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Abstract: Accurate and timely traffic information is a vital element in intelligent transportation
systems and urban management, which is vitally important for road users and government agencies.
However, existing traffic prediction approaches are primarily based on standard machine learning
which requires sharing direct raw information to the global server for model training. Further, user
information may contain sensitive personal information, and sharing of direct raw data may lead to
leakage of user private data and risks of exposure. In the face of the above challenges, in this work,
we introduce a new hybrid framework that leverages Federated Learning with Local Differential
Privacy to share model updates rather than directly sharing raw data among users. Our FL-LDP
approach is designed to coordinate users to train the model collaboratively without compromising
data privacy. We evaluate our scheme using a real-world public dataset and we implement different
deep neural networks. We perform a comprehensive evaluation of our approach with state-of-the-art
models. The prediction results of the experiment confirm that the proposed scheme is capable of
building performance accurate traffic predictions, improving privacy preservation, and preventing
data recovery attacks.

Keywords: traffic flow forecasting; federated learning; privacy-preserving

1. Introduction

Traffic flow forecasting has long been considered a core and crucial element of Intelli-
gent Transportation Systems. By providing an accurate and timely estimation of the traffic
states, traffic predictive systems bring increased flexibility and efficiency to transportation
systems. They strongly contribute to improving traffic information [1] and efficiency, lead-
ing consequently to smarter mobility. Accurate and timely traffic information is vitally
important for both personal travelers and government companies, as it has the potential
to provide real-time traffic reports to predict future states, which can help government
authorities to control traffic, to make better-informed decisions, and estimate the traffic
congestion system by predicting the upcoming traffic flow in a smart city environment [2].

Empowered by technological advances and the wide availability of traffic data, re-
search on Traffic Flow Forecasting has been continually advancing. In fact, TFP has always
been a challenging task due to the stochasticity of traffic and dynamic conditions such
as weather conditions, calendar (i.e., time of day, day of week), accidents, events, etc.
Considerable efforts have been made by researchers from different fields to tackle the TFP
problem, trying to provide accurate and more reliable predictions. From mathematical
and statistical modeling to more recent data-driven methods, different approaches have
been proposed. The data-driven approach formulates TFP as a time series forecasting
problem, which aims to predict the traffic states based on historical data, collected by using
multiple sensors (e.g., radars, cameras, mobile devices, etc.). More recent TFP approaches
rely on deep learning models (e.g., Recurrent Neural Networks, Convolutional Neural
Networks) to automatically learn the deep features of traffic data automatically and solve
the prediction problem.
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Training deep learning approaches for TFP requires a large volume of traffic informa-
tion that may come from multiple and heterogeneous sources. In the traditional centralized
machine learning approach, the traffic data from different sources are uploaded and stored
in a central cloud server. The learned model is then distributed to client devices to be
applied for prediction. However, centralized learning presents many important problems,
especially in terms of data privacy and data protection. In fact, exchanging data with the
server raises serious privacy issues. For instance, traffic data collected from users’ devices
may be sensitive and, if shared on the network, may leak user private information such as
captures of people’s faces, vehicle license plate information, GPS information, etc.

One recent approach to address the data privacy issue is Federated Learning (FL) [3].
FL is a promising approach enabling collaborative training of machine learning models
among different users without sharing private data. When training a model using FL, each
user device (participating in the learning) trains the model locally on its data and only
shares the learned model parameters (e.g., weights, gradients) with the cloud-server. Once
receiving the locally trained parameters, the server performs aggregation and updates the
new global model. Though its promising privacy benefits, FL still poses some risks as FL
does not guarantee the privacy of all user information. In fact, data recovery from gradient
parameters of neural networks has been first addressed in [4,5], which proves the feasibility
of the attack from a single neuron or linear layer. Using these weaknesses, attackers can
infer original user data, by reversing the shared gradients.

