect performance
because they are not associated with any location where entity embeddings are located, and
the max function in Equation (9) prevents their use in the score function in Equation (10).
For knowledge bases whose entities do not have an explicit type, m and n should be relatively
small because prototype embeddings are not type indicators in this case.

The score function fProtoE in Equation (10) and the function g in Equation (9) are used
in two loss functions to learn all embeddings in the model. The following subsection gives
the purpose and form of these loss functions.

3.2. Loss Functions in ProtoE

There are two loss functions in ProtoE, namely one for learning prototype, relation,
and entity embeddings and the other for calibrating embedding locations.

The loss function for learning entity and relation embeddings is given in Equation (12).
θ ∈ R+ is a scalar hyperparameter. Similar to many other KGC models, we use nega-
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tive sampling in loss functions and optimize entity and relation embeddings using back-
propagation. Dtrain is the training data. (h, r, t′) and (h′, r, t) are negative examples of the
fact (h, r, t). h′ and t′ are corrupted entities from negative sampling.

P(h|r, t) =
exp(θ fProtoE(h, r, t))

exp(θ fProtoE(h, r, t)) + ∑(h′ ,r,t)∈Dtrain
exp(θ fProtoE(h′, r, t))

,

P(t|h, r) =
exp(θ fProtoE(h, r, t))

exp(θ fProtoE(h, r, t)) + ∑(h,r,t′)∈Dtrain
exp(θ fProtoE(h, r, t′))

,

LKGC = − ∑
(h,r,t)∈Dtrain

log
(

P(h|r, t) + P(t|h, r)
)
. (12)

The task of LKGC is to learn entity and relation embeddings. The score function fProtoE
is from Equation (10). Entity and relation embeddings are learned using the score function
of the base model in fProtoE in this loss function. Even though the prototype embeddings
appear in fProtoE, it is insufficient to optimize these prototype embeddings using only the
loss function because of the sigmoid function on ghead and gtail. Because the derivative of
the sigmoid function is in the form of σ′(x) = σ(x)(1− σ(x)), if α× ghead or α× gtail is
too high or too low, the sigmoid function that wrapped them will have small gradients.
As a result, the prototype and entity embeddings will barely change their locations in the
back-propagation of the gradients. Note that the score function fProtoE in Equation (10) is
not wrapped by the sigmoid function, and thus, the optimization of entity and relation
embeddings does not have the same problem.

Due to the problem caused by the sigmoid function, we introduce another loss function
to calibrate entity and prototype embeddings:

Lprototype = ∑
r∈R

∑
(h′ ,r,t),(h,r,t)∈Dtrain

max
(
0, ghead(h

′, Ph
r )− ghead(h, Ph

r ) + 1
)

+ ∑
r∈R

∑
(h,r,t′),(h,r,t)∈Dtrain

max
(
0, gtail(t

′, Pt
r)− gtail(t, Pt

r) + 1
)
, (13)

where Dtrain is the training set and (h′, r, t) and (h, r, t′) are corrupted facts. The hinge loss
Lprototype aims to separate entities that do not satisfy type constraints in a relation r from
the prototype embeddings in Ph

r and Pt
r. Because the functions ghead and gtail are in (0, 1),

the constant 1 in the hinge loss ensures Lprototype > 0. For entities that satisfy the type
constraints, ghead(h, Ph

r ) and gtail(t, Pt
r) are close to 1, but for negative entities that do not

satisfy the type constraints, ghead(h′, Ph
r ) and gtail(t′, Pt

r) may not be close to 0. With the
help of the hinge loss Lprototype, the embeddings of these negative entities will be moved
away from the local areas represented by prototype embeddings in the back-propagation.
Furthermore, because Lprototype is the loss function that calibrates the relative locations
of entity and prototype embeddings, there is no need to consider the score from base
models that represent the plausibility of triples in this loss, so the sigmoid function used in
Equation (10) is no longer needed. The avoidance of the sigmoid function allows gradients
back-propagated to prototype and entity embeddings by Lprototype to not perish.

