The Use of Random Forest Regression for Estimating Leaf Nitrogen Content of Oil Palm Based on Sentinel 1-A Imagery
Abstract
:1. Introduction
2. Literature Review
2.1. Nitrogen in Palm Oil
2.2. C-Synthetic Aperture Radar (C-SAR) Sentinel 1-A
- Backscattering-type classification.
- Tracking natural rainfall and changes in vegetation growth based on long-term time-series earth observations.
- Plant or vegetation classification.
2.3. Random Forest Regression
2.4. Evaluation Model
3. Material and Methods
3.1. Research Design and Data
3.2. Data Preprocessing
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hamzah, N.; Tokimatsu, K.; Yoshikawa, K. Solid fuel from oil palm biomass residues and municipal solid waste by hydrothermal treatment for electrical power generation in Malaysia: A review. Sustainability 2019, 11, 1060. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.I.; Yunus, N.A.; Hashim, H. The challenges and opportunities of solar thermal for palm oil industry in Malaysia. Chem. Eng. Trans. 2020, 78, 601–606. [Google Scholar]
- Khatiwada, D.; Palmén, C.; Silveira, S. Evaluating the palm oil demand in Indonesia: Production trends, yields, and emerging issues. Biofuels 2021, 12, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Purnomo, H.; Okarda, B.; Dermawan, A.; Ilham, Q.P.; Pacheco, P.; Nurfatriani, F.; Suhendang, E. Reconciling oil palm economic development and environmental conservation in Indonesia: A value chain dynamic approach. For. Policy Econ. 2020, 111, 102089. [Google Scholar] [CrossRef]
- Ayompe, L.M.; Schaafsma, M.; Egoh, B.N. Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. J. Clean. Prod. 2020, 278, 123914. [Google Scholar] [CrossRef]
- Behera, S.K.; Suresh, K.; Rao, B.N.; Manoja, K.; Manorama, K. Soil nutrient status and leaf nutrient norms in oil palm (Elaeis Guineensis Jacq.) plantations grown in the west coastal area of India. Commun. Soil Sci. Plant Anal. 2016, 47, 255–262. [Google Scholar] [CrossRef]
- Comte, I.; Whalen, J.K.; Gru, O. Agricultural practices in oil palm plantations and their impact on hydrological changes, nutrient fluxes and water quality in Indonesia: A review. Adv. Agron. 2012, 116, 71–124. [Google Scholar]
- Amirruddin, A.D.; Muharam, F.M.; Paing, T.N.; Singh, D.S.K.; Yusoff, M.M. Nitrogen effects on growth and spectral characteristics of immature and mature oil palms. Asian J. Plant Sci. 2017, 16, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Pardon, L.; Ian Huth, N.; Netelenbos Nelson, P.; Banabas, M.; Gabrielle, B.; Bessou, C. Yield and nitrogen losses in oil palm plantations: Main drivers and management trade-offs determined using simulation. Field Crop. Res. 2017, 210, 20–32. [Google Scholar] [CrossRef]
- Mohidin, H.; Man, S.; Hanafi, M.M.; Rufai, S.; Idris, J.; Fonguimgo, T.; Idris, A.S.; Rafii, M. Optimum levels of N, P, and K nutrition for oil palm seedlings grown in tropical peat soil. J. Plant Nutr. 2019, 42, 1461–1471. [Google Scholar] [CrossRef]
- Rendana, M.; Abdul Rahim, S.; Lihan, T.; Mohd Razi Idris, W.; Ali Rahman, Z. A Review of Methods for Detecting Nutrient Stress of Oil Palm in Malaysia. J. Appl. Environ. Biol. Sci. 2015, 5, 60–64. Available online: http://www.textroad.com (accessed on 1 August 2022).
- Jiang, Y.; Yin, S.; Dong, J.; Kaynak, O. A review on soft sensors for monitoring, control, and optimization of industrial processes. IEEE Sens. J. 2021, 21, 12868–12881. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A Review of Remote Sensing Applications in Agriculture for Food Security: Crop Growth and Yield, Irrigation, and Crop Losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote. Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote. Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Chuvieco, E.; Huete, A. Fundamentals of Satellite Remote Sensing; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–419. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2015; p. 770. [Google Scholar]
- Harry, I.; Seminar, K.B.; Hermawan, W.; Saptomo, S.K. Prediction of soil surface water content and soil workability on an unplanted sugarcane farm area using Sentinel-1A data. Information 2022, 13, 493. [Google Scholar]
- Kaliana, I.; Seminar, K.B.S. Development of a Decision Support System for Oil Palm Fertilizer Requirement Based on Precision Agriculture, IPB University Scientific Repository. 2018. Available online: https://repository.ipb.ac.id/bitstream/handle/123456789/92621/2018ika.pdf (accessed on 1 August 2022).
