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Abstract: For obtaining a spatial map of the distribution of nitrogen nutrients from oil palm plan-
tations, a quite complex Leaf Sampling Unit (LSU) is required. In addition, sample analysis in the
laboratory is time consuming and quite expensive, especially for large plantation areas. Monitoring
the nutrition of oil palm plants can be achieved using remote-sensing technology. The main obstacles
of using passive sensors in multispectral imagery are cloud cover and shadow noise. This research
used C-SAR Sentinel equipped with active sensors that can overcome cloud barriers. A model to
estimate leaf nitrogen nutrient status was constructed using random forest regression (RFR) based
on multiple polarization (VV-VH) and local incidence angle (LIA) data on Sentinel-1A imagery. A
sample of 1116 LSU data from different islands (i.e., Sumatra, Java, and Kalimantan) was used to
develop the proposed estimation model. The performance evaluation of the model obtained the
averaged MAPE, correctness, and MSE of 9.68%, 90.32% and 11.03%, respectively. Spatial maps of
the distribution of nitrogen values in certain oil palm areas can be produced and visualized on the
web so that they can be accessed easily and quickly for various purposes of oil palm management
such as fertilization planning, recommendations, and monitoring.
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1. Introduction

The palm oil industry has become a global industrial commodity through processing
Crude Palm Oil (CPO) as a raw material for various food industries, oleochemicals, solid
fuels, and renewable energy [1–3]. The oil palm tree (Elaeis guineensis), which produces
palm oil, has spread and developed quickly in Southeast Asia. There are several oil palm
plantations in this area, where 85% of the world’s palm oil production comes from Indonesia
and Malaysia [4,5].

Oil palm needs nutrients, especially nitrogen, phosphor, and potassium, for optimum
growth and yields. Hence, knowledge of leaf nutrients is essential for the practical ap-
plication of fertilizers [6]. Fertilization has a vital role in the management of oil palm
plantations; fertilization costs in oil palm plantations are needed for around 50–70% of
the operational costs of maintaining the plantation and 25% of the overall production
costs [7]. The availability of adequate macro-nitrogen nutrients and the balance of macro-
nitrogen nutrients with other macro-elements play an essential role in the success of oil
palm growth [8–10]. The key to growing high-yield oil palm is having a sufficient supply
of nutrients, particularly nitrogen. In contrast to annual crops, determining the nitrogen
status of tall perennial crops such as oil palm is complicated and challenging due to age
and complex nitrogen partitioning [8]. In addition, the cost of analyzing leaves through a
laboratory is time-consuming and expensive for a large coverage area [11].
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Sensor technology is now widely used to monitor, control, and optimize industrial
processes [12], including the use of remote-sensing applications in agriculture [13–15]. By
delivering reliable data on crop status throughout the season at various scales, remote
sensing can support the adaptive evolution of agricultural methods to meet this significant
challenge [16]. It is possible to examine the physical, chemical, and biological characteristics
of vegetation, water, and soil using satellite photos captured by passive sensors such as
multispectral images and active sensors such as C-Synthetic Aperture Radar (C-SAR)
images [17–19]. The biggest challenge of using passive sensors in multispectral image
acquisition in oil palm plantation areas with tropical climates such as Indonesia and
Malaysia is obtaining clean images from cloud and shadow barriers [20]. Therefore, passive
sensors cannot accurately estimate oil palm leaf nutrition in real time.

On the other hand, the performance of active sensors is unaffected by the weather,
and the active sensor C-SAR can avoid cloud obstructions and obtain clear images of
cloud shadows. C-SAR is a valuable and significant technology for monitoring crops and
other agricultural targets [21]. Sentinel-1 is a C-SAR instrument and all-weather satellite
owned by the European Space Agency (ESA), which performs day and night radar imaging
missions for land and sea services [22].