Both LKGC and Lprototype are used in the learning of entity embeddings, but they uti-
lize training data using different approaches. LKGC does not distinguish the training data,
while Lprototype is computed over relations iteratively. Because LKGC adjusts embeddings to
distinguish facts (h, r, t) and corrupted triples (h′, r, t) and (h, r, t′), Lprototype adjusts entity
and prototype embeddings to capture type constraints in relations. There are cases where
entities in corrupted triples satisfy the type constraints, but the triples themselves are not
facts, e.g., (Tokyo, is-located-in, the U.K.), (London, is-located-in, Japan). If
we optimize parameters by joining the loss as L = LKGC + Lprototype, it may cause the
model to over-fit and fail to distinguish corrupted triples from facts because the entity
embeddings will be too close to prototype embeddings, resulting in a small score margin (cf.
discussion at the beginning of Section 3 about the score margin of bilinear and translational
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models). To prevent such over-fitting, LKGC and Lprototype are used in the optimization
using different strategies. LKGC is used in each epoch during the training and Lprototype
is used only every T epochs with a different learning rate. The learning rates βKGC and
βprototype are different, where βKGC > βprototype. The effects of loss functions on embed-
dings in the optimization are explained in Figure 3. The procedure of adjusting entity and
prototype embeddings by LKGC and Lprototype is shown on the left and right, respectively.
The yellow point is the prototype embedding for type x. Blue points are entity embed-
dings whose type is represented by the prototype embedding. The red point is an entity
embedding whose type should not be represented by the prototype embedding. Arrows
represent the movement directions of embeddings by the gradients in the optimization.
The figure on the left shows the accumulated adjustment from LKGC in T epochs. Due
to the gradients from the sigmoid function in fProtoE, the offset of prototype embeddings
is not as significant as that for entity embeddings. The right figure shows the calibration
of embeddings from gradients by Lprototype at the T-th epoch. Because of the different
learning rates for these two loss functions, offsets from Lprototype are not as significant as
those in the left figure, but the movement directions are more toward the location in which
the prototype embeddings are located.

Figure 3. Example of effects of LKGC and Lprototype on adjustment of embedding locations.

4. Experiments

We used three datasets to test our method, namely FB15k-237, WN18RR, and YAGO3-
10. FB15k-237 and YAGO3-10 are, respectively, subsets of the knowledge graphs Free-
base [33] and YAGO [34]. These two knowledge graphs store facts about the real world.
WN18RR is a subset of WordNet [35]. Facts in WordNet describe relations between English
words. The statistics of these three datasets are shown in Table 1.

4.1. Baselines and Hyperparameter Settings

For unsupervised implicit type representation learning, we chose the following meth-
ods as baselines.

1. TypeComplEx and TypeDistMult [25] are general methods for bilinear models to learn
implicit type representations. They use independent feature spaces for representations
of entity type and relation type constraints. A brief introduction is given in Section 2,
Equation (6). We also applied the model to TransE (TypeTransE model).

2. AutoEter [23] is a method that integrates TransE [4], TransH [5], TransR [6], and
RotatE [17] as one model to learn implicit type representations. The score function for
capturing the interdependence of head and tail entities is based on RotatE, and the
score function used to evaluate type compatibility is based on TransR.

For type-agnostic KGC models that serve as the base model in unsupervised learning
for implicit type representations, we chose TransE [4], TransR [6], RotatE [17], DistMult [7],
and ComplEx [9]. DistMult and ComplEx were used to evaluate the performance on
bilinear models with a real or complex feature space, and TransE [4] and TransR [6] were
used to test the performance on translational models with and without projection matrices.
We enhanced RotatE [17] by ProtoE to compare the results to AutoEter [23]. The idea from
TypeDistMult and TypeComplEx was also applied to TransE.
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Table 1. Statistical information of datasets in our experiments.