To address these concerns, this paper proposes FL-LDP, a hybrid approach including
FL and Local Differential Privacy (LDP) [6]. The main idea is to add LDP noises locally to
gradients before sending them to the server for aggregation. By adding LDP noises, FL-LDP
helps prevent inference attacks even when gradients information is publicly available.
Thus, FL-LDP allows training a prediction model, across multiple devices, while protecting
their privacy – formally according to their locally-defined privacy settings. The proposed
approach is applied for traffic flow prediction (TFP). Since we are dealing with a time series
problem, we implemented FL-LDP to train an LSTM model, one of the strong models for
time series forecasting.

The main contributions of this word are as follows:

• Introduction of the privacy-preserving approach for traffic flow prediction. This
method relies on FL to use the LSTM as a prediction model. As a consequence,
the proposed method presents all the advantages offered by FL (cost-saving, privacy
benefits, etc.)

• Proposition of the Local Differential Privacy mechanism to strengthen protections in
the proposed method, by perturbing the shared model gradients to avoid the privacy
threats during the communication phase.

• Evaluation of the proposed framework on a public traffic dataset, and comparison of
the results with other centralized machine learning methods. Our proposed mecha-
nism achieves good performance compared to other approaches.

The rest of this paper is organized as follows. Section 2 presents the related literature on
TFP and privacy research for Intelligent Transportation Systems. Section 3 is a preliminary
section, in which the terminology and basic definitions of FL and LDP are introduced.
Section 4 presents the proposed system. Section 5 details the empirical studies and discusses
the results. Finally, some future works and conclusions are given in Section 6.

2. Related Work

In this section, we compared recent relevant works on traffic flow prediction and the
privacy-preserving for ITS.

2.1. Traffic Flow Forecasting

Traffic flow forecasting approaches are broadly divided in two types: parametric and
non-parametric approaches. The parametric methods usually apply time-series approaches
to solve traffic flow prediction problems. One of the first proposed parametric methods
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is Auto-Regressive Integrated Moving Average (ARIMA) [6], which has been applied to
predict the short-term freeway flow. With the accumulation of data, many other approaches
start improving the accuracy of TFP using Kalman filtering methods [7,8]. Other parametric
approaches for time-series analysis are also used for traffic prediction [9,10]. On the
other hand, non-parametric approaches and non-parametric models, have achieved good
performance in traffic flow prediction. In [11], the authors proposed a KNN model for
short-term traffic flow prediction.

Artificial Neural Networks (ANNs) are a type of non-parametric method that can
automatically extract the temporal features from raw data without the data pre-processing
phase. Thanks to their numerous advantages (such as the good forecasting performance,
capability to work with multi-dimensional data, and high flexibility), ANN has shown
great success for traffic prediction problems.

Kumar et al. [12] apply ANN to estimate traffic based on time information and past
traffic data such as volume, speed, and density. With the progress and the development
of artificial intelligence, many deep learning based approaches have been proposed to
improve TFP [1,10,13–16]. Yang et al. [13] introduces an optimized structure of TFP, which
is based on a deep learning approach known as stacked auto-encoder. In [17], the authors
propose a deep Convolutional Neural Network (CNN) approach to select spatial-temporal
traffic features based on speed images in a large-scale transportation network. In addition,
a deep 3D convolutional neural network was proposed by [18] in traffic flow prediction
by the Spatio-temporal correlation of each segment in the subnetwork. In their paper,
the author combines historical data’s spatial-temporal properties with three-time intervals:
closeness, daily, and weekly. Then they use the attention-based LSTM to embed features.

Deep Recurrent Neural Networks (RNNs) have received increasing interest in time
series forecasting. Many works introduce RNN approaches, e.g., LSTM and GRU for
traffic flow prediction [19–23]. Finally, many researchers have discussed multimodal deep
learning, which combines various deep learning models (CNN and RNN), to improve the
prediction performance [24,25].

2.2. Privacy and Security for Intelligent Transportation Systems

In ITS, generally, methods and models are trained directly based on users’ data which
is stored in a central server. With increasing attention to privacy concerns, one can notice
that direct data exchanges can disclose private user information.

