Efficient SCAN and Chaotic Map Encryption System for Securing E-Healthcare Images
Abstract
:1. Introduction
- Medical image that protects patient privacy;
- The integrity of a medical image’s region of interest (tumor, injured area, or MRI impression);
- Secure image retrieval for diagnosis.
- To encrypt e-healthcare images, a practical model of image encryption is proposed;
- An efficient permutation–diffusion model based on various SCAN methods is adopted;
- The SCAN method entails converting the pixel value of a picture to a different pixel value and rearranging the pixels in the image in a specific order;
- The pixels in the block are repositioned using a chaotic map;
- The proposed system is able to effectively encrypt the pixels within a particular bounding box by identifying the pixel;
- Combining the advantages of SCAN maps and chaotic maps, a partial encryption system is proposed; the encryption system is sensitive to the initial values and easy to implement.
2. Related Works
3. Methods
3.1. SCAN Methodology
3.2. Chaotic Map
4. Proposed Image Encryption Scheme
5. Parameters for the Evaluation
5.1. Histogram Analysis Using Chi Square Test
5.2. Mean Squared Error
5.3. Number of Pixels Change Rate (NPCR)
5.4. Peak Signal to Noise Ratio (PSNR)
5.5. Unified Average Changed Intensity (UACI)
5.6. Structural Similarity Index Matrix (SSIM)
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wong, K.W.; Liao, X.; Chen, G. A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 2011, 11, 514–522. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Enayatifar, R.; Lee, M. A hybrid genetic algorithm and chaotic function model for image encryption. AEU—Int. J. Electron. Commun. 2012, 66, 806–816. [Google Scholar] [CrossRef]
- Kalpana, J.; Murali, P. An improved color image encryption based on multiple DNA sequence operations with DNA synthetic image and chaos. Optik 2015, 126, 5703–5709. [Google Scholar] [CrossRef]
- Afarin, R.; Mozaffari, S. Image encryption using genetic algorithm. In Proceedings of the 2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP), Zanjan, Iran, 10–12 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 441–445. [Google Scholar] [CrossRef]
- Ayoup, A.M.; Hussein, A.H.; Attia, M.A.A. Efficient selective image encryption. Multimed. Tools Appl. 2016, 75, 17171–17186. [Google Scholar] [CrossRef]
- Manjula, G.; Mohan, H.S. Probability based selective encryption scheme for fast encryption of medical images. In Proceedings of the ICAICR ‘19: Third International Conference on Advanced Informatics for Computing Research, Shimla, India, 15–16 June 2019; Article 17. Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Jang, W.; Lee, S.Y. Partial image encryption using format-preserving encryption in image processing systems for Internet of things environment. Int. J. Distrib. Sensor Netw. 2020, 16, 1–17. [Google Scholar] [CrossRef]
- Sankaradass, V.; Murali, P.; Tholkapiyan, M. Region of Interest (ROI) based image encryption with sine map and lorenz system. In Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering (ISMAC-CVB), Lecture Notes in Computational Vision and Biomechanics, Palladam, India, 16–17 May 2018; Pandian, D., Fernando, X., Baig, Z., Shi, F., Eds.; Springer: Cham, Switzerland, 2019; pp. 493–502. [Google Scholar] [CrossRef]
- Bahrami, S.; Naderi, M. Encryption of multimedia content in par- tial encryption scheme of DCT transform coefficients using a lightweight stream algorithm. Optik 2013, 124, 3693–3700. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X. Chaos-based partial encryption of SPIHT coded color images. Signal Process. 2013, 93, 2422–2431. [Google Scholar] [CrossRef]
