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Abstract: Model-based systems engineering (MBSE) is a leading paradigm for the analyses and devel-
opment of complex systems. However, the development of modeling and simulation infrastructure
supporting MBSE is lacking, which limits the application of MBSE. To address this problem, this
paper proposes an SES-X methodology that integrates system modeling (following SES philosophy)
with system simulation (supported by X language) to support the full lifecycle of MBSE modeling,
including system analysis, architecture decomposition, physical modeling, and simulation. In the
process, SES-X performs two levels of model pruning for model verification and simulation effi-
ciency. This paper also conducts a case study on a car model to illustrate the effectiveness of the
SES-X methodology.
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1. Introduction

The ever-growing complexity of modern systems creates significant challenges to their
design and development. The mechanics, electronics, and even humans would all affect the
stability of a system, which needs to be considered in the design stage. Therefore, model-
based systems engineering (MBSE) is becoming popular in the design and development of
complex systems. As compared with document-centric engineering, MBSE puts models
at the center of system design to support the development of complex systems [1]. The
MBSE modeling process consists of the following steps: del validation. The purpose is to
construct physical models based on logical models following the requirements and to verify
the physical models through simulation. Thus, one key problem of MBSE is to combine
system architecture (model) design capabilities, with model verification and validation
(simulation) capabilities, into a unified process [2].

Being a general approach, there are multiple solutions for MBSE modeling. These
solutions generally depend on three pillars: modeling methodology, modeling language,
and modeling tools, where the modeling methodology regularizes the design process, and
the modeling language and modeling tools support the design process [3]. Previously,
many studies have taken a modeling language-centered approach to adopt simulation
methods into existing modeling methodologies [4,5]. However, in such solutions, the simu-
lation functionalities are often tailored to fit into the system modeling framework, which
limits their simulation abilities [6]. Other studies took a simulation-centered approach by
allowing existing simulation software to handle the model established by system modeling
language [7,8]. However, this approach requires parameter transformation or model trans-
formation between the two paradigms, which limits its scalability for complicated models.

To address the limitations of these two approaches, the further development of MBSE
requests native unified frameworks (including methodology, language, and tools) that can
support the entire modeling process of requirement analysis, model design, and model
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verification. In our previous research, we proposed an X language based on SysML [9],
Modelica [10], and DEVS [11], which provides integrated support for logical modeling and
physical modeling [12,13]. We also build modeling software XLab [14], which supports the
simulation of X language. In this study, we further complement X language and XLab with
the system modeling abilities for MBSE development.

Specifically, this paper proposes combining SES/MB, a popular methodology for
complex system architecture analysis and modeling, with X language to build an SES-X (SES
eXtended) methodology. With this methodology, we can systematically design simulation
models aligning with system requirements. SES-X provides a unified framework with top-
down system design abilities (following SES philosophy) and bottom-up system simulation
abilities (enabled by X language). During the modeling process, our methodology contains
two levels of model pruning processes that simplify the model to facilitate verification and
simulation. In this paper, we provide an illustrative example to showcase the effectiveness
of the SES-X in applications. To the best of our knowledge, it is one of the first MBSE
solutions that can provide native support to both modeling and verification functions for
the entire process of complex system model development.

The rest of this paper is organized as follows. In Section 2, we review the literature
on existing MSBE solutions, and we introduce the SES framework and the X language.
Section 3 proposes the SES-X methodology for MSBE development. Section 4 conducts a
case study to illustrate the effectiveness of our proposed SES-X methodology. Section 5
concludes the paper.

2. Related Works
2.1. Existing MBSE Modeling Solutions
2.1.1. Modeling Language-Centered Solutions

The majority of MBSE modeling solutions have used SysML as the modeling lan-
guage [3] and built up the system on the SysML graphs. Examples of such model-
ing language-centered methodologies include Harmony-SE [15], MagicGrid [16], and
OOSEM [17]. For example, Harmony-SE starts with requirement analysis to build func-
tional descriptions and translates functional descriptions into system functions to guide the
building of executable models. However, these modeling language-centered solutions have
a natural deficiency. Since SysML does not have simulation functionalities, it is difficult for
it to validate the (multidisciplinary) models constructed.

