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Abstract: The electrical demand and generation in power systems is currently the biggest source of
uncertainty for an electricity provider. For a dependable and financially advantageous electricity
system, demand response (DR) success as a result of household appliance energy management has
attracted significant attention. Due to fluctuating electricity rates and usage trends, determining the
best schedule for apartment appliances can be difficult. As a result of this context, the Improved
Cockroach Swarm Optimization Algorithm (ICSOA) is combined with the Innovative Apartments
Appliance Scheduling (IAAS) framework. Using the proposed technique, the cost of electricity re‑
duction, user comfortmaximization, and peak‑to‑average ratio reduction are analyzed for apartment
appliances. The proposed framework is evaluated by comparing it with BFOA andW/O scheduling
cases. In comparison to theW/O scheduling case, the BFOAmethod lowered energy costs by 17.75%,
but the ICSA approach reduced energy cost by 46.085%. According to the results, the created ICSA
algorithm performed better than the BFOA and W/O scheduling situations in terms of the stated
objectives and was advantageous to both utilities and consumers.

Keywords: multiple apartments loads; cockroach swarm algorithm; Bacterial Foraging Optimization
Algorithm; energy storage systems; solar energy

1. Introduction
Energy usage rises along with population growth. Traditional power grids are cur‑

rently unable to meet the demand for electricity. SGs, or smart grids, are created to satisfy
these requirements. Smart grids (SGs) include energy‑efficient sources, intelligent con‑
trollers, smart meters (SM), renewable energy resources (RER), and intelligent gadgets.
Through SMs in SGs, utilities and users are exchanging data. The data can be used to op‑
timize the energy efficiency of smart apartments. Some demand‑side management (DSM)
techniques have been identified through research. These techniques optimize power usage
patterns by shifting loads, filling valleys, clipping peaks, and other techniques. Such tech‑
niques can be used to balance supply and demand. Such strategies encourage consumers
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to switch their load from peak to off‑peak times in this way. Demand response (DR) and
load management (LM) are the two main responsibilities of DSM [1].

Consequently, there is an urgent need for a new generation of multi‑energy demand
response framework for a highly renewable building microgrid. Table 1 involves the con‑
tributions and shortcomings of the most recent research applied to energy‑management‑
system‑based optimization algorithms.

Table 1. Contributions vs. shortcomings of the most recent research concerning energy‑
management‑system‑based optimization algorithms.

References Groups Reference Contributions Shortcomings

Price‑Based Demand
Response Programs

[2]

Utilizing a combination of bacterial foraging
and genetic algorithm optimization
techniques, the authors established demand
side management.

Numerous appliances were taken
into account in an extensive system,
which made the system difficult.

[3]
The authors proposed a dynamic coordination
of household appliances utilizing
multi‑objective energy optimization.

Inelastic load is considered.

[4]
The authors introduced a coalition‑based
game‑theoretic energy management system
for a building as a service over fog.

End‑users’ comfort was
not considered.

[5]
The authors used game theory to coalitional
demand response management in community
energy management systems.

The best, most cost‑effective way to
operate an energy management
system based on ICSA was not
looked into.

[6]
The authors developed an optimal operation
and stochastic scheduling of renewable
energy for a microgrid.

Not compared with other techniques.

[7]

An improved adaptive
diffusion‑kernel‑density‑estimation‑based
day‑ahead interval scheduling approach for
power systems was presented by the authors.

More computational time with the
complex system.

[8]
The authors presented real‑time multi‑energy
demand response for highly
renewable buildings.

Depended on random number for
fewer generations.

[9]
The authors presented metaheuristic
optimization techniques for microgrid energy
management.

Comfort concerns were not
addressed, and peak‑to‑average ratio
was ignored.

[10]
Based on a multi‑objective approach, the
authors proposed energy management in
microgrids, including smart homes.

Increased complexity.

Incentive‑Based
Demand Response

Programs

[11]

The authors developed Benders
decomposition‑based stochastic planning and
operation of energy hubs taking demand
response programs into account

Increased operational cost.

[12]
The authors introduced a two‑stage demand
response technique based on deviation
compensation for numerous scenarios.

Execution time was high.

[13]
The authors introduced scaling the economic
impact of grid membership in a microgrid
system using a unique metaheuristic method.

Proper implementation was
not explored.

[14]
The authors created a special metaheuristic
method to scale the financial effects of grid
involvement in a microgrid system.

Average waiting time (AWT) was
not considered.
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Table 1. Cont.

References Groups Reference Contributions Shortcomings

Incentive‑Based
Demand Response

Programs

[15]
The authors provided a real‑time
management of distributed multi‑energy
resources in multi‑energy networks.

Complexity of the system was high.

[16]

Energy consumption optimization and user
comfort maximization in smart buildings
using a hybrid of the firefly and genetic
algorithms was discussed by the authors.

UC was not considered.

[17]
The authors presented
Fire‑Fly‑algorithm‑based energy cost
minimization using renewable energy sources.

End‑users’ comfort was ignored.

[18]
A novel machine‑learning‑based price
forecasting for energy management systems
was introduced by the authors.

Neglected integration of RESs.

[19]

An optimal energy management system for
university campus using the hybrid Fire‑Fly
Lion Algorithm (FLA) was introduced by
the authors.

UC was compromised and only
passive appliances were considered.

[20]

An optimal scheduling strategy for
multi‑energy microgrids considering
integrated demand response was introduced
by the authors.

Network loss and ESS capacity
was decreased.

Price‑Based Demand
Response Programs

[21]

A coordinated control of hybrid ac/dc
microgrids with PV wind battery under
variable generation and load situations was
introduced by the authors.

Implementation cost was not
considered.

[22]
The authors proposed a home energy
management system based on
reinforcement learning.

UC was compromised and only
passive appliances were considered.

[23]
The authors proposed peer‑to‑peer trading
with demand response using smart
bidding strategy

More computational time.

[24]
The authors introduced the concept,
architecture, and scheduling strategies for
home energy management systems.

UC was compromised and only
passive appliances were considered.

[25]

The authors presented a
coalition‑game‑theory‑based consensus
algorithm for demand management in
smart microgrids.

Peak‑to‑average ratio was ignored.

[26]
The authors presented an optimal energy
management system (EMS) for residential and
industrial microgrids.

To reduce cost, UC was
compromised.

[27]
Critical peak‑pricing‑based opportunistic
home energy management for demand
response was presented by the authors.

To reduce cost, UC was
compromised.

[28]

The authors introduced Optimal Energy
Management Scheme of Battery
Supercapacitor‑Based Bidirectional Converter
for DC Microgrid Applications.

UC was compromised and only
passive appliances were considered.
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Table 1. Cont.