Chen et al. [26] introduces a differential privacy approach for trajectory data. The au-
thors propose a data-dependent sanitization algorithm by applying a noisy prefix tree using
a Laplace mechanism. In order to secure the location of trajectory data, reference [27] de-
scribe a technique to confuse the attacker by adding a path confusion in a centralized-trusted
server. Rass et al. [28] introduces an anonymization technique by deriving pseudonyms to
provide privacy in trips and samples. To avoid leaking vehicle location data, Hoh et al. [29]
introduces a privacy-preserving and distributed traffic monitoring that uses virtual trip lines.

In recent years, many approaches used FL or collaborative learning to analyze private
data. Lu et al. [30] introduce a collaborative learning system on the edges for connected
vehicles. Moreover, their framework decreases the training time while guaranteeing predic-
tion precision. Besides, Fantacci et al. [31] introduced a federated learning system to protect
privacy in many wireless networks. In addition, Saputra et al. [32] uses FL to predict to
manage energy resources for electric vehicle networks. The collaborative learning approach
was also introduced to provide robust privacy-preserving traffic speed forecasting and
protection of topological information [33]. The author proposed an FL framework named
FASTGNN that combines a GNN-based predictor utilizing advanced spatial-temporal
methods.

Furthermore, using FL and differential privacy have been introduced in many papers
such as [34,35]. Truex et al. [36] propose a secure noise-reduction centralized differential
privacy to reduce the noise required at each client during the training phase. The authors
of [37] provide a privacy-preserving FL approach for learning effective personalized models.
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The authors of [37] provide a differential privacy-based personalized FL. They apply the
Gaussian mechanism noise for the protection of the model. To protect privacy in smart cities
and ITS, recently, many efforts have been proposed with various studies. Triastcyn et al. [38]
propose Bayesian differential privacy with FL. In [39], the authors design an FL system,
for many applications in smart cities such as energy demand prediction. Y. Liu et al. [40]
proposes a small-scale FL for traffic flow forecasting using an aggregation mechanism
rather than directly sharing data among clients. In addition, the author in [41] proposed a
multi-task FL framework to predict traffic flow. In their work, they use the spatial-temporal
dependence of traffic data and design a divisive hierarchical clustering to divide the data at
each station into groups. Then the FL approach is collaboratively trained among all stations
without direct data sharing.

Although several research works have studied some privacy-preserving approaches
for ITS application, there are a few methods that focus on traffic flow prediction. In this
work, we introduce a new framework for privacy-preserving traffic prediction, by combin-
ing FL and Local Differential Privacy mechanism.

3. Preliminaries

This section gives an overview of Federated Learning and Local Differential Privacy
mechanism for traffic flow prediction. The notations of frequently used symbols are
explained in Table 1.

Table 1. Summary of symbol notations.

Symbol Description

L a specific loss function

w the weights of a deep neural network

θ the parameters of a deep neural network

f (θ) a deep neural network parameterized b θ

f ∗(θ) perturbed f

D a dataset

∇ Gradient optimization

M randomized algorithm

Pr[.|.] conditional probability distribution

ε privacy budget

S station

T training round

3.1. Federated Learning

Federated Learning [3] is a decentralized training strategy that enables machine
learning model (e.g., RNN) training on data distributed across multiple participating
devices. In FL settings, instead of uploading data to servers for centralized training,
different clients (e.g., participating stations, agencies, organizations) collaboratively train
a global model using their local unshared dataset. As illustrated in Figure 1, a typical FL
training round involves (i) local model training on clients to generate a locally-updated
model (e.g., gradients, weights), and (ii) global aggregation of these local updates by the
server to create an improved global model.
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Figure 1. An overview of the federated learning system.