Name Entity Relation Train Valid Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3034 3134

YAGO3-10 123,182 37 1,079,040 5000 5000

The hyperparameter settings for DistMult, ComplEx, and TypeDistMult and Type-
ComplEx follow those in a previous study [25]. We also applied the same method [25] to
TransE by replacing fBase in Equation (6) with fTransE in Equation (4). Due to numerical
issues, the method proposed by Jain et al. [25] could not be applied to TransR (the norm
constraints in TransR result in float number underflow due to the sigmoid function on fBase
in Equation (6)).

For TransR, we followed the instructions in the corresponding paper [6] but changed
the embedding size to 100 for both entities and relations because we found that a large
embedding size improves the performance of TransR. TransR and ProtoETransR were tested
on FB15k-237 and WN18RR only because the number of entities in YAGO3-10 is much
higher (about 3 times that for WN18RR and 8.5 times that for FB15k-237, cf. Table 1) than
those in the other two datasets, and the project matrix in TransR consumes a lot of memory,
resulting in difficult optimization (it takes about 33 h to train for 1000 epochs on YAGO3-10
for a single combination of hyperparameters with a single NVIDIA RTX Titan X GPU; it
takes about 25 h with a NVIDIA A6000 GPU card). For the same reason, RotatE, AutoEter,
and ProtoERotatE were not tested on YAGO3-10 due to the long training time of AutoEter.

All KGC models enhanced by ProtoE used the multiplication strategy in Equation (10)
except for RotatE. ProtoERotatE used the addition strategy.

Because the negative sampling method for corrupted triples affects performance [17],
we used a uniform distribution to sample the negative examples used in Equation (12) for
a fair comparison. The number of negative examples was set to 20.

All parameters were randomly initialized by the Glorot uniform initializer [36]. The
loss function used in training all models was the softmax loss in Equation (12) with θ = 20.
Other hyperparameters were optimized by grid search. We optimized all parameters using
the Adam [37] optimizer. The hyperparameters and corresponding range of grid search are
summarized as follows.

1. Max epoch: 1000;
2. Learning rate βKGC: {0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001};
3. Prototype loss learning rate βprototype: {0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001};
4. `2 regularizer weight β: {0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001};
5. Batch size B:{1024, 2048, 4096, 8192, 16348};
6. Prototype number Nr and Mr: {2, 3, 5, 10, 20};
7. Prototype loss interval T: {50, 100, 150, 200, 400, 600};
8. α in Equation (10) is −4.0 for translational models that evaluate implausibility and 4.0

for all other type-agnostic KGC models.

The dimension of the type representation feature space in AutoEter was set to 20 to
make the size the same as that for TypeDistMult, TypeComplEx, and TypeDistMult. We
used the mean reciprocal rank (MRR) as the criterion to choose the best hyperparameter
combination. The NVIDIA A6000 GPU can handle the grid search of the hyperparameters
(except for a few combinations for TransR).

4.2. Evaluation Metrics

We used two performance metrics, namely MRR and Hits@N, to evaluate performance.
We corrupted facts (h, r, t) in the validation and test sets to the forms (h, r, ?) and (?, r, t).
The corrupted triples were fed into the KGC models as a query, and all entities in the
knowledge graph were ranked based on the score function. We removed all known correct
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answers h∗ and t∗ for which (h∗, r, t) ∈ Dtrain (for (?, r, t)) or (h, r, t∗) ∈ Dtrain (for (h, r, ?))
before computing the rank. Dtrain was the training set.

The MRR of an entity e is defined as follows.

MRR(e) =
1

rank(e)
,

where rank(e) is the rank of entity e. For a fact in the test or validation set (h, r, t), let
MRRhead = rank(h) for (?, r, t) and MRRtail = rank(t) for (h, r, ?). The MRR of this record
is computed as

MRR(h, r, t) =
MRRhead + MRRtail

2
. (14)

The overall MRR is computed as

MRR = ∑
(h,r,t)∈D

MRR(h, r, t)
|D| , (15)

where D is the validation or test set. |D| is the cardinality of the set D. The overall MRR is
in the range (0, 1].