References Groups Reference Contributions Shortcomings

Price‑Based Demand
Response Programs

[29] Energy Management System in Industrial
Microgrids was presented by the authors. Needed more accuracy.

[30]

The authors suggested employing heuristic
optimization techniques to schedule the
Home Energy Management Controller
(HEMC) effectively.

Ignored UC.

Incentive‑Based
Demand Response

Programs

[31]

An optimization of demand‑response‑based
intelligent home energy management system
with binary backtracking search algorithm
was presented by the authors.

More computational time.

[32]
The authors introduced an energy storage
management of a solar photovoltaic–biomass
hybrid power system.

Peak‑to‑average ratio was
not considered.

[33]

The authors proposed a novel strategy for
enhanced energy management systems,
which includes an AC/DC hybrid microgrid
system for industries.

PAR was ignored and system
complexity increased.

[34] The authors developed a novel method for PV
system‑based SCADA to accomplish MPPT.

The best, most cost‑effective way to
operate an energy management
system based on ICSA was not
looked into.

[35]

The authors proposed an efficient
optimization‑algorithm‑based demand side
management program for smart grid
residential load.

More computational time.

[36]
The authors presented an optimal scheduling
of residential home appliances using a hybrid
grey wolf genetic algorithm optimizer.

The best, most cost‑effective way to
operate an energy management
system based on ICSA was not
looked into.

[37]

The authors introduced energy consumption
optimization and user comfort management
in residential buildings using a bat algorithm
and fuzzy logic.

More computational time.

[38]

The authors presented a smart energy
management system for minimizing
electricity costs and peak‑to‑average ratio in
residential areas with hybrid genetic flower
pollination algorithm.

The best, most cost‑effective way to
operate an energy management
system based on ICSA was not
looked into.

[39]
The authors suggested a control strategy for
inverters used in environmentally
friendly applications.

Nevertheless, the best, most
cost‑effective way to operate an
energy management system based
on ICSA was not looked into.

[40]

A demand response program (DRP) for
renewable‑based microgrids (MGs) has been
put up in [40] that considers the high
penetration of solar and tidal energy as
significant, pervasive renewable resources in
the power networks.

User comfort was compromised.

Price‑Based Demand
Response Programs [41]

The authors suggested a residential energy
management system while taking into
account reliable demand response tactics
and uncertainties.

Delay, user comfort, and PAR
were ignored.
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Table 1. Cont.

References Groups Reference Contributions Shortcomings

Price‑Based Demand
Response Programs

[42]

For microgrids with renewable energy
sources, the authors presented an
Internet‑of‑Energy‑based optimal multi‑agent
control system.

System complexity increased.

[43]

The authors introduced a demand side
management strategy for multi‑objective
day‑ahead scheduling considering wind
energy in smart grids.

The best, most cost‑effective way to
operate an energy management
system based on ICSA was not
looked into.

[44]
The authors introduced renewable energy
effects on energy management based on
demand response in microgrid environments.

Cost increased with increased
comfort.

[45]
The authors put forth a
deep‑reinforcement‑learning‑based energy
management system for microgrids.

Daily PAR increased.

[46]
The authors presented a particle swarm
optimization model predictive control for
microgrid energy management.

User comfort and privacy issues.

[47]

The authors presented a centralized
neighborhood energy management with
coordinated smart home energy sharing
model for neighborhood smart homes, which
are integrated within house renewable energy
resources and energy storage systems.

System complexity increased.

[48]

An energy management of microgrids with a
smart charging strategy for electric vehicles
using an improved RUNge Kutta Optimizer
(RUN) was introduced by the authors.

AWT for UC was not taken into
account.

[49]

The authors proposed four new, more useful
research models in four situations to evaluate
peak demand. The recommended system is
based on the assumption that there are a finite
number of devices in the study area, and it
expresses arrivals or power needs through a
quasi‑random process.

System complexity increased.

[50]

The authors suggested a distributed method
that focuses on organizing the demand
management problem of planning the
problem of smart devices for sparing load
change. Customers’ discomfort was decreased
through the load shifting approach of sparsity.

Real‑time forecasting was not
considered.

Incentive‑Based
Demand Response

Programs

[51]
The IoT‑based bald eagle search optimization
algorithm was used by the authors to suggest
solutions for day‑ahead scheduling issues.

Daily PAR increased.

[52]

The authors proposed to develop the
residential microgrid (RMG) cloud‑based
Multi Agent Framework (MAF) for smart grid
culture. The presented MAS is composed of
intelligent home agents and a microgrid
designed to alleviate peak load and reduce
energy costs of intelligent households.

RES not integrated.
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Table 1. Cont.

References Groups Reference Contributions Shortcomings

Incentive‑Based
Demand Response

Programs

[53]

The authors introduced a coordinated
optimization scheduling operation of
integrated energy system considering demand
response and carbon trading mechanism.

System complexity increased.

[54]

The author implemented an islanded
microgrid framework P2P construction. The
multi‑layered and multi‑agent procedures and
designs that achieve this P2P construction are
several goals. The agent with communication
and computation capabilities can
simultaneously run these multi‑layer
control‑related processes.

Requirements of the customers for
reliable power grids were not
considered.

[55]

The authors looked at effective DSM methods
for reducing the peak‑to‑average energy
consumption ratio from the grid. To find the
most effective load control strategy to level the
load curve, they examine the trend of energy
use, power costs, weather, and other factors. It
offers a genetic method for controlling energy.

Computational time was not
practical.

[56]

The authors introduced a SCADA‑controlled
smart home utilizing a Raspberry Pi3, but
they did not look into the most advantageous
way to operate an energy management system
based on ICSA.

The user did not have ways of
handling the constraints.

[57]

Utilizing both cloud servers and fog nodes,
the authors created a hybrid cloud and fog
system. Using the free and open source
Constricted Application Protocol (CoAP) and
the cloud service ThingSpeak, they put their
framework into use on a Wi‑Fi IoT board.

Daily PAR increased.

[58]

The authors introduced EMS of
on‑grid/off‑grid utilizing ANFI scheme;
however, they did not take into account data
processing and storage using the Thing‑Speak
platform.

Cost minimization was not
considered.

[59]

The architecture framing, design, and
implementation of an IoT and an electronic
Cloud computer were provided by the
authors. This computer gives a consumer
recharge profile for remote access by utilities
and users. Companies may manage and
provide incentives and persuade customers to
change their energy usage thanks to consumer
load profiles.

Cannot be applied to different
building types involving a higher
number of appliances.

[60]

Demand response was used to create and
implement a multi‑agent network control
system for delivery networks. In order to
promote transactions between DSOs
(distribution network operators) and
distribution network operators, this project
aims to provide dynamic boards as a helpful
and effective tool.