Formally, given a set of K participating clients, where each client k holds a local
dataset Dk with nk = |Dk|, local client models are trained to minimize a local cost function
Fk(w) = ∑i∈Dk

1
nk

fi(w), where w is the model parameter vector and fi(w) = L(xi, yi, w) is

the loss of the ith training sample. The global model training can be then formulated as the
problem of minimizing the following cost function:

f (w) =
K

∑
k=1

nk
n

Fk(w) (1)

where n = ∑ nk.
As for most deep learning problems, FL optimization relies on Stochastic Gradient

Descent (SGD). The global model can be updated in two different ways: (1) using FedAvg,
in which clients perform multiple SGD iterations before sending the updated weights to the
server, or (2) using FedSGD [42] which is a technique inspired by the well-known statistical
optimization method of Stochastic Gradient Descent (SGD). In FedSGD, every local step is
a full deterministic gradient, in which the local client transfers model gradients to a global
server, which generates updated parameters from the aggregated gradient.

In this paper, we consider the FedSGD algorithm for FL updates. The training process
starts with a randomly initialized (or pretrained) model, at the server level. Then, at each
round t ∈ {1, 2, 3, . . . , T}, the server selects clients, according to some defined criteria
(e.g., strong communication, computing power) participating in the training process and
broadcasts the model parameters. Upon receiving the current model parameters wt, each
client k computes the gradient on its local data gk = ∇Fk(wt), and uploads it to the
server. The server aggregates the gradients and updates the global model as indicated
by Equation (2). The aggregated global model updates wt+1 are sent back to the next
round participants.

wt+1 ← wt − η∇F(wt) (2)

where η is a fixed learning rate during training.

3.2. Local Differential Privacy (LDP)

Local Differential Privacy [43] is the state-of-the-art Differential Privacy (DP) model
in distributed settings. To guarantee data privacy, LDP allows users to perturb their data
locally before sending them to the cloud. Each user perturbs its data using a random
perturbation algorithmM, which transforms the local raw values to values (perturbed) in
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the same domain, and then sends the results to the server aggregator. In principle, LDP
uses the so-called privacy budget (ε) to describe the level of protection granted by the LDP
mechanism: the smaller ε, the weak the privacy. Formally, LDP can be written as follows:

Definition 1 ((ε, δ)-LDP [44]). LetM : X→ Y be a randomized mechanism with a domain X
and a range Y. For a non-negative ε,M satisfies (ε, δ)-LDP if: ∀x, x′ ∈ X, and ∀S ⊆ Y:

Pr[y ∈ S | x] ≤ eε × Pr[y ∈ S | x′] (3)

where Pr[.|.] denotes the conditional probability distribution depending onM. Therefore, in LDP,
a random perturbation is given by clients with a privacy budget ε. Instead of sharing the original
parameters, the centralized server receives only the perturbed updates, which makes the server
incapable recover the original data x ∈ X. The case where δ = 0 is called pureε-LDP.

Generally, (ε, δ)-LDP can be achieved by adding Gaussian noise on true values. The lo-
cal perturbation noise-based Gaussian mechanism is defined as follows:

Definition 2 (Gaussian Mechanism [44]). Assume that a user wants to release a function
f : X → R, with an input subject to (ε, δ)-LDP. The Gaussian perturbation mechanism is
as follows:

M(X)=̂ f (X) +N (0, σ2I) (4)

If the bound of the sensitivity function is ∆ f :

|| f (x)− f (x′)||2 ≤ ∆ f , ∀x, x′ (5)

then, a δ ∈ (0, 1] Gaussian mechanism satisfies (ε, δ)-LDP, if :

ε =
∆ f

σ

√
2× log

1.25
δ

(6)

4. System Model and FL-LDPFL-LDPFL-LDP Protocol
4.1. System Model

In this work, we select N stations connected with a centralized server. We aim to
estimate the flow of vehicles based on the previous data from many stations. Each partici-
pating station has the same structured dataset (historical traffic flow) and collaborates to
train an LSTM model. Thus, the historical data is a dataset of the loop vehicle radar stations
that are already installed on most freeways. The prediction task is to estimate the flow of
traffic on each road segment. In each local training round, the global server computes the
average of received updates from stations and updates the model with this aggregation.
We suppose that the Federated Learning cloud server is honest-but-curious, so the server
may want to learn some extra information from gradient data [36,45]. An illustration of the
considered scenario is presented in Figure 2.