- Lian, S.; Chen, X. On the design of partial encryption scheme for multimedia content. Math. Comput. Model. 2013, 57, 2613–2624. [Google Scholar] [CrossRef]
- Bhatnagar, G.; Jonathan Wu, Q.M. Selective image encryption based on pixels of interest and singular value decomposition. Dig. Signal Process. 2012, 22, 648–663. [Google Scholar] [CrossRef]
- Brahimi, Z.; Bessalah, H.; Tarabet, A.; Kholladi, M.K. Selective Encryption Techniques of JPEG2000 Codestream for Medical Images Transmission. In Proceedings of the 2008 5th International Multi-Conference on Systems, Signals and Devices, Amman, Jordan, 20–22 July 2008; Volume 7. [Google Scholar]
- Kulkarni, N.S.; Raman, B.; Gupta, I. Selective encryption of multimedia images. In Proceedings of the 32nd National Systems Conference, Virtual, 17–19 December 2008. [Google Scholar]
- Agrawal, P.; Rajpoot, M. A Fast and Secure Selective Encryption Scheme using Grid Division Method. Int. J. Comput. Appl. 2012, 51, 29–33. [Google Scholar] [CrossRef]
- Xiang, T.; Wong, K.-W.; Liao, X. Selective image encryption using a spatiotemporal chaotic system. Am. Inst. Phys. 2007, 17, 023115. [Google Scholar] [CrossRef] [PubMed]
- Droogenbroeck, M.V.; Benedett, R. Techniques for a selective encryption of uncompressed and compressed images. In Proceedings of the ACIVS 2002 (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium, 9–11 September 2002. [Google Scholar]
- Pfarrhofer, R.; Uhl, A. Selective Image Encryption Using JBIG. In Proceedings of the IFIP International Federation for Information Processing, Salzburg, Austria, 19–21 September 2005. [Google Scholar]
- Maniccam, S.S.; Bourbakis, N.G. Image and video encryption using SCAN patterns. Pattern Recognit. 2004, 37, 725–737. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Qiao, Y.; Zhang, H. Case Report—CT imaging of the COVID-19. J. Formos. Med. Assoc. 2020, 119, 990–992. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Anand, A.K.; Singh, A.; Dwivedi, R.; Kumar, B. Selective encryption and optimization based watermarking for robust transmission of landslide images. Comput. Electr. Eng. 2021, 95, 107385. [Google Scholar] [CrossRef]
- Khan, J.S.; Boulila, W.; Ahmad, J.; Rubaiee, S.; Rehman, A.U.; Alroobaea, R.; Buchanan, W.J. DNA and plaintext dependent chaotic visual selective image encryption. IEEE Access 2020, 8, 159732–159744. [Google Scholar] [CrossRef]
- Chen, C.S.; Chen, R.J. Image encryption and decryption using SCAN methodology. In Proceedings of the 2006 Seventh International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’06), Taipei, Taiwan, 4–7 December 2006. [Google Scholar]
- Shima Ramesh, M.; Thanikaiselvan, V. An efficient image encryption using deep neural network and chaotic map. Microprocess. Microsyst. 2020, 77, 103134. [Google Scholar]
- Lang, L.; Liu, B.; Zhou, Y.; Zou, Y. SFN: A new lightweight block cipher. Microprocess. Microsyst. 2018, 60, 138–150. [Google Scholar]
- Naseer, Y.; Shah, D.; Shah, T. A novel approach to improve multimedia security utilizing 3D mixed chaotic map. Microprocess. Microsyst. 2019, 65, 1–6. [Google Scholar] [CrossRef]
- Wu, T.; Yang, Z. Animal tumor medical image analysis based on image processing techniques and embedded system. Microprocess. Microsyst. 2021, 81, 103671. [Google Scholar] [CrossRef]
- Zermi, N.; Khaldi, A.; Kafi, M.R.; Kahlessenane, F.; Euschi, S. Robust SVD-based schemes for medical image watermarking. Microprocess. Microsyst. 2021, 84, 104134. [Google Scholar] [CrossRef]
- Moad, M.S.; Kafi, M.R.; Khaldi, A. A wavelet based medical image watermarking scheme for secure transmission in telemedicine applications. Microprocess. Microsyst. 2022, 90, 104490. [Google Scholar] [CrossRef]