- Liu, C.-A.; Chen, Z.-X.; Shao, Y.; Chen, J.-S.; Hasi, T.; Pan, H.-Z. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525. [Google Scholar] [CrossRef] [Green Version]
- Vincent, P.; Bourbigot, M.; Johnsen, H.; Piantanida, R. Sentinel-1 Product Specification. 2020. Available online: https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Definition (accessed on 1 August 2022).
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W. Sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Manevski, K.; Kørup, K.; Larsen, R.; Andersen, M.N. Random Forest regression results in accurate assessment of potato nitrogen status based on multispectral data from different platforms and the critical concentration approach. Field Crop. Res. 2021, 268, 108158. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Huang, T.; Wang, J.; Lin, L.; Wang, L.; Yang, M. Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm. Remote Sens. 2018, 10, 1940. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cheng, T.; Zhu, Y.; Tian, Y.; Cao, W.; Yao, X.; Wang, N. Comparative analysis of vegetation indices, non-parametric and physical retrieval methods for monitoring nitrogen in wheat using UAV-based multispectral imagery. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7350–7353. [Google Scholar]
- Zhao, B.; Duan, A.; Ata-Ul-Karim, S.T.; Liu, Z.; Chen, Z.; Gong, Z.; Zhang, J.; Xiao, J.; Liu, Z.; Qin, A.; et al. Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. Eur. J. Agron. 2018, 93, 113–125. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using linear regression, random forests, and support vector machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.M.; Ahmed, F.B.; Ismail, R. Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. Int. J. Remote Sens. 2013, 34, 712–728. [Google Scholar] [CrossRef]
- Soltanikazemi, M.; Minaei, S.; Shafizadeh-Moghadam, H.; Mahdavian, A. Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Comput. Electron. Agric. 2022, 200, 107130. [Google Scholar] [CrossRef]
- Ng, S.K. Nutrition and nutrient management of the oil palm—New thrust for the future perspective. Int. Symp. 2002, 415–429. [Google Scholar]
- Corley, R.H.V.; Tinker, P.B. The Oil Palm; John Wiley & Sons: Hoboken, NJ, USA, 2016; p. 692. [Google Scholar]
- Apichatmeta, K.; Sudsiri, C.J.; Ritchie, R.J. Photosynthesis of oil palm (Elaeis guineensis). Sci. Hortic. 2017, 214, 34–40. [Google Scholar] [CrossRef]
- Fairhurst, B.T.H.; Mutert, E. Interpretation and management of oil palm leaf analysis data. Better Crop. Int. 1999, 13, 48. [Google Scholar]
- Behera, S.K.; Suresh, K.; Ramachandrudu, K.; Manorama, K.; Rao, B.N. Mapping spatial variability of leaf nutrient status of oil palm (Elaeis guineensis Jacq.) plantations in India. Crop. Pasture Sci. 2016, 67, 109–116. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar vegetation index for estimating the vegetation water content of rice and soybean. IEEE Geosci. Remote Sens. Lett. 2012, 9, 564–568. [Google Scholar]
- Gonenc, A.; Ozerdem, M.S.; Acar, E. Comparison of NDVI and RVI vegetation indices using satellite images. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; p. 22. [Google Scholar]
- Yamada, Y. Comparison radar vegetation index (RVI) with conventional methods for paddy rice field, lotus pond and soybean. Int. Geosci. Remote Sens. Symp. 2019, 10, 7247–7250. [Google Scholar]