For (h, r, t) ∈ D, if rank(h) ≤ N for the corrupted triple (?, r, t), Hits@Nhead(h, r, t) =
1. Similarly, if rank(t) ≤ N for (h, r, ?), Hits@Ntail(h, r, t) = 1. The overall Hits@N is
computed as:

Hits@N =
1
|D| ∑

(h,r,t)∈D

Hits@Nhead(h, r, t) + Hits@Ntail(h, r, t)
2

. (16)

Similar to the overall MRR, the overall Hits@N ∈ [0, 1].

4.3. Experimental Results and Discussion

The experimental results are shown in Tables 2–4. Our method improves all base
KGC models in all performance metrics except for Hits@3, Hits@5, and Hits@10 for TransR,
Hits@1 for DistMult on WN18RR, and Hits@1 for RotatE on FB15k-237.

As shown in Table 2, our method outperforms other methods in most metrics for
FB15k-237. The improvement of KGC models with a feature space in the real domain
is more significant than that with ComplEx, which uses a feature space in the complex
domain. The reason is that ComplEx has twice the number of parameters as those of the
other KGC models that use a feature space in Rn. Therefore, prototype embeddings in
ComplEx need more training data for each relation as the feature space is enlarged.

Table 3 shows that the performance improvement in link prediction applies to WN18RR
even though it is difficult to define the type on entities in it. Facts in the WN18RR dataset
describe relations between English words such as hypernym_of and hyponym_of. Hence, it
is difficult to define the type and type constraints of entities in WN18RR. In this case, our
method utilizes few prototype embeddings (m = n = 2 for prototype matrices Ph

r and Pt
r

in Equation (10)) to represent areas in which embeddings of suitable entities are located.
Entities that have a high inner product with these prototype embeddings are more likely to
be suitable for the corresponding relations. The prototype embeddings help to distinguish
different entities in the feature space for translational models. In the original TransE and
TransR, if (h1, r, t) and (h2, r, t) are two facts about r and t, the (projected) embeddings have
the relation h1 ≈ h2 because of the score function. During optimization, the prototype
embeddings associated with r have an effect on h1 and h2, i.e., they increase the difference
h1 − h2, improving the overall MRR of TransE and TransR. For DistMult, which is unable
to model asymmetric relations (for example, the antonym_of relation in WN18RR), the
modified score function in Equation (10) breaks the symmetry of fDistMult in Equation (2),
improving performance.
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As discussed in Section 3, the number of training examples of each relation affects
the performance of our method. This is reflected by the results in Table 4. The number of
training examples per relation in YAGO3-10 is larger than those for the other two datasets,
and thus the improvement of the base models is larger for this dataset.

Moreover, as indicated in Tables 2–4, our method improves the performance of KGC
models in different categories. DistMult and ComplEx are bilinear models. TransE and
TransR are translational models. RotatE is similar to translational models but uses rotation
instead of an offset vector to compute distance. All of these type-agnostic KGC models are
improved by our approach.

In addition, we investigated the effect of the number of prototype embeddings in
our method on the KGC model performance. Tables 5–7 show the results of ablation
experiments for various numbers of prototype embeddings per relation (2, 3, 5, or 10). The
number of prototype embeddings is shown in parenthesis. These results indicate that:

1. For FB15k-237 and YAGO3-10, it is better to have more prototype embeddings. If
the number of prototype embeddings is insufficient to capture type constraints in
all relations, the performance of the KGC model will degrade. Most type-agnostic
KGC models enhanced by ProtoE need at least five prototype embeddings per rela-
tion. However, for WN18RR, the optimal number of prototype embeddings depends
on the base KGC model because the type constraints in WN18RR are vague (e.g.,
hypernym_of, hyponym_of). In this case, our method relies on the capability of the
base KGC model to capture the appropriate local areas in the feature space for rela-
tions.