To address this issue, a number of studies leverage SysML’s profile-extension
mechanism to connect with simulation languages and gain simulation abilities, such as
SysML4Simulink [18] and SysML4Arena [19]. These profiles have external semantics that
allow representations in SysML to simulate specific model artifacts. Although different
SysML profiles have been developed, it is very difficult to develop a profile that can fully
cover all simulation semantics of a simulation language [1]. As a result, the modeling
language-centered solutions often have restricted support for simulations. Furthermore,
the extension profiles must be properly updated when interfacing with different versions
of simulation tools, which leads to significant maintenance work.

2.1.2. Simulation-Centered Solutions

Another approach tries to integrate MBSE modeling into simulation infrastructures.
Zeigler advocated the use of DEVS as a system modeling and simulation framework for
MBSE and reviewed the DEVS simulation tools being developed for MBSE [2]. Alshareef
incorporated DEVS into MBSE modeling, focusing on the simulation verification process by
UML and SysML activity diagram specification [20]. Wach et al., merged the tricotyledon
theory of system design [21] with DEVS, which equipped MBSE engineers with modeling
and simulation analysis capabilities for multiple system models [22].

There are also some studies using parameter transformation through interfaces, such as
FMI [23], or model transformation, using model-to-model (M2M) and model-to-text (M2T)
methods [24], which realize the simulation of the model established by SysML. Typical
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models that establish the model transformation mechanism are Modelica [7], Simulink [7],
and DEVS [8]. The limitation of this approach is that the solution will become difficult to
maintain when model complexity increases.

While the above two approaches provide a foundation for integrating the simulation
into MBSE modeling, there is a lack of native solutions that can simultaneously support
system modeling and system simulation. To fill the gap in the literature, we want to develop
a methodology for the full lifecycle of MBSE modeling.

2.2. SES/MB Framework

SES/MB framework [25] is a modeling framework based on system entity structure
(SES) and model bases (MBs). As illustrated in Figure 1, SES describes the hierarchical
composite of a system, which is represented as a tree structure. The tree is built on the
basic models in MB as leaf nodes, which link to each other to form complicated systems.
The basic models in MB have well-defined input and output interfaces, and they are
configurable with parameters. For example, in the SES shown in Figure 1, the blocks
represent entity nodes, which represent real-world objects. Furthermore, the tree has three
types of connectors, which are suffixed with Dec (Aspect), MultiA (MultiAspect), and Spec
(Specialization), respectively. A Dec connector links a node to its decomposition of multiple
nodes. A MultiA connector decomposes one node into multiple entities of the same type.
A Spec connector describes the specialization and choices of an entity among multiple,
according to selection rules, which need to be carried out during the pruning process.
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Figure 1. SES/MB Modeling and Simulation Process. Figure 1. SES/MB Modeling and Simulation Process.

In SES modeling, a modeler needs to prune a system-decomposition tree by selecting
a unique system configuration from all possible system architectures. The result is a tree
known as the pruned entity structure (PES). After that, models in the MB are synthesized
with the PES to compose an executable model for simulation. The simulation results can
then assist the modeler in the tradeoff of different design features. If necessary, multiple
PESs and multiple rounds of simulations can be conducted to reach an optimal solution.
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2.3. X Language and XLab

X language [12,13,26] is an integrated modeling and simulation language that supports
object-oriented modeling and has the ability to (1) support graphical modeling and code
modeling, as well as (2) support continuous, discrete, agent, and hybrid modeling.