In agriculture, remote-sensing data and Random Forest Regression (RFR) algorithms
are applied to estimate nitrogen content in plants. Modeling estimation of nitrogen status
using the RFR algorithm with multispectral data was investigated in rice [23], potato [24],
wheat [25,26], corn [27,28], and sugarcane [29,30] plants; the results of the estimation model
of nitrogen status were used as a guide for fertilization applications. In experiments on
the prediction of nitrogen status in plants [25,28,30], the MLR model and machine learning
(RFR, Support Vector Machine) were evaluated, and the results showed that RFR had
excellent performance.

Through the use of Sentinel-1 radar imagery data and machine learning, this study
aimed to determine a technique for estimating the nutritional of nitrogen in palm oil
plantation. This machine learning algorithm model used data samples from several oil
palm plantations in Indonesia, precisely in Sumatra, Java, and Kalimantan, to estimate the
nitrogen nutrient status of oil palm leaves.

2. Literature Review
2.1. Nitrogen in Palm Oil

The nutrient elements N, P, K, Mg, B, Cu, and Zn are essential to the growth of oil palm
leaves [31]. Nitrogen is a macronutrient needed by oil palm plants for protein formation,
chlorophyll synthesis, and metabolic processes [32,33]. The application of nitrogen fertilizer
can support oil palm fruit production by increasing the number of leaves on oil palm
trees [10,32].

The concentration of the critical nutritional value of oil palm leaves has been widely
used in its application. Leaf concentration value results from agronomic laboratory analysis
of leaf samples number 17 for mature trees and leaf number 9 for young trees [34]. Geosta-
tistical procedures help describe the variability of nutritional status spatially in oil palm
plantations and could be used to design site-specific application fertilizer strategies [35].

Table 1 shows ranges of nitrogen (%) values of deficiency, optimum, and excess
conditions concentrations of nitrogen nutrients in for young and mature oil palm leaves.
Leaf analysis has been used as a general method for estimating the nitrogen status of oil
palm plantations, using the oil palm’s 17th midrib (>2.5 years) to relate the actual nitrogen
status of the plant in the laboratory with the predicted nitrogen status of the plant. The
17th leaf’s midrib’s nutritional condition correlates more with oil palm production than
other early leaves [11]. Figure 1 shows an example of taking the 17th leaf and recording the
sampling’s GPS coordinates.
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Table 1. Nutrient concentration of nitrogen (%) in leaf 17 is associated with deficiency, optimum, and
excess in young and mature palms [34].

Name Deficiency Optimum Excess Age

Young palms <2.50 2.60 2.90 >3.10 ≤6 years
Mature palms <2.30 2.40 2.80 >3.00 >6 years
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Figure 1. Taking of Leaf Sampling Units (LSU) in oil palm plantations. (a) The 17th leaf midribs were
chosen and collected from oil palm plants. (b) Taking of four leaves from the flat endpoint in the
centerpiece of the palm midribs. (c) Recording the GPS coordinates of the location of the palm trees.

2.2. C-Synthetic Aperture Radar (C-SAR) Sentinel 1-A

Sentinel-1 is an all-weather satellite owned by the European Space Agency (ESA),
which performs day and night radar imaging missions for land and sea services. Sentinel-1
orbits the earth every 12 days. Sentinel-1 has a C-Synthetic Aperture Radar sensor for
SAR data with a spatial resolution that operates in the C-band (5405 GHz). Its objective
is to gather photographs for use in mapping polar and sea ice areas, tracking the marine
environment, keeping an eye on the risk of ground movement, and vast mapping areas,
including woods, land, and agricultural lands [22].

The Sentinel-1 satellite C-SAR sensor produces image products named Level-0, Level-1
SLC, Level-1 GRD, and Level-2 OCN. All products feature single polarization (VV or HH)
for Wave mode and dual polarization (VV + VH or HH + HV) or single polarization (HH
or VV) for SM, IW, and EW methods. Most data users typically have access to level-1 data.