Daily PAR increased.
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Table 1. Cont.

References Groups Reference Contributions Shortcomings

Price‑Based Demand
Response Programs

[61] The authors introduced hierarchical EMS
based on optimization.

Expensive for small‑scale
residential users.

[62]

The flexibility possibilities of commercial and
residential contexts were combined by the
authors through the creation of a brand‑new
agent‑based framework. This concept calls for
a central demand response provider (DRP) to
coordinate the demand aggregators’ response
plans for the commercial and residential
sectors (IDRA, RDRA).

System complexity increased.

[63]

A multi‑objective issue was provided by the
authors, and its resolution was based on an
evolutionary algorithm and a task
management technique. One of the many
goals in the issue is a real‑time pricing (RTP)
response to demand. The reduction of
customer annoyance and daily energy costs
were two goals that were taken into account.

Only RTP was used.

[64]

The authors established dynamic coordination
between appliances and dwellings to
maximize energy efficiency in smart
buildings.

The authors did not use the
Improved Cockroach Swarm
Algorithm Approach to minimize the
cost.

[65]

The authors proposed hierarchical model
predictive control for islanded and
grid‑connected microgrids with wind
generation and hydrogen energy
storage systems.

The authors did not use the
Improved Cockroach Swarm
Algorithm Approach to minimize the
cost.

[66]

The authors have launched a smart homes
Energy Management Framework (EMS). This
device communicates with a specific IP
address IoT module leading to a large
network of wireless appliances on every home
computer.

Daily PAR increased.

[67]
The authors introduced a new IoT‑enabled
trust‑distributed EMS; however, optimization
based on ICSA was not investigated.

More computational time.

[68]

A Binary Backtracking Search Algorithm
(BBSA) was recommended as a real‑time,
optimal time schedule controller for HEMS to
manage energy consumption. BBSA provides
optimal schedules for domestic equipment to
reduce overall demand and schedule
household appliances operating at specific
times of the day.

Neglected theUC.

[69]

The authors proposed an optimal
load‑shedding scheme using a grasshopper
optimization algorithm for islanded power
systems with distributed energy resources.

Depended on random number for
fewer generations.

[70]

The authors suggested a strategy based on
Q‑Learning algorithms called “home energy
management as a service.” However,
optimization based on ICSA was
not examined.

More computational time.
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Table 1. Cont.

References Groups Reference Contributions Shortcomings

Incentive‑Based
Demand Response

Programs

[71]

The authors presented a ground‑breaking
real‑time electricity scheduling for a home
energy management system using the Internet
of Energy.

Ignored the electricity cost and PAR.

[72]

The authors introduced a brand‑new power
management system as a fog computing
network service. The fog computing
platform’s implementation satisfied
requirements for flexibility, interoperability,
accessibility, data protection, and real‑time
energy management.

System complexity increased.

[73]

The authors introduced a paradigm for
self‑learning home administration. The IoT
concepts were implemented on a multi‑agent
system platform for agent communication and
interaction.

Numerous appliances were taken
into account in an extensive system,
which made the system difficult.

[74]

An efficient energy management in smart grid
considering demand response program and
renewable energy sources was introduced by
the authors.

They did not address the UC.

[75]

A sophisticated energy management
technique for microgrids with a real‑time
monitoring interface was introduced by
the authors.

More computational time.

[76]

The authors introduced consensual
negotiation‑based decision making for
connected appliances in smart home
management systems.

UC was compromised.

[77]
The authors introduced a new communication
platform for smart EMS using mixed‑integer
linear programming.

An energy management system
based on ICSA was not looked into.

[78]

The authors introduced demand response
program for efficient demand‑side
management in smart grid considering
renewable energy sources.

The authors did not use the
Improved Cockroach Swarm
Algorithm Approach to minimize the
cost.

[79]

The authors introduced the real‑time
opportunistic energy‑efficient scheduling of
home appliances for demand side
management using evolutionary techniques.

The best, most cost‑effective way to
operate an energy management
system based on ICSA was not
looked into.

[80]
The authors presented an enhancing demand
side management using evolutionary
techniques in smart grid.

The authors did not use the
Improved Cockroach Swarm
Algorithm Approach to minimize the
cost.

[81]

The authors presented an idea on optimizing
energy consumption with combined
operations of microgrids for demand side
management in smart homes.

The best, most cost‑effective way to
operate an energy management
system based on ICSA was not
looked into.

[82]
The authors introduced a novel economic
dispatch in the stand‑alone system using an
improved butterfly optimization algorithm.

An energy management system
based on ICSA was not looked into.
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Table 1. Cont.

References Groups Reference Contributions Shortcomings

Most
significant

contributions
of our work

1. Outlining a methodology for
optimization for the MG’s hourly
day‑ahead scheduling.

2. Using real data to evaluate the
optimization framework’s performance
in estimating the output power of PV
and wind turbines.

3. Introducing an optimization technique
using the Improved Cockroach Swarm
Algorithm to reduce the cost of
supplying the load.

4. The goal of this work was to reduce
energy consumption expenses, raise the
Peak‑Average Ratio (PAR), and improve
user comfort.

Investigating a secure cloud‑based
platform for a multi‑agent hybrid
AC/DC MG is considered our
future work.

Energy management system programs are further classified into two types, i.e.,
incentive‑based (IB) and price‑based (PB) DR programs. Price‑based demand response
programs are classified into three types, i.e., time of use (TOU), real‑time pricing (RTP),
and critical peak pricing (CPP), and incentive‑based demand response programs are clas‑
sified into three types, i.e., direct‑load programs, demand bidding, and interruptible pro‑
grams. The first column in Table 1 represents the classification reference groups of energy
management system programs.

2. Proposed System
The Figure 1 shows typical smart apartments with an energy management system.

The system model used in the research is also depicted in this graphic, along with the pa‑
per’s flow. The suggested system model includes RESs, such as solar and wind energy,
as well as power companies that draw electricity from the main grid. Electricity from the
power grid is directly communicated to the smart meter, as opposed to renewable energy,
which is first transported to the planned Energy Management Controller (EMC) and then
stored in the storage system installed in the smart dwellings. The suggested EMC system,
which is connected to all the schedulable appliances in a typical smart apartment, best
scheduled their operation to switch them over to renewable energy and the power grid to
lower costs while preserving user comfort levels. Conversely, non‑schedulable appliances
that are fixed to run or based on their demands also directly communicate with the pro‑
posed EMC system to switch their operation to the RES system or power grid in order to
reduce the cost and PAR values. This is completed while preserving user comfort levels.
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Figure 1. Proposed microgrid system structure of multiple apartments.