- Ratha, D.; Mandal, D.; Dey, S.; Bhattacharya, A.; Frery, A.; Rao, Y.S.; McNairn, H. New vegetation indices for full and compact polarimetric sar data: In preparation for the radarsat constellation mission (RCM). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, IV-3/W2-20, 41–46. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Miettinen, J.; Liew, S.C.; Kwoh, L.K. Usability of sentinel-1 dual polarization C-band data for plantation detection in Insular Southeast Asia. In Proceedings of the ACRS 2015—36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, Manila, Philippines, 19–23 October 2015. [Google Scholar]
- Carolita, I.; Darmawan, S.; Permana, R.; Dirgahayu, D.; Wiratmoko, D.; Kartika, T.; Arifin, S. Comparison of optic landsat-8 and sar sentinel-1 in oil palm monitoring, case study: Asahan, north Sumatera, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 280, 012015. [Google Scholar] [CrossRef]
- Xu, K.; Qian, J.; Hu, Z.; Duan, Z.; Chen, C.; Liu, J.; Sun, J.; Wei, S.; Xing, X. A new machine learning approach in detecting the oil palm plantations using remote sensing data. Remote Sens. 2021, 13, 236. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective Second Edition; Pearson Education Limited: Harlow, UK, 2014; Volume 1, pp. 333–378. [Google Scholar]
- Gouveia, N.D.A.; Alves, F.C.; Pereira, L.D.O. Pre-processing of Sentinel-1 C-band SAR images based on incidence angle correction for dark target detection. Remote Sens. Lett. 2019, 10, 939–948. [Google Scholar] [CrossRef]
- Kaplan, G.; Fine, L.; Lukyanov, V.; Manivasagam, V.S.; Tanny, J.; Rozenstein, O. Normalizing the local incidence angle in sentinel-1 imagery to improve leaf area index, vegetation height, and crop coefficient estimations. Land 2021, 10, 680. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Chica-Rivas, M. Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. Int. J. Geogr. Inf. Sci. 2014, 28, 1336–1354. [Google Scholar] [CrossRef]
- Harrison, J.W.; Lucius, M.A.; Farrell, J.L.; Eichler, L.W.; Relyea, R.A. Prediction of stream nitrogen and phosphorus concentrations from high-frequency sensors using random forests regression. Sci. Total Environ. 2021, 763, 143005. [Google Scholar] [CrossRef]
- Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata J. 2020, 20, 3–29. [Google Scholar] [CrossRef]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Budiman, R.; Seminar, K.B. Sudradjat Development of Soil Nitrogen Estimation System in Oil Palm Land with Sentinel-1 Image Analysis Approach. 2021, pp. 153–165. Available online: https://link.springer.com/10.1007/978-3-030-88259-4_11 (accessed on 1 August 2022).
- Rodríguez, J.D.; Pérez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD preprocessing workflow. Proceedings 2019, 18, 11. [Google Scholar]
- Schratz, P.; Muenchow, J.; Iturritxa, E.; Richter, J.; Brenning, A. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol. Model. 2019, 406, 109–120. [Google Scholar] [CrossRef]
Name | Deficiency | Optimum | Excess | Age | |
---|---|---|---|---|---|
Young palms | <2.50 | 2.60 | 2.90 | >3.10 | ≤6 years |
Mature palms | <2.30 | 2.40 | 2.80 | >3.00 | >6 years |
Index | Backscatter Attribute Combinations | References |
---|---|---|
Polarization VV | VV | [41,42] |
Polarization VH | VH | [41,42] |
Dual-Polarization difference | VV − VH | [41,43] |
Dual-Polarization Ratio | VV/VH | [41,43] |
Radar Vegetation Index (RVI) | [37,39] | |
Normalized Difference Index (NDI) | [41,43] |
ID Sample | In Situ Date | Latitude | Longitude | Nitrogen Total (%) |
---|---|---|---|---|
1 | 27 September 2021 | 0.68591 | 117.2197 | 2.66 |
2 | 27 September 2021 | 0.68591 | 117.2213 | 2.98 |
3 | 27 September 2021 | 0.67053 | 117.2430 | 2.15 |