Level-1 comprises two products, Single Look Complex (SLC) and Detected Ground
Range (GRD). The Level-1 GRD product consists of SAR data that are detected, focused,
multi-visible, and projected to the ground range using an Earth ellipsoid model. This
Level-1 product has several capabilities:

• Backscattering-type classification.
• Tracking natural rainfall and changes in vegetation growth based on long-term time-

series earth observations.
• Plant or vegetation classification.

Combining the backscatter coefficient band of C-SAR as an experimental basis has
been widely used for vegetation monitoring research [36–40]. Kim et al. [36] introduced the
Radar Vegetation Index (RVI) with a value of RVI = 8HV/(HH + VV + 2HV) to calculate
the water content of rice and soybeans. Gonenc, Yamada, and Dey [37] compared RVI
with NDVI (Normalized Difference Vegetation Index) produced from multispectral satellite
pictures to evaluate the vegetation index. In another study, Mandal [39] modified the RVI



Information 2023, 14, 10 4 of 15

for dual polarization VV + VH with a value of RVI = 4VH/(VV + VH) to monitor vegetation
growth using Sentinel-1 image data.

There have been several studies using sentinel-1 imagery on oil palm plantation objects,
such as research on mapping the classification of oil palm vegetation using the Decision
Tree algorithm based on the analysis of the VH and VV backscatter attribute values from
the SAR [41]. Carolita et al. [42] used regression analysis to monitor the growth of oil palm
age by analyzing the pattern of backscatter attribute values HH and VH. Xu et al. [43]
use the Random Forest algorithm to distinguish the age of mature and young oil palms
by analyzing the backscattering values of the SAR, vegetation index, and texture features.
Miettinen and Xu [41,43] used a combination of VH and VV backscattering attributes in the
form of VV-VH, VV/VH, and Normalized Difference Index values (NDI = (VV − VH)/
(VV + VH)) to detect oil palm trees. The backscattering characteristic of C-SAR is displayed
in Table 2 and can be used as input for classification and regression machine learning
models.

Table 2. C-SAR backscatter features used in oil palm research.

Index Backscatter Attribute
Combinations References

Polarization VV VV [41,42]
Polarization VH VH [41,42]
Dual-Polarization difference VV − VH [41,43]
Dual-Polarization Ratio VV/VH [41,43]
Radar Vegetation Index (RVI) 4VH

VV+VH [37,39]
Normalized Difference Index (NDI) VV−VH

VV+VH [41,43]

The C-SAR system has an angle of view between the radar line of sight and the vertical
antenna to the ground (Figure 2). The incidence angle (θ) is the angle between the pulse of
radar energy and the line perpendicular to the earth’s surface it hits. The angle of incidence
θ on a target with a flat ground equal (θ = 90 − γ) of the angle of depression.
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Since the data are directly derived from radar systems with various display geometries
and changes with the local angle of incidence, normalization (normalized backscatter) is
required to increase correctness and decrease bias [45,46].

2.3. Random Forest Regression

Random Forest is a supervised learning algorithm for solving classification and deci-
sion tree problems. The term "Random Forest" refers to a grouping of many decision trees
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wherein each tree is dependent on the value of a random vector sampled separately and
equally across all trees in the forest [47]. The random forest algorithm can significantly
enhance the decision tree’s predicting performance by mixing numerous decision trees [48].

This algorithm is random because of two factors [49], specifically: (1) a sample chunk
of m variables from the original data set is chosen for each split node during decision
tree formation, then the best one is used in that node; (2) each tree grows randomly on a
different bootstrap sample from the training data. Random Forest is an effective machine
learning tool for making predictions [47]. Harrison et al. [50] recommended the RFR Model
for estimating nutrient concentrations using high-frequency sensor data. The technique
is ideally suited to this application since it can be implemented for multivariate datasets
that include highly skewed data, multi-collinearity between predictors, and nonlinear
correlations between predictor variables and response variables. According to the study
in [51], Random Forest Regression has the advantage of having a higher R-squared (R2)
value than least squares regression.