As illustrated in Figure 2, the X language has three analysis diagrams and five types
of couple classes. The analysis diagrams include the requirement diagram for requirement
description, analysis, and tracking, the use-case diagram for functional description, and
the sequence diagram to describe the behavior of the system. In X language, these three
diagrams cannot be converted into codes and are only used for analysis.
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The five types of couple classes, however, have two formats: diagram format and
code format, which can be transformed into each other. The graphic model is composed
of diagrams, and the code format model is composed of parts. Each class has a definition
diagram/part and a connection diagram/part, which define the system model at the
level of the system structure, explaining which components the system contains and the
connections between them. In the current X language, the connection diagrams/parts
include an equation, activity, and state machine, which describe the system behavior with
mathematical equations, assignment processes, and the DEVS atomic model, respectively.

XLab [14] is a web-based software that supports X language modeling and simulation,
which supports both X language diagrams and X language coding. The diagram and code
format of models can be converted into each other in XLab, and the code format model can
be compiled into a simulation model by the XLab compiler and executed by a simulation
engine written in C++ [13].

3. SES-X Methodology

Following the philosophy of SES, we propose the SES-X methodology that aims to
model the entire process of system modeling and verification as a tree. As shown in Table 1,
the major difference between SES and SEX-X is that SEX-X is a process-modeling method-
ology rather than a system-modeling methodology, as SES is. Its nodes are models or
documents rather than entities. When using SES-X, the main process is to first derive mod-
eling based on requirements, as specified by the upper-level systems. The SES-X method
contains four stages—the analysis stage, the architecture decomposition stage, the physical
modeling stage, and the validation/simulation stage—corresponding to this process. In
the middle of the four stages, we have two processes to prune the non-computational
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models/documents to conduct model verification and simulation, as illustrated in Figure 3.
These two pruning steps not only make the simulation feasible but also limit the search
space for modeling and simulation. Below, we specify the detailed procedure of each step.

Table 1. Difference between SES and SES-X.

SES SES-X

Purpose System architecture design MBSE process design
Nodes Entities that form a system Models/Modules in a modeling processes

Decompose Detail components of a system Detail models meet (upper level)
requirements

Prune On the entire tree of system models On subtrees of the modeling process
One round of pruning Two rounds of pruning

Select one specialization of an entity
Select specialization of a system

architecture
or specification of an entity
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3.1. Analysis Stage

The purpose of this stage is to abstract the system model and establish the overall
system architecture rather than the specific logic and implementation of the model.

First, the modeler builds a requirements model by analyzing stakeholder requirements
and clarifying the system functional specification, such as through the use case diagram.
Thus, the first level of SES-X contains three elements: requirement model, use case model,
and system architecture. The requirement model describes the requirements and constraints
that stakeholders have on the system. The use case model reflects the functions that the
system must provide to the user.

Second, the modeler needs to build the system architecture. This part of SES-X
is composed of two nodes: functional architecture and entity structure. The functional
architecture describes the system’s processing logic. The entity structure describes the entity
and relations of the data. At this stage, the modelers need to establish operation scenarios
for each function of the system, identify the operation relations or constraint relations
between each function, and design new functions based on interactions of functions.
Further, according to the function interaction relations, the modeler establishes the entities
supporting the designed functions.

After this stage, the system-level model of SES-X will look like Figure 4.
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3.2. Architecture Decomposition

The second stage is the architecture-decomposition stage, which decomposes the
entities constructed in the first stage into sub-entities. As with the entire system, the
sub-entities are also composed of requirements, use cases, and system architectures. The
decomposition follows a top-down process and is conducted recursively until non-divisible
atomic entities are reached.

In SES-X, each sub-entity is responsible for a portion of the functions and entities of the
upper-level system. Coupling and interactions also exist among its functions and entities.
Thus, the sub-entities are connected with requirement models and use-case models at a
higher level. This stage also needs to sort out the logic of each entity, such as the running
sequence and state transition relationship, according to the allocated functions, so as to
optimize the function and modeling of each sub-entity.

After this stage, one will be able to obtain the SES-X model shown in Figure 5.