3. Problem Formulation
Different power ratings of appliances are taken into account during the scheduling

process, which can be divided into two categories: schedulable (SA) and non‑schedulable
(NSA) appliances. The power rating of each device utilized in scheduling is listed in Table 1.
Equations (1) and (2) illustrate how the running time of the appliance is divided into equal
time slots (1 h for each slot) throughout the day (K):

K = k1, k2, k3, . . . , kn (1)

where n is the number of time intervals per day = (1, 2, 3, . . . , N) and K is the total
number of time intervals in a day (24 h), as follows.

n =
24 h of the day
no. of intervals

=
24 h of the interval

24 intervals
(2)

According to Equation (3), the group of appliances that are taken into account for
scheduling is designated as G and includes both schedulable and non‑schedulable equip‑
ment [83]:

G = g1, g2, g3, . . . , gn (3)

where g1, g2, g3, . . . , gn specifies the individual appliance.

3.1. Photovoltaic System
The photovoltaic system’s output power,𝒲𝒫𝒱(kW), is depicted in amicrogrid as [84]:

𝒲𝒫𝒱(𝓉) = ξ𝒫𝒱×𝒜𝒫𝒱 × ℐ𝓇(𝓉)
[
1 − 𝒯ℯ𝓂𝓅𝒻(𝒯ℯ𝓂𝓅𝒶(𝓉)− 𝒯ℯ𝓂𝓅𝒶𝓂𝒷)

]
(4)

𝒲𝓂𝒾𝓃 ≤𝒲𝒫𝒱 ≤𝒲𝓂𝒶𝓍 (5)

where𝒯ℯ𝓂𝓅𝒻 is the temperature,𝒯ℯ𝓂𝓅𝒶 is the outdoor room temperature (◦C),𝒯ℯ𝓂𝓅𝒶𝓂𝒷
is the ambient room temperature (◦C),𝒜𝒫𝒱 is the photovoltaic area (m2), ℐ𝓇(𝓉) is the pho‑
tovoltaic irradiance (kWm2 ) at a certain time t, and ξ𝒫𝒱 is the photovoltaic efficiency (%).
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The Weibull Probability Density Feature (WPDF) is used to model a solar output
power hourly distribution and assess its potential. The WPDF is listed as:

𝒻(𝒲𝒫𝒱(𝓉)) =
𝓀
𝒸 ×(

ℐr𝓇(𝓉)
c

)
k−1

× e−( Ir(t)
c )

k

(6)

k =

(
η

𝒜

)−1.086
, and c =

𝒜
Γ
(

1 + 1
k

) (7)

where Γ is gamma function, η is data standard deviation, 𝒜 is data athematic mean, and
are all present. The Levelized Photovoltaic Cost of Energy (𝒮s) ( $

kWh ) and Photovoltaic
Operating Cost (𝒮𝒫𝒱) are shown as [84]:

𝒮s =
𝒮sinv + ∑n

i=1 𝒮som(1 + ℰr)
−𝒾

∑𝓃
𝒾=1𝒩𝒫𝒱𝒜𝒩(1 − η𝓈)

𝒾−1 (8)

𝒮𝒫𝒱 =
𝒯
∑
𝓉=1

𝒮s ×𝒲𝒫𝒱(𝓉)𝒻(𝒲𝒫𝒱(𝓉)) (9)

where𝒩𝒫𝒱𝒜𝒩 is the photovoltaic energy output (kWh), 𝒮som is the photovoltaic operating
and maintenance cost, 𝒮sinv is the photovoltaic investment cost ($), η𝓈 is the photovoltaic
degradation factor, and n is the lifetime of the photovoltaic system.

3.2. Utility Grid
The demand is met privately from RESs and ESSs connected to the utility during the

SMG’s peak demand period. On the other hand, at off‑peak times and when SMG gener‑
ation is in excess, the energy is delivered to the utility at the utility rate. The utility and
SMGownermust enter into a contract before the utility can purchase the extra energy from
the SMG. This will lower the energy cost of the generation units and reduce the CO2 emis‑
sions cost. Moreover, the contract allows the utility to sell its energy to SMG to cover the
demand and improve reliability. Based on the price signal, the utility energy cost 𝒮ℊ($) is
given as [84].

𝒮ℊ =
𝒯
∑
𝓉=1

[𝒲ℊ𝒸(𝓉)−𝒲ℊ𝓈(𝓉)]ϱ(𝓉) (10)

𝒲ℊ𝒸(𝓉) is the microgrid power purchased from the utility at a specific time, where
𝒲ℊ𝓈(𝓉) is the surplus microgrid generation power sold to the utility (kW), and (t) is ToU
utility price ( $

kWh ). The predicted generator’s expected utility emission cost,𝒩ℊ($), is de‑
scribed as:

𝒩ℊ =
𝒯
∑
𝓉=1

[
σ(𝒲ℊ𝒸(𝓉))2 + ς𝒲ℊ𝒸(t) + τ

]
(11)

where τ is the emission coefficients of the utility generators.

3.3. Batteries
In this study, the BESS is employed to cover the hours of greatest demand shaving

and to lessen the variations brought on by RESs. Li‑ion batteries are employed because
of their high energy density. The utility pricing signal is used to determine whether to
charge or discharge the BESS. The BESS will discharge during the ToU if the energy price
is higher than a predetermined amount, and vice versa. The SMG’s efficient operation,
the PAR, and the utility’s peak load will all be improved through BESS. Additionally, any
time the storage level is lower than the upper charge level, the BESS is employed to store
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the excess generated electricity from the PV and wind systems. Consequently, the stored
energy in the BESS can be stated as follows [85]:

𝒩𝓈(𝓉) =𝒩𝓈(𝓉− 1) +ℋ𝓈ξ𝒞𝒲𝒸𝒽(𝓉)−
ℋ𝓈𝒲𝒹𝒸𝒽(𝓉)

ξ𝒟
(12)

where 𝒩𝓈(𝓉) is the amount of energy stored in the battery (kWh),𝒲𝒹𝒸𝒽(𝓉 ) and𝒲𝒸𝒽(𝓉)
are the battery’s charging and discharging powers at that time (kW), ξ𝒟 and ξ𝒞, are the bat‑
tery’s discharging and charging efficiencies (%), and Ts is the length of the time slot (hour).