2.4. Evaluation Model

The Mean Absolute Percentage Error (MAPE) and Mean Squared Error (MSE) evalua-
tion models are often used in regression modeling that incorporates machine learning for
model evaluation [52,53]. By computing the absolute percentage error of the mean, MAPE
is used to measure the correctness of forecasts in the forecasting method statistically. In
contrast, MSE is used to detect outlier data. Interpretation of MAPE and MSE values is best
if it is close to 0, and vice versa is worse if it is close to +∞.

In the formulas below, the Xi is the predicted value for ith, and the Yi element is the
actual value for ith. The regression method predicts the Xi element for the corresponding
Yi element of the ground truth dataset. The following equation represents MAPE and
MSE [53]:

MAPE =
1
m

m

∑
i=1

∣∣∣∣Yi − Xi

Yi

∣∣∣∣ (1)

MSE =
1
m

m

∑
i=1

(Xi − Yi)
2 (2)

Correctness is the inverse of MAPE, which is used to make it easier to understand the
results of MAPE. The following is the correctness formula [54].

Correctness = 100 − MAPE (3)

The K-Fold cross-validation method was applied in this study to evaluate the model
data’s level of quality and avoid overfitting the model. K-Fold Cross-validation randomly
separates X data into K data, where each separated component has the same number. After
randomizing the training and test data, a model was created from each K segment. The
results of the evaluation of the quality of the best model were chosen as the best model [55].

3. Material and Methods
3.1. Research Design and Data

The research design (shown in Figure 3) was carried out in several major stages,
including the steps of data collection, data preprocessing, data processing, a final evaluation
of the prediction model, and making a map of the distribution of nitrogen status in oil palm
plantation based on the resulting estimation model.
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Figure 3. Research design.

At this step of the data collecting process, data was collected from two different sources:
leaf sampling data from in situ and remote-sensing data obtained from sentinel satellite
imaging data. During the leaf sampling data collection process, the GPS coordinates of
the sampling locations were also recorded. This study collected 1116 LSU samples from
various oil palm plantations in Sumatra, Java, and Kalimantan between 2018 to 2021, and
all data were taken from oil palm plantations with mineral land types. Figure 4 shows the
location for collecting the Leaf Sampling Unit (LSU) of oil palm leaves.
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Then LSU was prepared and analyzed in the agronomy laboratory. The laboratory
used is the Department of Agronomy and Horticulture of IPB University, accredited and
certified by a national standard institution. The output of the agronomy laboratory is
the nutritional value of nitrogen in oil palm leaves at the coordinate points in oil palm
plantations. The Table 3 shows the sampling distribution of Mature Oil Palm Leaves for
leaf midrib Number 17 for nitrogen nutrition.

Table 3. Example of LSU nitrogen status data from an agronomy laboratory.

ID Sample In Situ Date Latitude Longitude Nitrogen Total (%)

1 27 September 2021 0.68591 117.2197 2.66
2 27 September 2021 0.68591 117.2213 2.98
3 27 September 2021 0.67053 117.2430 2.15

At the stage of data collection through remote sensing, satellite image data were
acquired following the collection period and the position of the GPS coordinates of leaf
analysis data samples in the oil palm plot area. The primary data source for this study is
the Sentinel-1A satellite imagery with Interferometric Wide (IW) observation acquisition
mode from the GRD product features a wide swath (250 km) at a spatial resolution of
5 × 20 m. Table 4 displays the location and time information for the acquisition of Sentinel
1-A Imagery.

Table 4. Sentinel 1A image acquisition location and time.