3.3. Architecture Pruning

After architecture decomposition, we will have a complicated SES-X tree. To manage
the scale of the model for functional verification (i.e., to verify whether the logic of the
system can meet the design requirements), we need to prune the tree. At this stage, by
coupling the function of sub-entities, their alignment with the requirements of a higher-
level system is tested. Note that this tree-pruning step is different from SES in the sense
that we not only prune entities but also prune models and a sub-tree from the entire tree.
We need to prune all supporting elements that cannot be executed in simulation, such as
the requirement model and use case model, in SES-X. The testing is currently performed
by the modeler, while automated algorithms for functionality integration verification and
model pruning will be investigated in the future.

As illustrated in Figure 6, the pruned model only contains entity elements that form
a PES (as in SES). This design allows us to test if the process of the sub-entity meets the
design requirements before lower-level entities are integrated.

3.4. Physical Modeling

In the third stage, appropriate physical models need to be built on entities to enable
the simulation. Unlike in the previous stage, the physical models at this stage will be used
in simulation and need to be designed based on the nature of the component/sub-entity.
Thus, a bottom-up design process will be used in this phase.
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This phase focuses on the physical mechanisms of the entities that make up the system.
It is possible that the physical models of atomic entities are already defined in the model
base. Meanwhile, since each entity may be modeled by different dynamic models, the
systems that meet the same function requirements may have a different physical model.
Starting from each atomic model, the relationship between models is updated recursively
to the upper levels. Eventually, physical model connections are mapped with the system
model specification established before.

After this stage, one will be able to obtain the SES-X model, as shown in Figure 7
(middle part). The SES-X model obtained at this stage is an SES, which describes a set of
possible system structures for the system model. This SES can be used, as in SES/MB, to
simulate and validate the system.
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3.5. Physical Model Pruning

At this point, we would have a physical model aligning with the SES-X framework.
However, to conduct the simulation, we need to prune further to obtain the prototype
model for simulation. In this step, the model specializations are determined for the entities
of the system, and a system model is finally obtained. Note that this physical model
pruning step is based on system models that support the simulation of system dynamics.
This is different from architecture pruning in Section 3.3, which is only for functionality
checks. The goal of this stage is to make a determination from multiple alternatives of
system models and obtain a prototype entity structure that supports the simulation of
the system.

After this stage, one will be able to obtain the SES-X model shown in Figure 7
(right part).

3.6. Simulation Verification

The last stage is system simulation verification. At this stage, the interface of the
model has been matched, the physical models are specified, and we will have an integrated
multi-level system model. After the simulation parameters are specified, the system model
can be transformed into a simulation model. The simulation process can be implemented
with X language and XLab.

As illustrated in Figure 3, our proposed SES-X is an iterative process. After simulation,
if the outcome of the system cannot meet the requirements, we may need to revise the
pruning of model design for the physical model or architecture model and reconduct the
simulation. The final solution will be reached when system requirements are met.
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4. Case Study

In this section, we illustrate the use of the SES-X methodology, through a toy appli-
cation, to build a car model. When designing a car, a car manufacturer needs to take into
account various factors. For the purpose of this paper, we only consider the most basic
requirements, in which a car has a frame and tires, and we only consider the dynamics of
the frame under the action of the driver (i.e., turning the steering wheel).

4.1. System Analysis

In the first stage, we can build a system architecture, as in Figure 8. Its requirements
diagram specifies the most basic requirement for car modeling: the car is able to respond to
the driver’s action. To meet this requirement, two sub-requirements are needed:

1. The frame can report the speed of the car during the steering process.
2. The tires can reflect the speed, force, and slip rate.
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To meet these two requirements, we can build the use case model in the use case
diagram and the system architecture. The functional architecture of the system is mainly
concerned with the interaction between the body and the wheel, where the vehicle speed
is affected by the angle of the front wheel and the force of the wheel on the body. The
speed of the wheel is mechanically determined by the speed of the body. Thus, we derive
functional architecture using the activity diagram. Accordingly, the automobile system can
be considered to be composed of two sub-entities, namely the frame and the tire.

4.2. Architecture Decomposition

Then, we further design the two sub-entities: frame and tire. Among them, the frame
model is relatively easy since it does not have any moving parts and cannot be further
divided into multiple entities. The frame model can be considered an atomic entity, as
shown in Figure 9.