0 ≤𝒲𝒸𝒽(𝓉) ≤𝒲𝓂𝒶𝓍
𝒸𝒽 (13)

0 ≤𝒲d𝒸𝒽(𝓉) ≤𝒲𝓂𝒶𝓍
d𝒸𝒽 (14)

𝒩𝓂𝒾𝓃
𝓈 ≤𝒩𝓈(𝓉) ≤𝒩𝓂𝒶𝓍

𝓈 (15)

𝒲𝓂𝒶𝓍
d𝒸𝒽 and𝒲𝓂𝒶𝓍

𝒸𝒽 are the maximum battery discharging and charging power, respec‑
tively, where𝒩𝓂𝒶𝓍

𝓈 and𝒩𝓂𝒾𝓃
𝓈 are the maximum and minimum stored energy in the bat‑

teries, respectively, in (kWh). The battery’s levelized operational and degradation cost is
shown as:

𝒮ℬ =

[
𝒮𝒷𝒾𝓃𝓋 + ∑𝓃

𝒾=1 𝒮𝒷ℴ𝓂(1 + ℰ𝓇)−𝒾
]
(1 + ℰ𝓇)−𝓃 − 𝒱𝓈

(1 + ℰ𝓇)−𝓃𝒵𝒯𝒻𝒵𝒯𝒸𝒵𝒟𝒸ℬℛ𝒸𝒩ℛ𝒷
(16)

where 𝒵𝒯𝒸 is the fading coefficient of normalized capacity,𝒩ℛ𝒷 is the BESS‑rated capacity,
𝒵𝒯𝒻 is the normalized temperature‑dependent power fading coefficient, ℬℛ𝒸 is the battery‑
rated cycle life, and 𝒵𝒟𝒸 is depth of discharge (DoD). 𝒮𝒷ℴ𝓂 is the BESS investment cost in
dollars. 𝒱𝓈 is the battery salvage value.

𝒮𝒷ℴ𝓅 =
𝒯
∑
𝓉=1

𝒮𝒷
(

ξ𝒸𝒲𝒸𝒽(𝓉) +
𝒲𝒹𝒸𝒽(𝓉)

ξ𝒟

)
(17)

3.4. Smart Device Classification
Future users of smart household appliances such washing machines, boilers, dish‑

washers, refrigerators, TVs, heating and refreshment systems, and lighting devices are car‑
rying out the activities to assure usability for consumers. Below are the main categories of
appliances: appliances that can be scheduled for shifts are managed via EMS (𝒯 = 24).

These gadgets are made to lower the energy charge transferred from one slot to an‑
other. Devices with the ability to shift have a certain energy load profile where config‑
urable delays happen across guaranteed consumption periods. Vacuum cleaners, washing
machines, dryers, and dishwashers are a few examples of shiftable devices. Consider the
controllable interface set to be 𝒟𝓂,𝓃 and 𝒹𝓂 = 1, . . . ,𝒟𝓂,𝓃 for 𝓃 ∈𝒩 for each user [86].

ℒ𝓂,𝓃 = ∑
𝒹𝓂∈𝒟𝓂

ℒ𝒟𝓂,𝓃 (18)

Manageable appliance sets are represented by 𝒟𝓂,𝓃 and manageable appliance loads
by ℒ𝓂,𝓃.

The amount of energy used by non‑shiftable appliances remains constant during the
working time t ∈ 𝒯. Devices that cannot be moved cannot be scheduled during off‑peak
hours to save money. Electric appliances including lamps, refrigerators, fans, and TVs
have energy consumption profiles. Let a collection of user n ∈ N non‑shiftable gadgets be
represented as:

ℒ𝓃𝓂,𝓃 = ∑
𝒹𝓃𝓂∈𝒟𝓃𝓂

ℒ𝒟𝓃𝓂,𝓃 (19)
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In the community microgrid (photovoltaic), renewable energy sources are used to
provide electricity that is owned by the community. The optimization model aims to plan
the scarce energy resource for the operation of the devices based on their preferred time
of operation and electricity cost. The ToU electricity tariff allows for the 24 h operation of
electrical equipment. ℒ𝓃,𝓉 represents the total amount of power used by customers during
the time slot of 𝓃 ∈𝒩 in 𝓉 ∈ 𝒯.

ℒ𝓃𝒹 = ℒ𝓂,𝓃 + ℒ𝓃𝓂,𝓃 (20)

ℒ𝓃,𝓉
𝒹 =

𝒯
∑
𝓉=1

ℒ𝓃,𝓉
𝒹 (21)

ℒ𝒯 is the overall power profile of the community of𝒩 users. Users’𝓃 ∈𝒩 at 𝓉 ∈ 𝒯 power
profiles are indicated by ℒ𝓃,𝓉.

ℒ𝒯 = ∑
𝓃∈𝒩

∑
𝓉∈𝒯

∑
𝒹∈𝒟

ℒ𝓃,𝓉
𝒹 ∀𝓉 ∈ 𝒯 (22)

To lower expenses and demand peaks at different times throughout the day, each
consumer has software for tracking their personal energy usage. The aggregated power
profile is used to calculate the PAR ratio [86]. This is a universal device demand form factor.
Equations (23)–(25) define PAR:

ℒpeak = maxℒ𝒯 (23)

ℒavg =
1
𝒯∑𝒩

𝓃=1 ∑𝒯
𝓉=1 ℒ

𝓃,𝓉 ∀𝓉 ∈ 𝒯 (24)

PAR =
ℒpeak

ℒavg
(25)

3.5. Peak Average Ratio
The ratio of the customer’s peak demand in a certain time slot (t) to the average of the

entire load consumed during the given time horizon t = {1, 2, . . . , 24} is known as the
PAR. The clients’ energy use ismeasured using PAR. The utility peak plants’ operations are
impacted by the PARs of the users. The PAR of the consumers must be decreased in order
to preserve the supply–demand power balance. The PAR can be calculated as follows for
M users [84]:

𝒫𝒜ℛ =
𝓂𝒶𝓍(𝒩Total(𝓉,𝓂))

1
ℋ∑ℳ

𝓂=1

(
∑ℋ
𝓉=1𝒩Total(𝓉,𝓂)

) (26)

3.6. Energy Consumption Model
Microgrid loading apparatus comes in three different varieties. The first category in‑

cludes non‑shiftable appliances such as washing machines, clothes dryers,
𝒷 = {𝒷1,𝒷2, . . . ,𝒷𝓊}. Users are unable to halt this type of device function until it is
finished. The second category focuses on shiftable devices such vacuum cleaners, water
pumps, and 𝒶 = {𝒶1,𝒶2, . . . ,𝒶𝓈}. Users can switch to a cheaper time zone and, if nec‑
essary, stop their operation once it has begun in this manner. The third kind includes
fixed devices like air conditioners, refrigerators, and ℱ =

{
𝒸1, 𝒸2, . . . , 𝒸𝒻

}
. Device operat‑

ing times in this category cannot be changed. The following equations list these types of
energy use [87]:

𝒩𝒶(𝓉) =
𝒮
∑
𝓈=1

𝒩𝒶
𝓈 (𝓉)𝒵𝒶𝓈 (𝓉) (27)
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𝒩𝒷(𝓉) =
𝒰
∑
𝓊=1

𝒩𝒷
𝓊(𝓉)𝒵𝒷𝓊(𝓉) (28)

𝒩𝒸(𝓉) =
ℱ
∑
𝒻=1

𝒩𝒸
𝒻(𝓉)𝒵𝒸𝒻(𝓉) (29)

where𝒵𝒶𝓈 (𝓉), 𝒵𝒷𝓊(𝓉), and𝒵𝒸𝒻(𝓉) are the ON/OFF states of shiftable, non‑shiftable, and fixed
devices, respectively, and𝒩𝒶

𝓈 (𝓉), 𝒩𝒷
𝓊(𝓉), and𝒩𝒸

𝒻(𝓉) are the energy consumed (kWh) by
shiftable, non‑shiftable, and fixed devices during time t, respectively. The daily total en‑
ergy usage can be represented as:

𝒩Total =
24

∑
𝓉=1

(𝒩𝒶(𝓉) +𝒩𝒷(𝓉) +𝒩𝒸(𝓉)) (30)

3.7. Tariff of Time of Use (ToU)
The revised ToU rate is based on escalating customer load demand and escalating

generation costs. Adjustments are applied for on‑peak and shoulder‑peak hours per hour:

ξh =

{𝒯𝒪𝒰h when 𝒽o f f
δh other wise

}
(31)

where 𝒽o f f is the off‑peak hour, h is the number of hours, and ξh is the modified ToU
pricing signal. The values of δ depend on additional expenses.

When electricity prices are higher during periods of high energy demand (on‑peak
hours) and lower during periods of low power demand (off‑peak hours), the utilities es‑
tablish market‑specific prices [88].

3.8. Model of Energy Pricing
The appliances’ energy consumption is multiplied by the pricing signal to determine

the price of energy. There are a number of electrical tariffs, including ToU pricing, day‑
ahead pricing (DAP), real‑time pricing (RTP), and critical peak pricing (CPP), that can be
used to lower the cost of electricity over the course of a day. The ToUpricing plan is used in
this study because it offers incentives to users who reduce their consumption during peak
hours. Because it divides the day into three blocks—off‑peak, mid‑peak, and peak—ToU
is regarded as a static pricing approach. The cost of daily energy consumption can be
expressed as:

𝒮𝒯 =
24

∑
𝓉=1

[𝒩𝒶(𝓉) +𝒩𝒷(𝓉) +𝒩𝒸(𝓉)]ϱ(𝓉) (32)

3.9. Model of Demand Response
Participants may receive rewards from the microgrid operators for keeping an eye on

responsive shifting devices. The ratio of total load, the collection of available time slots, and
all responsive shifting device data are recovered and sent to the microgrid control center.
A forward shift, a backward shift, or both may be possible with the responsive shifting de‑
vices’ available shifting time slots. Demand response, which includes responsive shifting
devices’ active power ℰℛ𝒫 and reactive power ℰℛ𝒬, can be illustrated as [89]:

ℰℛ = ℰℛ𝒫 + jℰℛ𝒬 (33)

Using (34) and (35), it is possible to plan the shifted active/reactive power of respon‑
sive shifting devices (RSA) from instant i to t and vice versa (forward ℰℛ𝒫𝒻,𝓉 and back‑
ward ℰℛ𝒫𝒷,𝓉).

ℰℛ𝒫𝒻,𝓉 = ∑
𝒾,𝓉∈𝒯

ℰℛ𝒫𝒾,𝓉 (34)
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ℰℛ𝒫𝒷,𝓉 = ∑
𝒾,𝓉∈𝒯

ℰℛ𝒫𝒾,𝓉 (35)

In contrast, the number of shiftable time slots τ𝓈𝒽 is indicated in (36):

|τ𝓈𝒽| ≤ 𝓉𝒻 − 𝓉𝓈 (36)

where (𝓉𝒻) stands for the ending time and (𝓉𝓈) for the beginning. An illustration of the
microgrid incentive cost operator is:

𝒮ℓ = ∑ 𝒮𝒹𝓇ℰℛ𝒫𝒻,𝓉 (37)

where 𝒮𝒹𝓇 is the customer incentive rate for RSA shifting ($/kW). The definition of the
incentive cost rate for off‑peak, mid‑peak, and peak times is:

𝒮𝒹𝓇 =


γ1α𝓈t ∈ ℋ1

γ2α𝓈t ∈ ℋ2 ℋ1∪
γ3α𝓈t ∈ ℋ3

ℋ2 ∪ℋ3 = ℋ (38)

where γ1, γ2, and γ3 values are between 0 and 1, and are defined as a ToU‑based scaling
factor for the off‑peak, mid‑peak, and peak periodsℋ1,ℋ2, andℋ3, respectively.

The first level of optimization involves reducing costs associated with operating solar
systems (9), battery energy storage systems (19), daily energy costs (23), microgrid incen‑
tive costs, and grid emissions as specified by the following equation:

𝓂𝒾𝓃𝒾𝓂𝒾𝓏ℯ =⇒ 𝒮Total = 𝒮ℊ +𝒩ℊ + 𝒮𝒫𝒱 + 𝒮𝒪𝓌 + 𝒮𝒷ℴ𝓅 + 𝒮𝒯 (39)

The following should be completed to reduce the PAR to improve microgrid performance:

𝓂𝒾𝓃𝒾𝓂𝒾𝓏ℯ =⇒ {𝒫𝒜ℛ} (40)

3.10. User Comfort Maximization
In order to reduce the cost of electricity, the load for appliances has been moved to

off‑peak times. The waiting time of appliances has been assessed in order to determine
end‑user comfort UC during appliance scheduling. It is believed that gα represents the
respective beginning times of the appliances. Ŵ is the appliance waiting time, which is
expressed as [90]:

Ŵ = abs(gα − RT) (41)

where RT stands for an appliance’s request time. The following is an example of the aver‑
age appliance waiting time (ŴA):

UC = ŴA =
∑BN

g=1 abs(gα − RT)

BN
(42)

BN displays how long each appliance was operating throughout various time win‑
dows throughout the day.

Also, the normalized waiting time of appliances ŴN can be expressed as:

ŴN =
∑T

s=1 ŴA(s)

max
(

∑T
s=1 ŴA(s)

) (43)

4. Optimization Algorithm
4.1. Improved Cockroach Swarm Optimization Models

The population‑based global optimization technique known as the Cockroach Swarm
Optimization Algorithm (CSOA) has been used to solve a variety of issues in the literature,
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including [91]. The following are the models for the Cockroach Swarm Optimization Al‑
gorithm (CSOA).