Palm Plantations
Leaf

Sampling
Units

Image
Acquisition Dates Sentinel 1-A Image Files

PTPN 5 Sei, Riau 125 13 July 2018 S1A_IW_GRDH_1SDV_20180710T225636_20180710T225701_022738_0276E1_8857
PT. BPN, East Kalimantan 125 23 August 2018 S1A_IW_GRDH_1SDV_20180823T215033_20180823T215058_023379_028B27_2926
PTPN 5 Tandun, Riau 36 2 February 2019 S1A_IW_GRDH_1SDV_20190210T113323_20190210T113348_025866_02E10F_0E5C
PTPN 7 Bekri, Lampung 36 4 February 2019 S1A_IW_GRDH_1SDV_20190205T112333_20190205T112358_025793_02DE64_10F2
IPB Jonggol, Bogor 30 6 February 2019 S1A_IW_GRDH_1SDV_20190208T223343_20190208T223411_025844_02E035_470C
PTPN 3 Rambutan, North Sumatera 36 4 April 2019 S1A_IW_GRDH_1SDV_20190404T114214_20190404T114239_026640_02FD21_1430
PTPN 3 Sisumut, North Sumatera 36 5 April 2019 S1A_IW_GRDH_1SDV_20190411T113349_20190411T113414_026742_0300D4_BCE8
Kalianusa 1, East Kalimantan 50 2 March 2020 S1A_IW_GRDH_1SDV_20200302T215838_20200302T215903_031502_03A0D7_A2A7
Kalianusa 2, East Kalimantan 70 14 April 2020 S1A_IW_GRDH_1SDV_20200314T215838_20200314T215903_031677_03A6EA_5EE6
Kalianusa 1, East Kalimantan 50 28 November 2020 S1A_IW_GRDH_1SDV_20201128T215046_20201128T215111_035454_0424ED_2E00
Kalianusa 2, East Kalimantan 70 10 December 2020 S1A_IW_GRDH_1SDV_20201210T215046_20201210T215111_035629_042AF1_6E78
Kalianusa, Dinamika, Warga Rimba,
East Kalimantan 454 24 September 2021 S1A_IW_GRDH_1SDV_20210924T215053_20210924T215118_039829_04B625_63CA

The following step involves feature extraction and data preprocessing on Sentinel
1 satellite radar image data collected of oil palm plantation plots. This process uses the
Sentinel Application Platform (SNAP) software Sentinel-1 Toolbox and Quantum GIS
(QGIS). The SNAP Sentinel-1 Toolbox application is a data processor, has a read and write
a feature for image products, displays and analyzes data, and supports extensive data
archives. It manages images obtained from Sentinel satellites.

SNAP’s tasks include general raster, optical image processing, processing of radar data
(calibration, speckle filtering, field correction), orthorectification, mosaic, data conversion,
polarimetry, and interferometry. Feature extraction of sentinel-1A image data includes
the stages of applying orbit file, radiometric calibration, geometric terrain correction,
raster subset, and speckle filtering [56]. Quantum GIS is a geographic information system
program that generates, manages, stores, displays, and analyzes spatial data. This study
used QGIS Desktop to preprocess sentinel-1 satellite image data to obtain symbology maps,
points, lines, polygons, categories, and labels.

The preprocessing workflow stage using the SNAP Toolbox consists of six processing
steps (Apply Orbit File, Determine Subset Area, Perform Radiometric Calibrate, Perform
Speckle Filtering, Perform Geometric Terrain Correction, and save into Geo TIFF format).
The QGIS application consists of five processing steps (Create Layer from CSV File, Planta-
tion Map, Latitude Longitude Coordinate Subset Area, Apply Layer Same CRS, Perform
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Point Sampling Conversion to DB). Figure 5 shows the process of using SNAP and QGIS to
feature extract and preprocess Sentinel 1-A image data.
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In this research, six backscatter coefficient bands were used as an experimental basis.
The SNAP software tool that is for image processing produces six backscatter values
consisting of band data values of VV (Sigma0_VH, Gamma0_VH, Beta0_VH) and VH
(Sigma0_VV, Gamma0_VV, Beta0_VV), and six other additional attribute data consisting
of variable data elevation, latitude, and longitude GPS coordinates, Local Incident Angle
(LIA), Projected Local Incident Angle (PLIA), and Incident Angle Form Ellipsoid (IAFE).
Table 5 provides examples of feature extraction operation of Sentinel 1A images.