Information 2023, 14, 23 10 of 15

Information 2023, 14, x FOR PEER REVIEW 11 of 18 
 

 

{(frame.velocity,tire.force)}

Entity structure of the car

frame tire

car-Dec

car system

System architecture of 
the car

car-Spec

 

Figure 8. The Analysis Model of A Car in SES-X. 

4.2. Architecture Decomposition 

Then, we further design the two sub-entities: frame and tire. Among them, the frame 

model is relatively easy since it does not have any moving parts and cannot be further 

divided into multiple entities. The frame model can be considered an atomic entity, as 

shown in Figure 9. 

frame

System architecture of the 
frame

frame-Spec

 

Figure 9. The SES-X Model of The Frame. 

The tire model has a few requirements, including: 

1. The calculation of the vertical load of the wheel, 

2. The calculation of the wheel side angle, 

3. The calculation of the speed of each wheel in the wheel coordinate system, 

Figure 9. The SES-X Model of The Frame.

The tire model has a few requirements, including:

1. The calculation of the vertical load of the wheel,
2. The calculation of the wheel side angle,
3. The calculation of the speed of each wheel in the wheel coordinate system,
4. The calculation of the wheel slip rate,
5. The calculation of the lateral and longitudinal forces of the wheel, and
6. The slip rate, which should not exceed 10%.

Based on these requirements, Figure 10 shows the requirement model and use case
model of the tires, including vertical load calculation, wheel side angle calculation, wheel
coordinate system speed calculation, wheel slip rate calculation, and wheel lateral and
longitudinal force calculation.

Information 2023, 14, x FOR PEER REVIEW 12 of 18 
 

 

4. The calculation of the wheel slip rate, 

5. The calculation of the lateral and longitudinal forces of the wheel, and 

6. The slip rate, which should not exceed 10%. 

Based on these requirements, Figure 10 shows the requirement model and use case 

model of the tires, including vertical load calculation, wheel side angle calculation, wheel 

coordinate system speed calculation, wheel slip rate calculation, and wheel lateral and 

longitudinal force calculation. 

Based on the analysis of these functions, the solid structure of the tire model can be 

divided into a vertical load calculation module, a wheel side angle calculation module, a 

wheel coordinate system speed calculation module, a wheel slip-rate calculation module, 

and a wheel lateral and longitudinal force calculation module. These modules are 

(assumed to be) atomic entities that do not need to be further divided and, together, form 

the sub-entity of ties in the architecture part in Figure 10. At this stage, the system 

architecture can be pruned for testing purposes. Since the model is very simple, the 

pruned model is the same as the original model and is not reported here. 

 

Figure 10. The SES-X model of the tires. 

4.3. Physical Model 

Then, we take a bottom-up approach to build a physical model in alignment with the 

logical model. Specifically, the physical model of the frame can be built through partial 

differential equations, as follows:  

�(�̇� − � ·  ��) = (���� + ����) ���( �) − (���� + ����) ���( �) + ���� + ���� (1)

( ) ( ) sin( ) ( ) co· s( )y x xfl xfr yfl yfr yrl yrrm V r V F F F F F F         (2)

1

2

( ) sin( ) ( ) cos( )

( ) cos( ) ( )sin( )
2

( ) ( )

·

2

z xfl xfr yfl yfr a

w
xfr xfl yfl yfr

w
xrr xrl yrl yrr b

I r F F F F l

t
F F F F

t
F F F F l

 

 

      

     

  



 (3)

Figure 10. The SES-X model of the tires.



Information 2023, 14, 23 11 of 15

Based on the analysis of these functions, the solid structure of the tire model can be
divided into a vertical load calculation module, a wheel side angle calculation module, a
wheel coordinate system speed calculation module, a wheel slip-rate calculation module,
and a wheel lateral and longitudinal force calculation module. These modules are (assumed
to be) atomic entities that do not need to be further divided and, together, form the sub-
entity of ties in the architecture part in Figure 10. At this stage, the system architecture can
be pruned for testing purposes. Since the model is very simple, the pruned model is the
same as the original model and is not reported here.