4.1.1. Swarming‑Chase Behavior

xi =

{
w.xi + step · rand · (pi − xi), xi ̸= pi
w.xi + step · rand ·

(
pg − xi

)
, xi = pi

(44)

where pi is the individual best position and pg is the overall best position; xi is an inertial
weight that is constant; step is a fixed value; and rand is a random number between [0, 1]:

pi = Optj
{

xj,
∣∣xi − xj

∣∣ ≤ visual
}

(45)

where, j = 1, 2, . . . , N, i = 1, 2, . . . , N are constants for the perception distance of
the visual.

Pg = Opti{xi} (46)

4.1.2. Behavior of Hunger

xi = xi + (xi − ct) + xfood (47)

xi represents the cockroach’s position, (xi − ct) represents its migration from that position,
c controls the speed of migration at time t, x f ood represents the location of food, thunger
represents the hunger threshold, and hunger is a random value between [0, 1].

4.1.3. Dispersion Behavior

xi = xi + rand(1, D), i = 1, 2, . . . , N (48)

A D‑dimensional random vector with a settable range is called rand (1,D).

4.1.4. Ruthless Behavior

xk = pg (49)

pg is the overall best location and k is a random number from the range [1, N]. Algorithm
1 provides an illustration of the ICSO algorithm [91].

4.2. Bacterial Foraging Optimization Algorithm (BFOA)
Passsino originally presented the Bacterial Foraging Optimization Algorithm (BFOA)

in the year 2002. Escherichia coli (E. coli) bacteria’s chemotactic and foraging behavior served
as its primary inspiration. The bacteria can migrate in both directions, from the toxic area
to the nutritional area, through tumbling and smooth flowing. The first is chemotaxis, the
second is reproduction, the third is elution—dispersal, and the fourth is swimming. These
four mechanisms are crucial to the BFOA.

If the bacterium discovers a new point in the chemotactic step where the nutritional
medium is higher than current position, the bacteria moves one step further in that direc‑
tion. Up until the worst nutrient medium is reached, this process is repeated. The bacteria
are organized in declining order during the reproduction step according to the nutrient
content they picked up during the chemotaxis process. Each bacterium divides into two,
with the first half of the population that has gathered adequate nutrition reproducing. As
the other half of the population gradually passes away, their presence in the population is
eliminated while keeping the original population constant. The population and behavior
of bacteria will change as the environment changes; an elimination and dispersal stage is
used to study this phenomenon. Each bacterium is given a random number between 0 and
1 in this step. If the value of the random number is smaller than the value of the predefined
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parameter, it survives; otherwise, it is deleted from the environment. Below is a list of the
BFOA equations and the fitness function [92].

[θ]i[j + 1, k, l] = [θ]i[j, k, l] + c[i]
∆[i]√

∆i[i].∆[i]
(50)

Algorithm 1: Improved Cockroach Swarm Optimization Algorithm (CSOA)
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ተተ
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4.2. Bacterial Foraging Optimization Algorithm (BFOA)  
Passsino originally presented the Bacterial Foraging Optimization Algorithm (BFOA) 

in the year 2002. Escherichia coli (E. coli) bacteria’s chemotactic and foraging behavior 
served as its primary inspiration. The bacteria can migrate in both directions, from the 
toxic area to the nutritional area, through tumbling and smooth flowing. The first is chem-
otaxis, the second is reproduction, the third is elution—dispersal, and the fourth is swim-
ming. These four mechanisms are crucial to the BFOA. 

If the bacterium discovers a new point in the chemotactic step where the nutritional 
medium is higher than current position, the bacteria moves one step further in that direc-
tion. Up until the worst nutrient medium is reached, this process is repeated. The bacteria 
are organized in declining order during the reproduction step according to the nutrient 
content they picked up during the chemotaxis process. Each bacterium divides into two, 
with the first half of the population that has gathered adequate nutrition reproducing. As 
the other half of the population gradually passes away, their presence in the population 
is eliminated while keeping the original population constant. The population and behav-
ior of bacteria will change as the environment changes; an elimination and dispersal stage 
is used to study this phenomenon. Each bacterium is given a random number between 0 

At the chemotactic step j, reproduction step k, and elimination step i, its bacterium
expresses itself as θi[j, k, l]. This results in a step of size c[i] in the bacterium, and ∆ denotes
a vector in the random direction whose elements lie in the range [−1, 1]:

Jcc[θ, P[j, k, l]] =
S

∑
i=1

Jcc

[
θ, θi[j, k, l]

]
(51)

where S is the total number of bacteria, p is the number of variables in each bacterium that
need to be optimized, and Jcc[θ, P[j, k, l]] is the value of the objective function that should
be added to the real objective function in order to obtain a time‑varying objective function.

θ =
[
θ1, θ2, θ3 . . . θp

]
(52)
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J[i, j, k, l] = J[i, j, k, l] + Jcc[θ
i[j, k, l], P[j, k, l]] (53)

Fitness =
1

1 + ∑24
t=1 [[ PLoad [t]− Objective [t]]2]

(54)

To achieve a final load curve that is extremely similar to the desired load curve, the
aforementioned fitness function is chosen for the BFOA. The following Figure 2 displays
the BFOA flow chart [92].
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5. Simulations Results
The outcomes of the suggestedEMS simulation are provided in this section. Themajor

objectives of this effort are to lower the cost of electricity use, lower the PAR, and raise user
comfort (UC) based on lowering waiting times. We offer an effective 24 h scheduling plan
that strikes a balance between these objectives.

To confirm the accuracy of the system, the results obtained with the Improved Cock‑
roach Swarm Algorithm (ICSA) are compared with the results obtained with the Bacte‑
rial Foraging Optimization Algorithm (BFOA) in reference [92]. Figure 3 illustrates the
power of suggested apartments’ demand sidemanagement without the correctivemethod.
Figure 4 shows the power of suggested apartments’ demand side management with the
BFOA method. Figure 5 illustrate the power of suggested apartments’ demand side man‑
agement with the ICSA method.
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Figure 6 shows the cost of suggested apartments’ demand side management without
the corrective method. The results of Figure 6 show that the unscheduled pattern forces
the customer to pay more for electricity consumption at different times of the day, espe‑
cially during peak hours. Figure 7 shows the cost of suggested apartments’ demand side
management using the BFOA method. Figure 8 shows the cost of suggested apartments’
demand side management using the ICSA method.
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The proposed ICSA scheme’s maximum periodic energy usage is more optimal when
compared to optimal schemes with unscheduled patterns.

The outcomes also demonstrate that the best plans attempt to schedule the loads out‑
side of peak times in each simulated scenario such that the consumer pays less during
peak times.