Table 5. Example of backscatter data extracted from Sentinel 1A images.

ID
Sample Latitude Longitude Sigma0

VH
Gamma0

VH
Beta0
VH

Sigma0
VV

Gamma0
VV

Beta0
VV Elevation LIA PLIA IAFE

1 0.68591 117.2197 0.0261 0.0368 0.0371 0.1996 0.2813 0.2835 135.2062 54.3296 54.1659 44.7795
2 0.68591 117.2213 0.0491 0.0692 0.0698 0.2854 0.4020 0.4052 124.2401 36.6264 36.1343 44.7708
3 0.67053 117.2430 0.0283 0.0398 0.0404 0.3044 0.4278 0.4333 119.8694 44.4817 44.4398 44.6277
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3.2. Data Preprocessing

Data transformation was carried out in the preprocessing stage to obtain variables
required for the RFR models. The transformation method used is the brute force method,
namely by trying various possible data transformations by performing a combination
of mathematical operations from the Sentinel 1A data attribute. Some procedures and
functions are quadratic operations, roots, cube roots, logarithmic operations, rounding
operations, exponential and trigonometric functions. After the transformation process, of
the 12 independent variables of the C-SAR attributes, 86 variables were obtained, which
will be evaluated in the model using cross-validation. As indicated in Table 2, parameter
determination also involved experimenting with different sentinel 1A backscatter index
value combinations.

From the 86 variables, hyperparameter tuning [57] was carried out in Python using
Scikit-Learn tools implementing a set of sensible default hyperparameters to select the
most influencing variables. In the RFR, hyperparameter tuning includes the number of
decision trees in the forest and the number of features considered by each tree when
splitting a node. The parameters of a random forest are the variables and thresholds used
to split each node learned during training. Hyperparameter tuning resulted in the five
most-significant variables, namely Sigma0_VH, Gamma0_VH, Beta0_VH, RVI and LIA, as
shown in Figure 6.
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Figure 6. The feature scores obtained in hyperparameter tuning.

The dataset consists of 1116 data, divided into 80% training data and 20% basic test
data. The built RFR algorithm was validated using K-Fold Cross-Validation, where all
parts of the dataset can be used for training and testing, enabling a better evaluation of
the performance of the proposed model. The first step of the validation method is to
choose a value for k, then divide the dataset into several k folds, each of which represents
a test dataset, and the other folds are used as training datasets. After that the model was
trained on the training dataset and validated on the test dataset. This process was repeated
k = 5 times. The table shows the validation results. In this study, the value of k = 5 was
chosen referring to research in [54].

4. Results and Discussion

Table 6 shows the results of the k-fold validation (where k = 5) of the RFR model
algorithm developed to estimate nitrogen nutrition in oil palm leaves. The validation
produces 5 different correctness results when using correctness as a performance measure.
The validation resulted in averaged MAPE, correctness, and MSE of 9.68%, 90.32%, and
11.03% respectively.
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Table 6. The results of k-fold cross validation with RFR model training.