4.3. Physical Model

Then, we take a bottom-up approach to build a physical model in alignment with the
logical model. Specifically, the physical model of the frame can be built through partial
differential equations, as follows:

m
( .

Vx − r· Vy

)
=
(

Fx f l + Fx f r

)
cos(δ)−

(
Fy f l + Fy f r

)
sin(δ) + Fxrl + Fxrr (1)

m(
.

Vy + r·Vx) = (Fx f l + Fx f r) sin(δ) + (Fy f l + Fy f r) cos(δ) + Fyrl + Fyrr (2)

Iz·
.
r =

[
(Fx f l + Fx f r) sin(δ) + (Fy f l + Fy f r) cos(δ)

]
la+[

(Fx f r − Fx f l) cos(δ) + (Fy f l − Fy f r) sin(δ)
]

tw1
2 +

(Fxrr − Fxrl)
tw2
2 − (Fyrl + Fyrr)lb

(3)

where Equation (1) models the longitudinal force balance for the frame, Equation 2 models
the lateral force balance for the frame, and Equation 3 models the torque balance for the
frame around the Z-axis. In these equations, δ is the steering angle of the front wheel of
the car; m is the mass of the frame; Vx, Vy, and r are the longitudinal, lateral, and yaw
velocities, respectively; Fxi, Fyi, and Fzi are the longitudinal, lateral, and vertical force of
the tire, respectively, where fl is left front wheel, fr is right front wheel, rl is left rear wheel,
and rr is right rear wheel; la and lb are the distances from the leading and trailing axes to
the center of mass; tw1 is the front axle wheel pitch, and tw2 is the rear axle wheel pitch; Iz
is the moment of inertia of the vehicle with respect to the Z-axis. These equations can be
constructed with the X-language shown in Figure 11. The physical models of the tires can
be built in a similar fashion.

After this stage, one will be able to obtain an SES-X of the car, as shown in Figure 12.
Each leaf node of this SES-X corresponds to a model constructed using the X language, such
as the specialized node of the frame corresponding to the Frame model shown in Figure 11.

4.4. Model Pruning

After the SES of the car is built, it can be pruned for effective modeling. Since our
model includes only one level of composition, an entity has only one specialization. The
PES is simple, as illustrated in Figure 13.

4.5. Simulation

Then, XLab allows us to connect the frame model with the tire model based on the
system architecture model (as shown in Figure 14), which can be put forward for simulation.
In our particular example, Figure 15 reports the dynamic process of making a turning angle
of 0.1 radians. It can be seen that the slip rate does not exceed 0.01 in the simulation process,
which meets requirement 6 of the tire model. Therefore, the established car model design
would meet the system requirements and can allow us to move to the next stage of the
development process.
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5. Conclusions

This paper proposes an SES-X methodology that integrates system modeling (follow-
ing the SES philosophy) with system simulation (supported by the X language). SES-X
supports the entire process of modeling, including system analysis, architecture decompo-
sition, physical modeling, and simulation. In the process, SES-X was used to conduct two
levels of model pruning for the efficiency of modeling and simulation. This paper uses a
car model to demonstrate the effectiveness of SES-X.

Our proposed SES-X methodology has significant theoretical and practical implications.
Theoretically, it is a native modeling framework incorporating system modeling with system
simulation functionalities. To the best of our knowledge, it is the most comprehensive MBSE
modeling framework so far, and it can provide complete modeling and verification functions
for the entire process of the system model construction. Practically, SES-X could significantly
smooth the design and development process of complicated systems.

Our proposed SES-X methodology can be further improved in the future. For example,
the SES-X process is not yet fully coded into X language (at the syntax level). X language can
only support a limited number of functions and physical verification methods needed by
SES-X. In the future, we will continue to work on SES-X and provide a set of user-friendly
solutions that fully support MBSE modeling with more advanced simulation capabilities.
We also look forward to large-scale applications of this solution in practice.
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