2. The number of prototype embeddings depends on the properties of the knowledge
graph and those of the base KGC model. For example, as shown for TransE with and
without ProtoE on YAGO3-10 in Table 7, if the number of prototype embeddings is too
small to represent type constraints, the type compatibility will degrade performance.
In addition, different models need different numbers of prototype embeddings. From
the results in Table 6, ProtoEDistMult and ProtoEComplEx need two prototype embed-
dings whereas ProtoETransE and ProtoERotatE need ten. The number of prototype
embeddings depends on the properties of the knowledge graph (i.e., whether the
relation type constraints are strict) and those of the base KGC models (whether they
can capture triples using learned embeddings).

Table 2. Experimental results for FB15k-237. Best values are indicated in bold.

FB15k-237
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.2502 0.1646 0.2755 0.3373 0.4279
TypeDistMult 0.2473 0.1647 0.2695 0.3305 0.4168
ProtoEDistMult 0.2535 0.1668 0.2799 0.3426 0.4301

ComplEx 0.2509 0.1643 0.2762 0.3394 0.4288
TypeComplEx 0.2431 0.1612 0.2655 0.3233 0.4129
ProtoEComplEx 0.2514 0.1647 0.2767 0.3408 0.4290

TransE 0.2482 0.1644 0.2749 0.3324 0.4190
TypeTransE 0.2660 0.1755 0.2923 0.3573 0.4540

ProtoETransE 0.2609 0.1778 0.2858 0.3450 0.4540
TransR 0.1901 0.1144 0.2072 0.2606 0.3459

ProtoETransR 0.1984 0.1251 0.2131 0.2667 0.3515
RotatE 0.2647 0.1810 0.2886 0.3482 0.4383

AutoEter 0.2476 0.1752 0.2692 0.3216 0.3953
ProtoERotatE 0.2660 0.1804 0.2897 0.3539 0.4430
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Table 3. Experimental results for WN18RR. Best values are indicated in bold.

WN18RR
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.4166 0.3787 0.4379 0.4564 0.4817
TypeDistMult 0.4052 0.3767 0.4236 0.4364 0.4513

ProtoEDistMult 0.4173 0.3765 0.4403 0.4623 0.4872
ComplEx 0.4133 0.3748 0.4343 0.4537 0.4767

TypeComplEx 0.3942 0.3588 0.4185 0.4325 0.4486
ProtoEComplEx 0.4171 0.3781 0.4384 0.4569 0.4817

TransE 0.1639 0.0038 0.2846 0.3744 0.4419
TypeTransE 0.2242 0.0665 0.3545 0.4303 0.4861

ProtoETransE 0.1806 0.0160 0.3138 0.3942 0.4580
TransR 0.1535 0.0099 0.2787 0.3389 0.3725

ProtoETransR 0.2163 0.1533 0.2524 0.2932 0.3385
RotatE 0.4214 0.3827 0.4399 0.4606 0.4901

AutoEter 0.4216 0.3843 0.4402 0.4596 0.4901
ProtoERotatE 0.4232 0.3866 0.4402 0.4606 0.4919

Table 4. Experimental results for YAGO3-10. Best values are indicated in bold.

YAGO3-10
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.4069 0.3070 0.4595 0.5248 0.5996
TypeDistMult 0.4591 0.3540 0.5233 0.5813 0.6504

ProtoEDistMult 0.4292 0.3338 0.4789 0.5429 0.6141
ComplEx 0.396 0.2973 0.4471 0.4471 0.5918

TypeComplEx 0.4521 0.3523 0.5072 0.5697 0.6443
ProtoEComplEx 0.4260 0.3275 0.4819 0.5444 0.6201

TransE 0.3821 0.2736 0.4378 0.5053 0.5985
TypeTransE 0.2384 0.1515 0.2617 0.3301 0.4176

ProtoETransE 0.4070 0.2964 0.4634 0.5382 0.6291

Table 5. Results of ablation experiments for prototype embedding on FB15k-237. Best values are
indicated in bold.