Fold MAPE Correctness MSE Fit Time
(Seconds)

Score Time
(Seconds)

1 8.36% 91.64% 7.51 1.31362 0.03392
2 7.33% 92.67% 5.75 1.25192 0.02194
3 7.78% 92.22% 7.55 1.31149 0.03619
4 11.31% 88.69% 19.52 1.19929 0.02798
5 13.59% 86.41% 14.81 1.34625 0.02798

Average 9.68% 90.32% 11.03 1.28451 0.02960

Figure 7 shows a comparison of the actual and predicted values of nitrogen in leaves
using the base-test data. The x-axis represents the sample data IDs sorted by the original
nitrogen values in increasing order, while the y-axis represents the nitrogen values.
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After validation, the developed and validated model was tested on a completely new
data set (130 data items) which was not in the previously sampled data set. Based on the
results of this test, the performance of the model achieved correctness, MAPE, and MSE of
92.09%, 7.91%, and 6.80%, respectively. Note that the correctness obtained in this test is still
within the range of the correctness values obtained by 5-fold validation (Table 6).

In this study, the RFR model was applied to estimate nitrogen concentrations. The
model is used to visualize spatial maps using the QGIS application to represent the distri-
bution (variation) of nutrients in an oil palm area. Oil palm plantations on the islands of
Kalimantan and Java were used to demonstrate the visualization of Nitrogen distribution
in the form of spatial maps, as shown in Figures 8–10.
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Figure 10. Spatial Map of nitrogen status distribution for Jonggol plantation in West Java March 2022.

Figure 8 is a map of the distribution of Nitrogen status in a demonstration plot in
an oil palm plantation belonging to the Kalianusa Oil Palm Company located in District
Rantau Pulung, East Kutai Regency, East Kalimantan. At this plantation location, oil palm
trees have been produced (mature palms). Figure 8 shows that green and yellow colors
dominate the map, meaning that the concentration of Nitrogen nutrients (%) in oil palm
plantations is at the optimum value, in the 2.3–2.7% range.

Figure 9 is a map of the distribution of Nitrogen in the oil palm plantations belonging
to the Warga Rimba palm oil company, located in District Karangan, East Kutai Regency,
East Kalimantan. It can be seen that the map of oil palm plantations is dominated by green
and yellow colors, which means that the nutrient concentration value of Nitrogen (%) is in
the range of 2.3–2.7%, which is at optimum conditions.

Figure 10 is a map of nitrogen distribution in an oil palm plantation located in the
Jonggol area, West Java. The Jonggol oil palm plantation’s map is dominated by a yellow
color, meaning that the concentration of Nitrogen (%) is 2.3–2.5%, which is still considered
to have enough nitrogen levels for plants.

5. Conclusions

In this research, we developed and tested a model using machine learning for esti-
mating oil palm leaf nitrogen status based on Sentinel-1 A imagery using Random Forest
Regression. The number of data samples (LSU) used to develop the proposed model was
1116 LSUs taken from Sumatra, Java, and Kalimantan islands. The performance evaluation
of the model obtained the averaged MAPE, correctness, and MSE of 9.68%, 90.32%, and
11.03 respectively. The validated model was also tested for new real data (130 data items)
with the testing results with averaged MAPE, correctness, and MSE of 7.91%, 92.09%, and
6.80 respectively.

The results of the estimation model of the leaf nitrogen content of oil palm can be
produced and visualized in the form of a spatial map displaying the distribution of nitrogen
nutrients on the web platform, which can be easily and quickly accessed for various oil palm
management purposes such as fertilization planning, recommendation, and monitoring.
For future research, oil palm plantations in Indonesia are distributed in several geographical
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areas consisting of mineral and peat soil; therefore, we need to develop an estimation model
for the other macro and micronutrients and also for the peat soils of the oil palm plantation.

The future use of this proposed model is to enhance the application of precision
agriculture for site-specific fertilization recommendations for oil palm. In addition, the
spatial map visualized by the proposed system can be used to increase transparency and
observation of oil palm for better field management tasks.
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K.B.S. and H.S.; resources, S.M.; data curation, S.M.; writing—original draft preparation, S.M. and
K.B.S.; writing—review and editing, S.M. and K.B.S.; visualization, S.; supervision, K.B.S.; project
administration, K.B.S. All authors have read and agreed to the published version of the manuscript.
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