4.2. Federated Learning Based LDP: FL-LDP Protocol

The FL-LDP protocol is detailed in Algorithms 1 and 2. Fl-LDP protocol consists of
five main phases: (1) initialization, (2) training, (3) noise update, (4) aggregation, and
(5) distribution. The protocol steps that are performed at client and server sides, for one
training round, are presented below:

Server side. The global server first randomly generates an initial model weights θinit then:

1. Selects a subset of stations to participate in the current training round.
2. Distributes the initialized parameters to all participating stations.
3. Waits to receive gradients computed by the participating stations.
4. Aggregates the updated gradients sent by all stations using the aggregation protocol.
5. Shares the new global model to all stations.
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Aggregation

Update parameters

Gradients perturbation

Compute updates

Cloud aggregation Initialize parameters θ0

N stations
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Figure 2. An overview of FL-LDP system: (1) Server initializes parameters θ0, (2) Clients compute
gradients updates on local stored data, (3) Clients perturb the gradient parameters, (4) The server
computes the client gradients to get the new model, (5) The aggregated model is return to clients,
and then the start the next iteration.

Algorithm 1: FL-LDP protocol: Server side

1 Input: A set of stations S = {s1, s2, . . . , sN}, Gradient optimization ∇L, Number
of rounds T

2 Output: Parameter θ
3 Initialize the global model parameters θ ← θinit
4 foreach round t ∈ {1, 2, 3, . . . , T} do
5 {St} ← choose stations participating in the current round from S
6 if St is empty then
7 break
8 end
9 Send θ to stations in group {St}

10 foreach Station s ∈ St do
11 Receive the noisy gradients ∇L(θs, xs)
12 end
13 Aggregate the gradients from the current stations and update the current

parameters θ:
14 θ ← θ − η × 1

|St| ×∑s∈St ∇L(θs, xs)

15 where η denotes the learning rate
16 if θ meets the stopping conditions then
17 break
18 end
19 end
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Algorithm 2: FL-LDP protocol: Client side

1 Input: Data xs, Gradient optimization ∇L, Random perturbation algorithmM,
Number of epochs E

2 Output: Parameter θs
3 Receive θ from the server
4 Initialize the model with θs ← θ
5 foreach each local epoch i ∈ {1, 2, 3, . . . , E} do
6 Compute the gradient ∇L(θs, xs)
7 end
8 Apply the LDP mechanismM to calculate the noisy gradient

θs ←M(∇L(θs, xs))
9 Send θs to the server

Client side. Each participating station initializes (i) the local model with the received
parameters θ, and (ii) the local LDP mechanismM with privacy secure parameters accord-
ing to the private preferences. Then, in each training round, a station:

1. Initializes the local model.
2. Trains the local model by locally computing the gradients on its private local dataset.
3. Uses the LDP algorithmM to compute the noisy gradient.
4. Sends the noisy gradient to the cloud server.
5. Waits to receive the aggregated gradient updates from the server.

The training process continues, for both the global server and N−stations, until a pre-
determined condition is reached (the maximum number of iterations, model convergence,
or there’s no station found to participate in the computation round).

5. Experiments

In this section, we present and discuss the empirical results related to the performance
of FL-LDP. The proposed protocol has been implemented by using a freeway dataset
collected from the Caltrans Performance Measurement System (PeMS) [46]. PeMS traffic
flow dataset provides real-time traffic data at five-minute intervals on freeways, collected
by multiple sensors across the major areas of all California.