FB15k-237
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.2502 0.1646 0.2755 0.3373 0.4279
ProtoEDistMult (2) 0.2491 0.1643 0.2742 0.3384 0.4275
ProtoEDistMult (3) 0.2502 0.1641 0.2744 0.3364 0.4295
ProtoEDistMult (5) 0.2503 0.1651 0.2744 0.3363 0.4270
ProtoEDistMult (10) 0.2535 0.1668 0.2799 0.3426 0.4301

ComplEx 0.2509 0.1643 0.2762 0.3394 0.4288
ProtoEComplEx (2) 0.2512 0.1648 0.2770 0.3394 0.4297
ProtoEComplEx (3) 0.2488 0.1639 0.2732 0.3663 0.4249
ProtoEComplEx (5) 0.2497 0.1645 0.2753 0.3354 0.4240
ProtoEComplEx (10) 0.2514 0.1647 0.2767 0.3408 0.4290

TransE 0.2482 0.1644 0.2749 0.3324 0.4190
ProtoETransE (2) 0.1874 0.1276 0.2022 0.2437 0.3080
ProtoETransE (3) 0.1879 0.1294 0.2009 0.2522 0.3249
ProtoETransE (5) 0.2351 0.1543 0.2584 0.3158 0.3978

ProtoETransE (10) 0.2609 0.1778 0.2858 0.3450 0.4540

RotatE 0.2647 0.1810 0.2886 0.3482 0.4383
ProtoERotatE (2) 0.2607 0.1772 0.2839 0.3459 0.4353
ProtoERotatE (3) 0.2591 0.1755 0.2831 0.3446 0.4322
ProtoERotatE (5) 0.2533 0.1694 0.2777 0.3385 0.4265

ProtoERotatE (10) 0.2660 0.1804 0.2897 0.3539 0.4430
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Table 6. Results of ablation experiments for prototype embedding on WN18RR. Best values are
indicated in bold.

WN18RR
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.4166 0.3787 0.4379 0.4564 0.4817
ProtoEDistMult (2) 0.4173 0.3765 0.4403 0.4623 0.4872
ProtoEDistMult (3) 0.4086 0.3757 0.4271 0.4454 0.4655
ProtoEDistMult (5) 0.4038 0.3693 0.4249 0.4405 0.4561
ProtoEDistMult (10) 0.4075 0.3700 0.4304 0.4443 0.4671

ComplEx 0.4133 0.3748 0.4343 0.4537 0.4767
ProtoEComplEx (2) 0.4171 0.3781 0.4384 0.4569 0.4817
ProtoEComplEx (3) 0.4106 0.3746 0.4319 0.4467 0.4690
ProtoEComplEx (5) 0.4099 0.3751 0.4314 0.4461 0.4652
ProtoEComplEx (10) 0.4093 0.3725 0.4296 0.4486 0.4703

TransE 0.1639 0.0038 0.2846 0.3744 0.4419
ProtoETransE (2) 0.0234 0.0134 0.0247 0.0299 0.0415
ProtoETransE (3) 0.0305 0.0006 0.0330 0.0477 0.0766
ProtoETransE (5) 0.0950 0.0009 0.1471 0.2039 0.2551

ProtoETransE (10) 0.1806 0.0160 0.3138 0.3942 0.4580

RotatE 0.4214 0.3827 0.4399 0.4606 0.4901
ProtoERotatE (2) 0.4200 0.3829 0.4352 0.4574 0.4887
ProtoERotatE (3) 0.4226 0.3848 0.4389 0.4582 0.4928
ProtoERotatE (5) 0.4222 0.3834 0.4405 0.4614 0.4938

ProtoERotatE (10) 0.4232 0.3866 0.4402 0.4606 0.4919

Table 7. Results of ablation experiments for prototype embedding on YAGO3-10. Best values are
indicated in bold.