- Kiran, P.; Parameshachari, B.D. Resource Optimized Selective Image Encryption of Medical Images Using Multiple Chaotic Systems. Microprocess. Microsyst. 2022, 91, 104546. [Google Scholar] [CrossRef]
- Man, Z.; Li, J.; Di, X.; Liu, X.; Zhou, J.; Wang, J.; Zhang, X. A novel image encryption algorithm based on least squares generative adversarial network random number generator. Multimed. Tools Appl. 2021, 80, 27445–27469. [Google Scholar] [CrossRef]
- Noura, M.; Noura, H.; Chehab, A.; Mansour, M.M.; Sleem, L.; Couturier, R. A dynamic approach for a lightweight and secure cipher for medical images. Multimed. Tools Appl. 2018, 77, 31397–31426. [Google Scholar] [CrossRef] [Green Version]
- Muthu, J.S.; Murali, P. A novel DICOM image encryption with JSMP map. Optik 2022, 251, 168416. [Google Scholar] [CrossRef]
- Shafique, A.; Ahmed, J.; Rehman, M.U.R.; Hazzazi, M.M. Noise-resistant image encryption scheme for medical images in the chaos and wavelet domain. IEEE Access 2021, 9, 59108–59130. [Google Scholar] [CrossRef]
- Manikandan, V.; Amirtharajan, R. On dual encryption with RC6 and combined logistic tent map for grayscale and DICOM. Multimed. Tools Appl. 2021, 80, 23511–23540. [Google Scholar] [CrossRef]
- Sahu, A.K.; Hassaballah, M.; Rao, R.S.; Suresh, G. Logistic-map based fragile image watermarking scheme for tamper detection and localization. Multimed. Tools Appl. 2022. [Google Scholar] [CrossRef]
- Javed, A.R.; Shahzad, F.; ur Rehman, S.U.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [Google Scholar] [CrossRef]
- Dhasarathan, C.; Hasan, M.K.; Islam, S.; Abdullah, S.; Mokhtar, U.A.; Javed, A.R.; Goundar, S. COVID-19 health data analysis and personal data preserving: A homomorphic privacy enforcement approach. Comput. Commun. 2022, 199, 87–97. [Google Scholar] [CrossRef]
- Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. 2011, 31–38. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600. [Google Scholar] [CrossRef] [PubMed]
Sl. No. | Block Size |
---|---|
1 | 4 × 4 |
2 | 8 × 8 |
3 | 16 × 16 |
. | |
. | |
. | |
N | (m/2) × (n/2) |
PIE | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
C SCAN | 100.23 | 120.45 | 133.12 | 165.23 | 201.3036 | 221.1126 | 241.0036 |
D SCAN | 100.56 | 120.67 | 133.45 | 165.94 | 204.5374 | 224.3585 | 254.4695 |
O SCAN | 100.98 | 120.33 | 133.78 | 165.39 | 206.4651 | 226.4867 | 226.3957 |
Z SCAN | 100.67 | 120.54 | 133.61 | 165.57 | 204.5751 | 224.3757 | 264.2757 |
S SCAN | 100.12 | 120.52 | 133.24 | 165.89 | 207.4651 | 227.4567 | 247.3767 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
PEI | |||||||
C SCAN | |||||||
D SCAN | |||||||
O SCAN | |||||||
Z SCAN | |||||||
S SCAN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiran; Gururaj, H.L.; Almeshari, M.; Alzamil, Y.; Ravi, V.; Sudeesh, K.V. Efficient SCAN and Chaotic Map Encryption System for Securing E-Healthcare Images. Information 2023, 14, 47. https://doi.org/10.3390/info14010047
Kiran, Gururaj HL, Almeshari M, Alzamil Y, Ravi V, Sudeesh KV. Efficient SCAN and Chaotic Map Encryption System for Securing E-Healthcare Images. Information. 2023; 14(1):47. https://doi.org/10.3390/info14010047
Chicago/Turabian StyleKiran, H. L. Gururaj, Meshari Almeshari, Yasser Alzamil, Vinayakumar Ravi, and K. V. Sudeesh. 2023. "Efficient SCAN and Chaotic Map Encryption System for Securing E-Healthcare Images" Information 14, no. 1: 47. https://doi.org/10.3390/info14010047
APA StyleKiran, Gururaj, H. L., Almeshari, M., Alzamil, Y., Ravi, V., & Sudeesh, K. V. (2023). Efficient SCAN and Chaotic Map Encryption System for Securing E-Healthcare Images. Information, 14(1), 47. https://doi.org/10.3390/info14010047