The PeMS data is a set of time series that are presented as intervals of time sequences.
Therefore, predicting the traffic data at time t is based on historical traffic flow sequence
of m length, i.e., X = {xt−1, xt−2, . . . , xt−m} and Y = {yt}. In our experiments, to predict
the traffic for the next 5 min, we select 60-minutes traffic data, corresponding to a series of
12 sequences of 5 min. The traffic flow data used for the experiments is collected during
the first 28 weeks of 2017 from 31 stations. The first five weeks are chosen for the training
data and the next week in the testing phase. PeMS data is equally divided and distributed
to 31 stations. For FL setting, we set the number of participating stations, in each round,
the learning rate at η = 0.001, |Sv| = 10, mini-batch SGD size at B = 128, rounds at T = 500,
and local training epochs at E = 10.

As measures of performance, Mean Absolute Percentage Error (MAPE), Mean Abso-
lute Error (MAE), Root-Mean Square Error (RMSE), and Mean Square Error (MSE) are used
for the prediction accuracy. These metrics are formulated as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷp| (7)

MSE =
1
n

n

∑
i=1

(yi − ŷp)
2 (8)

RMSE = [
1
n

n

∑
i=1

(|yi − ŷp|)2]
1
2 (9)
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MAPE =
100%

n

n

∑
i=1
|
yi − ŷp

yi
| (10)

where yi denotes the real traffic flow, and ŷp is the predicted or forecasted traffic flow.
For performance measures, we implemented different approaches by using Tensor-

Flow [47] and/or Pytorch [48] frameworks. All pre-trained backbones are publicly available
on Github. The different experiments and simulations are trained on one server: Fujitsu
Primergy rx2540 M4, with CPU Intel Xeon Gold 6152, 512GB RAM, and Nvidia Tesla P100
16GB GPU.

5.1. System Performance

To evaluate the proposed FL-LDP protocol, we compare its performance with the fol-
lowing centralized baseline models: GRU, SAE, LSTM, and Support Vector Machines (SVM).

The performance is reported on the same PeMS dataset. Table 2 summarizes the scores
obtained from the evaluated models. According to these results, the GRU model has a good
performance, as shown by its low error scores.

Table 2. Performance comparison of FL-LDP, LSTM, SAE, and SVM models.

Model MAE MSE RMSE MAPE

FL-LDP 8.03 103.24 11.16 18.76%
GRU Model [21] 7.20 99.32 9.97 17.78%
SAE Model [1] 8.26 99.82 11.60 19.80%
LSTM model [19] 8.28 107.16 11.45 20.32%
SVM model [49] 8.68 115.52 13.24 22.73%

Comparing the different model experiments, we can conclude that our FL-LDP has
achieved state-of-the-art results, since its score values remain not very far from the other
model scores. Moreover, we can see that the performance of LSTM has been improved by
using the advanced FL architecture: MAE is improved from 8.28 to 8.03. These experimental
results prove the significant importance of the proposed approach in combining accurate
traffic flow prediction and data privacy protection.

To give more insights about FL-LDP prediction, Figure 3a shows an example of a 5-min
traffic data forecast task in a single day. We notice that the obtained experiments of FL-LDP
system are close to those of the real information. Furthermore, the stability and the good
convergence of the model are clearly visible in Figure 3b which illustrates the local model
loss of a client station. In Figure 3c, we compare the impact of the number of participating
stations (i.e., S = 2, 6, 10, . . .) on the performance of FL-LDP. The number of stations has an
unfavorable impact on the model performance i.e., MAE and RMSE vary from (8 to 9) and
(11 to 15) respectively. This impact may be due to many reasons, such as connection failures
in some stations which prevent them from uploading their gradient information update in
a specific round. Furthermore, unconnected stations cannot receive server updates making
the local performance different and the cloud aggregation difficult.

An evaluation of the communication overhead in the case of FL and FL-LDP is per-
formed. Figure 3d shows the communication overhead of the two algorithms with different
participation ratios. The plotted results show that the perturbation mechanism has small
communication costs and is unaffected by the number of participants.
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Figure 3. System performance.(a) Traffic flow prediction. (b) Loss of local model. (c) Prediction error
with different client stations. (d) Communication overhead.