YAGO3-10
MRR Hits@1 Hits@3 Hits@5 Hits@10

DistMult 0.4069 0.3070 0.4595 0.5248 0.5996
ProtoEDistMult (2) 0.4025 0.3041 0.4527 0.5199 0.5969
ProtoEDistMult (3) 0.4246 0.3238 0.4969 0.5604 0.6360
ProtoEDistMult (5) 0.4175 0.3220 0.4682 0.5277 0.6046
ProtoEDistMult (10) 0.4292 0.3338 0.4789 0.5429 0.6141

ComplEx 0.3960 0.2973 0.4471 0.4471 0.5918
ProtoEComplEx (2) 0.3879 0.2880 0.4378 0.5045 0.5836
ProtoEComplEx (3) 0.3874 0.2896 0.4357 0.5001 0.5816
ProtoEComplEx (5) 0.3692 0.2707 0.4175 0.4827 0.5657
ProtoEComplEx (10) 0.4260 0.3275 0.4819 0.5444 0.6201

TransE 0.3821 0.2736 0.4378 0.5053 0.5985
ProtoETransE (2) 0.0433 0.0359 0.0425 0.0452 0.0433
ProtoETransE (3) 0.0430 0.0359 0.0420 0.0462 0.0527
ProtoETransE (5) 0.1016 0.0452 0.1176 0.1488 0.1966

ProtoETransE (10) 0.4070 0.2964 0.4634 0.5382 0.6291

Furthermore, we evaluated the ability of our method to capture implicit entity types
in FB15k-237. We matched entities in the FB15k-237 dataset to the same entities in
Wikidata based on Freebase ID and took the label of objects in the instance_of rela-
tion from Wikidata as the entity type and the query entity types based on the entity
ID in FB15k-237. The five highest frequency types, namely class of award, film, human,
association football club, big city, music genre, television series, and city of
the United States were used for clustering to test the ability of our model and the base
KGC model to distinguish entity types. These five types are associated with 53.35%
(7758/14,541) of the entities in FB15k-237. These entities are clustered by t-SNE [38] with



Information 2022, 13, 354 17 of 25

embeddings from DistMult and ProtoEDistMult (with the number of prototypes set to 10
for the head and the tail) to explain the difference in entity embedding locations in both
models. The clustering results in Figure 4 show that:

1. Both models can distinguish entities with types film, human, and television series.
The boundaries of these three clusters are obvious. The clusters of entities with types
big city and city of the United States overlap because these two types share
many common entities.

2. The clusters of class of award, big city, and music genre slightly intersect with
the entity embeddings from DistMult, and our method distinguishes music genre
from the other types because the locations of the entity embeddings are calibrated
using the prototype embeddings in relations.

As introduced in Section 3, the prototype embeddings also capture the local areas for
entities that satisfy the type constraints in relation r. We visualize the entity and prototype
embeddings in the relation /film/actor/film./film/performance/film (denoted as per-
form_in in the following text) in Figure 5 to explain the relationship of locations between
entity and prototype embeddings in the feature space. The visualized entities are from the
training set. In this relation, the head entity is an actor or actress and, the tail entity is a film
in which they acted in. The head prototype embeddings and the tail prototype embeddings
are denoted by black and yellow dots, respectively. The results in Figure 5 show that the
prototype embeddings in the relation converge to nearly the same location in the feature
space because all heads have the type “actor/actress” and all tails have the type “film”.

The number of training examples for a specific relation affects the convergence of the
prototype embeddings associated with it. In the case where there are insufficient training
examples and a limited number of entities in the relation, only some of the prototype
embeddings converge to the desired locations. The others barely move from their initial
location. The relation /user/jg/default_domain/olympic_games/sports (abbreviated as
olympic_sports in the following text) is taken as an example to demonstrate this effect. There
are 581 records in the training data for this relation (with 40 different head entities and
51 different tail entities), much fewer than those for the relation performed_in, which has
9696 records in the training data (with 2046 different head entities and 1784 different tail
entities). In this relation, the head entities are the Olympic Games in different years and
the tail entities are sports in these games. Figure 6 shows the clustering results of entity
and prototype embeddings for this relation. The head prototypes and tail prototypes close
to the center of the figure are redundant; their locations barely change from the initial
locations due to the insufficient training examples and entities. However, this does not
prevent the prototype embeddings in the left-top and right-bottom from capturing the local
areas where the head entities and tail entities are located.