As can be seen in Figures 6–8, the total daily electricity bill for the unscheduled pat‑
tern is 6820.690 cents using ToU signals as the electricity tariffs. In the first scenario, the
BFOAwas able to reduce the cost of daily electricity consumption by 17.75%. But, the cost
reduction using the ICSA was 46.08%, using ToU tariffs.

Accordingly, it can be inferred from the simulations that the EMS, which is based
on an optimal scheduling scheme employing the ICSA, performs well in obtaining the
solution that sets the best trade‑off between the goal functions.

Table 2 shows the hourly energy consumption without the corrective method using
the Bacterial Foraging Optimization Algorithm and using the Cockroach Swarm Algo‑
rithm. Table 3 shows the hourly electricity bill without the correctivemethod using the Bac‑
terial Foraging Optimization Algorithm and using the Improved Cockroach
Swarm Algorithm.

Table 2. Hourly energy consumption without the corrective method using the Bacterial Foraging
Optimization Algorithm and using the Cockroach Swarm Algorithm.

Hours Without Correction Bacterial Foraging
Optimization Algorithm [92]

Improved Cockroach
Swarm Algorithm

1 0.8325 20.90278 22.20814

2 0.8325 22.5959 22.62476

3 0.8325 22.8845 22.7661

4 0.8325 22.7809 21.7005

5 15.6732 22.86822 19.86826

6 18.5666 22.92446 19.43832

7 27.2875 15.04272 12.0435

8 41.2883 14.09256 11.0852

9 32.7043 17.9376 17.84806

10 12.6725 16.45168 18.22842

11 10.1898 12.54522 13.96528
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Table 2. Cont.

Hours Without Correction Bacterial Foraging
Optimization Algorithm [92]

Improved Cockroach
Swarm Algorithm

12 17.1088 17.9709 14.71786

13 37.4662 18.8145 16.7425

14 47.3785 16.4835 16.93712

15 37.8325 22.88228 24.8825

16 40.7 22.84306 23.78804

17 23.4173 21.07372 23.73846

18 2.516 23.6652 23.54976

19 9.0465 24.0463 21.4896

20 39.4975 26.77986 22.7698

21 32.005 29.15674 26.66738

22 28.5825 23.0769 26.73694

23 10.0825 18.2521 21.682

24 5.55 16.8239 27.417

Table 3. Hourly electricity bill without the corrective method using the Bacterial Foraging Optimiza‑
tion Algorithm and using the Improved Cockroach Swarm Algorithm.

Hours Without Correction Bacterial Foraging
Optimization Algorithm [92]

Improved Cockroach
Swarm Algorithm

1 8.183475 205.4743274 218.3060162

2 7.184475 195.002617 195.2516788

3 7.384275 202.985515 201.935307

4 9.99 273.3708 260.406

5 144.036708 210.1589418 182.5893094

6 227.812182 281.2831242 238.5081864

7 564.578375 311.2338768 249.180015

8 1107.352206 377.9624592 297.305064

9 894.462605 490.59336 488.144441

10 219.360975 284.7785808 315.5339502

11 167.316516 205.9925124 229.3098976

12 281.268672 295.441596 241.9616184

13 606.577778 304.606755 271.061075

14 654.297085 227.637135 233.9016272

15 335.574275 202.9658236 220.707775

16 339.845 190.739551 198.630134

17 202.559645 182.287678 205.337679

18 23.5246 221.26962 220.190256

19 73.367115 195.015493 174.280656

20 325.854375 220.933845 187.85085
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Table 3. Cont.

Hours Without Correction Bacterial Foraging
Optimization Algorithm [92]

Improved Cockroach
Swarm Algorithm

21 259.2405 236.169594 216.005778

22 232.66155 187.845966 217.6386916

23 81.970725 148.389573 176.27466

24 46.287 140.311326 228.65778

The comparison of the total daily electricity bill for the W/O, BFOA, and ICSA algo‑
rithms is shown in Figure 9.
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Prior to using the suggested approach, the cost was 6820.690112 (cent). However,
the cost is discovered to be 5792.45007 after using the BFOA algorithm, and the cost was
discovered to be 4668.968446 after using the BOA algorithm. The BFOA algorithm saved
17.75% per day and the ICSA algorithm saved 46.085% per day when compared to the
suggested approach and the conventional method. Figure 9 illustrate a cost comparison of
price without the corrective method, with the BFOA method and with the ICSA method.
Table 4 shows the cost comparison of price without the corrective method, using the BFOA
method and using the ICSA method

Table 4. Cost comparison of price without the corrective method, using the BFOAmethod and using
the ICSA method.

Total Cost (cent/day) Improvement (%)

Without corrective method 6820.690112

Using BFOA method in reference [92] 5792.45007 17.751%

Using ICSA method 4668.968446 46.085%

Consumer Comfort
In this study,we also took into account consumer comfort, which is calculated in terms

of electricity bill and electrical device waiting time. Electrical equipment has to wait longer
because the load is switched from high‑peak hours to low‑peak hours in order to lower en‑
ergy utilization costs. Therefore, there is a trade‑off between the cost of energy usage and
the waiting time for electrical devices. We introduced the Improved Cockroach Swarm
Algorithm (ICSA) to reduce the trade off, and the outcome is shown in Figure 10 clearly.
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These graphs show that electrical devices without the suggested approach have a longer
waiting time than in the case of the suggested approach. The comfort of the consumer is
increased because the Improved Cockroach Swarm Algorithm (ICSA) of electrical devices
allows the user to generate an interruption and operate the device as neededwhile disobey‑
ing the schedule set by theDSMsystem for that device, as shown in Figure 10. The heuristic
algorithms BFOA and ICSA show a reduction in waiting time as compared to without the
corrective method. Moreover, the ICSA has a minimum waiting time in both scenarios.
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6. Conclusions
For off‑grid and on‑grid systems combined with solar PV generation and batteries,

a cost‑effective microgrid‑based energy management system was developed. On a daily
basis, the off‑grid and on‑grid models for the cost analysis were developed using an Im‑
proved Cockroach Swarm Optimization technique. The proposed framework was eval‑
uated by comparing it with the BFOA and W/O scheduling cases. The BFOA algorithm
reduced energy costs by 17.75% as compared to the W/O scheduling case, whereas the
ICSA reduced energy costs by 46.085% as compared to the W/O scheduling case. The cre‑
ated ICSA performed better than the BFOA and W/O scheduling situations in some areas
of the desired objectives, according to the results, and is advantageous to both the utility
and consumers. The results provided in the last section conclude that the Improvement
Cockroach Swarm Optimization Algorithm (ISCOA) performs best among all techniques
due to its real‑time and distributed characteristics.
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