5.2. Privacy Budget ε Impact

In order to study the impact of the privacy-budget parameter ε on the stability of the
proposed approach, we evaluate FL-LDP with three values of ε (ε ∈ {1, 3, 5}). The obtained
results are reported in Figure 4a. By comparing the loss for the different privacy parameters,
we can see a similar loss for the two higher privacy ε = (1, 3) with a noticeable difference
for the lowest privacy (ε = 5). We remind that setting a smaller value of the privacy
budget ε means adding more noise which implies stronger privacy protection. The curve
in Figure 4a shows that our approach maintains better resilience even with a high level of
privacy (ε = 1).

Finally, we display in Figure 4b the FL-LDP performance for three different numbers
of participants (S ∈ {2, 15, 30}), with a fixed privacy budget (ε = 1). Although the
increase in the number of participating stations has previously been reported to have an
unfavorable impact on performance, the curves plotted in Figure 4b show that FL-LDP
has similar convergence rates toward the last training round, even when the number of
participants increases.

5.3. Performance of Secure FL-LDP Model Training

This subsection studies the FL-LDP resilience against poisoning attacks. This is assessed
by measuring the Attack Success Rate (ASR) with/out the application of local differential
privacy. The ASR is calculated as:

ASR(X) =
1
n

n

∑
i=0

F(xi) 6= F∗(xi) (11)
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where F is the trained model of neural network (e.g., LSTM), and F∗ is the perturbed F.

(a) (b)

Figure 4. (a) The impact of the privacy-budget parameter on the model. (b) The impact of the number
of participants on the model.

The results obtained using different privacy budgets (ε ∈ {1, 3, 5}) are displayed in
Figure 5. According to these results, we can conclude that FL-LDP can provide an effective
defense against attacks (ASR = 2%). Compared to the implementation without the LDP
scheme, which has a higher possibility of privacy leakage (ASR > 50%), FL-LDP achieves
very much lower ASRs (between 2% for ε = {1} and 11% for ε = {5}). These results argue
that our hybrid approach can protect user information under various privacy conditions. It
can completely improve the performance even when the privacy budget is high.

Figure 5. The impact of privacy budgets on the attack-success-rate (ASR).

5.4. Discussion

The performed experimental studies aim to provide insights on some important design
intuitions of the FL-LDP system. This latter is applied for predicting traffic flow and its
advantages and limitations in different scenarios are discussed. The obtained results
confirm the robustness and the effectiveness of our mechanism. So, the findings of these
results are summarized below:

- FL-LDP provides strong data protection and accurate traffic prediction, by combining
local differential privacy (Gaussian noise) and federated learning (FedSGD). Specif-
ically, the model achieves good performance by aggregating perturbed gradients,
instead of the true gradient values, which guarantees user privacy protection.

- Increasing the number of participants in each communication round may lead to
some issues such as the communication overhead and model convergence due to
the failure of synchronizing some stations.
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- The privacy budget ε affects the convergence of the model in some cases: decreasing
the privacy budget can delay the convergence.

6. Conclusions

In this work, we introduce FL-LDP, a traffic flow forecasting system that combines
federated learning with local differential privacy. This enables prediction models to be
collaboratively trained on multiple stations without compromising user data privacy. More
specifically, by applying the LDP mechanism to perturb the computed gradients, attackers
cannot recover users’ sensitive data (from their shared gradients). The performance of the
proposed approach is evaluated on the PeMS traffic flow data. We perform a comprehensive
and empirical study of the LSTM trained using FL-LDPwith different centralized ML models
(GRU, LSTM, SAE, and SVM). The results showed that our approach achieved a good
prediction performance in terms of MAE, MSE, RMSE, and MAPE scores by 8.03, 103.24,
11.16, and 18.76%, respectively. On the other hand, extensive analyses prove that by adding
the LDP mechanism, the framework achieves a good performance in terms of ensuring
strong user privacy protection (the ASR score decreases from 50% to 2%). In future work,
we intend to train more ML models with the proposed federated learning mechanism,
focusing more on communication costs.
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