Additionally, we also examined the ability to capture multiple-type constraints in
relations. Figure 7 shows the entity clustering results for ProtoEDistMult and TypeDistMult.
Both models recognize the multiple entity types in the heads, but TypeDistMult cannot
capture the type constraints entailed in these multiple clusters because it has only one type
constraint embedding on the head. This relation has 273 different head entities, 7 different
tail entities, and 335 records in the training data. ProtoE captures the four clusters using
head prototype embeddings.
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(a)

(b)
Figure 4. Clustering results of entity embeddings for ProtoEDistMult and DistMult. (a) ProtoEDist-
Mult; (b) DistMult.

More clustering results for prototype embeddings and entity embeddings in relations
can be found in Appendix A.
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Figure 5. Entity and prototype embeddings related to performed_in in the dataset FB15k-237.

Figure 6. Visualization of prototype and entity embeddings in olympic_sports in FB15k-237.
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(a)

(b)
Figure 7. Clustering results for TypeDistMult and ProtoEDistMult. (a) ProtoEDistMult; (b) TypeDist-
Mult.

5. Conclusions

We proposed ProtoE as a general approach for extending translational and bilinear
KGC models to have the ability to capture entity type and type constraints in relations.
Different from supervised approaches, which require annotated type information, our
method relies on only facts in the knowledge graph. Unlike previous unsupervised type
inference methods, which can represent only a single type constraint in relations, our
method can represent multiple type constraints in relations using prototype embeddings.
Our method can be applied to both translational and bilinear KGC models. We associate
prototype embeddings to represent type constraints on the subject and object of each
relation. Prototype embeddings represent the local areas in which the embeddings of
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entities that satisfy the type constraint are located. To achieve this goal, the entity and
relation embeddings in the base models and the prototype embeddings in our method are
simultaneously trained using the facts in the knowledge graph. We use an optional extra
loss function to calibrate the location of prototype embeddings to better represent diverse
entity types in knowledge graphs.

The ability of prototype embeddings to capture entity type and type constraints in
the relation r depends on the number of training data about r. For relations with sufficient
training data and diverse entities, prototype embeddings well converge to the locations
in which the density of qualified entity embeddings is high. In contrast, if the number of
training data is insufficient, some prototype embeddings may not move from their initial
location, but this does not affect the ability of the prototype embeddings to represent type
constraints and entity types because some other prototype embeddings will be optimized to
the high-density area where qualified entities are located. In the current setting, the number
of prototype embeddings associated with relations is hyperparameters, and all relations
have the same number of prototype embeddings for the head and the tail. This can be
improved by combining the current method with stochastic processes, such as the Chinese
restaurant process and the determinantal point process, to automatically set the number
of prototype embeddings in relations. In the future, we plan to integrate these processes
into our method to eliminate the need for setting the number of prototype embeddings
as hyperparameters.

The experimental results for link prediction and entity clustering show that our method
improves the performance of base KGC models in link prediction even though it is difficult
to define the type of entities in the knowledge graph. In this case, prototype embeddings
lose the identity of the type indicator and become representative embeddings for the local
areas in which appropriate entity embeddings are located. The entity clustering results
show that our method better captures the entity type and type constraints compared with
other methods.
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Appendix A. Additional Visualization of Clustering Results

Additional results for entity clustering are provided in this appendix. The text at the
top of each figure is the name of the relation in the FB15k-237 dataset. The figure captions
give the number of records in the training data concerning the relation and the numbers of
different head and tail entities in the training data.

https://github.com/TimDettmers/ConvE
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Figure A1. A total of 57 different head entities, 209 different tail entities, and 154 records in the
training data.

Figure A2. A total of 1,127 different head entities, 13 different tail entities, and 1151 records in the
training data.
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Figure A3. A total of 235 different head entities, 116 different tail entities, and 251 records in the
training data.

Figure A4. A total of 93 different head entities, 90 different tail entities, and 99 records in the training
data. Some of the head entities and tail entities overlap because the relation is symmetric.
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