Palm Plantations | Leaf Sampling Units | Image Acquisition Dates | Sentinel 1-A Image Files |
---|---|---|---|
PTPN 5 Sei, Riau | 125 | 13 July 2018 | S1A_IW_GRDH_1SDV_20180710T225636_20180710T225701_022738_0276E1_8857 |
PT. BPN, East Kalimantan | 125 | 23 August 2018 | S1A_IW_GRDH_1SDV_20180823T215033_20180823T215058_023379_028B27_2926 |
PTPN 5 Tandun, Riau | 36 | 2 February 2019 | S1A_IW_GRDH_1SDV_20190210T113323_20190210T113348_025866_02E10F_0E5C |
PTPN 7 Bekri, Lampung | 36 | 4 February 2019 | S1A_IW_GRDH_1SDV_20190205T112333_20190205T112358_025793_02DE64_10F2 |
IPB Jonggol, Bogor | 30 | 6 February 2019 | S1A_IW_GRDH_1SDV_20190208T223343_20190208T223411_025844_02E035_470C |
PTPN 3 Rambutan, North Sumatera | 36 | 4 April 2019 | S1A_IW_GRDH_1SDV_20190404T114214_20190404T114239_026640_02FD21_1430 |
PTPN 3 Sisumut, North Sumatera | 36 | 5 April 2019 | S1A_IW_GRDH_1SDV_20190411T113349_20190411T113414_026742_0300D4_BCE8 |
Kalianusa 1, East Kalimantan | 50 | 2 March 2020 | S1A_IW_GRDH_1SDV_20200302T215838_20200302T215903_031502_03A0D7_A2A7 |
Kalianusa 2, East Kalimantan | 70 | 14 April 2020 | S1A_IW_GRDH_1SDV_20200314T215838_20200314T215903_031677_03A6EA_5EE6 |
Kalianusa 1, East Kalimantan | 50 | 28 November 2020 | S1A_IW_GRDH_1SDV_20201128T215046_20201128T215111_035454_0424ED_2E00 |
Kalianusa 2, East Kalimantan | 70 | 10 December 2020 | S1A_IW_GRDH_1SDV_20201210T215046_20201210T215111_035629_042AF1_6E78 |
Kalianusa, Dinamika, Warga Rimba, East Kalimantan | 454 | 24 September 2021 | S1A_IW_GRDH_1SDV_20210924T215053_20210924T215118_039829_04B625_63CA |
ID Sample | Latitude | Longitude | Sigma0 VH | Gamma0 VH | Beta0 VH | Sigma0 VV | Gamma0 VV | Beta0 VV | Elevation | LIA | PLIA | IAFE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.68591 | 117.2197 | 0.0261 | 0.0368 | 0.0371 | 0.1996 | 0.2813 | 0.2835 | 135.2062 | 54.3296 | 54.1659 | 44.7795 |
2 | 0.68591 | 117.2213 | 0.0491 | 0.0692 | 0.0698 | 0.2854 | 0.4020 | 0.4052 | 124.2401 | 36.6264 | 36.1343 | 44.7708 |
3 | 0.67053 | 117.2430 | 0.0283 | 0.0398 | 0.0404 | 0.3044 | 0.4278 | 0.4333 | 119.8694 | 44.4817 | 44.4398 | 44.6277 |
Fold | MAPE | Correctness | MSE | Fit Time (Seconds) | Score Time (Seconds) |
---|---|---|---|---|---|
1 | 8.36% | 91.64% | 7.51 | 1.31362 | 0.03392 |
2 | 7.33% | 92.67% | 5.75 | 1.25192 | 0.02194 |
3 | 7.78% | 92.22% | 7.55 | 1.31149 | 0.03619 |
4 | 11.31% | 88.69% | 19.52 | 1.19929 | 0.02798 |
5 | 13.59% | 86.41% | 14.81 | 1.34625 | 0.02798 |
Average | 9.68% | 90.32% | 11.03 | 1.28451 | 0.02960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, S.; Seminar, K.B.; Sudradjat; Sukoco, H.; Buono, A. The Use of Random Forest Regression for Estimating Leaf Nitrogen Content of Oil Palm Based on Sentinel 1-A Imagery. Information 2023, 14, 10. https://doi.org/10.3390/info14010010
Munir S, Seminar KB, Sudradjat, Sukoco H, Buono A. The Use of Random Forest Regression for Estimating Leaf Nitrogen Content of Oil Palm Based on Sentinel 1-A Imagery. Information. 2023; 14(1):10. https://doi.org/10.3390/info14010010
Chicago/Turabian StyleMunir, Sirojul, Kudang Boro Seminar, Sudradjat, Heru Sukoco, and Agus Buono. 2023. "The Use of Random Forest Regression for Estimating Leaf Nitrogen Content of Oil Palm Based on Sentinel 1-A Imagery" Information 14, no. 1: 10. https://doi.org/10.3390/info14010010
APA StyleMunir, S., Seminar, K. B., Sudradjat, Sukoco, H., & Buono, A. (2023). The Use of Random Forest Regression for Estimating Leaf Nitrogen Content of Oil Palm Based on Sentinel 1-A Imagery. Information, 14(1), 10. https://doi.org/10.3390/info14010010