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Abstract: This paper proposes a novel multimodal generative adversarial network AVSR (multimodal
AVSR GAN) architecture, to improve both the energy efficiency and the AVSR classification accuracy
of artificial intelligence Internet of things (IoT) applications. The audio-visual speech recognition
(AVSR) modality is a classical multimodal modality, which is commonly used in IoT and embedded
systems. Examples of suitable IoT applications include in-cabin speech recognition systems for
driving systems, AVSR in augmented reality environments, and interactive applications such as
virtual aquariums. The application of multimodal sensor data for IoT applications requires efficient
information processing, to meet the hardware constraints of IoT devices. The proposed multimodal
AVSR GAN architecture is composed of a discriminator and a generator, each of which is a two-
stream network, corresponding to the audio stream information and the visual stream information,
respectively. To validate this approach, we used augmented data from well-known datasets (LRS2-Lip
Reading Sentences 2 and LRS3) in the training process, and testing was performed using the original
data. The research and experimental results showed that the proposed multimodal AVSR GAN
architecture improved the AVSR classification accuracy. Furthermore, in this study, we discuss the
domain of GANs and provide a concise summary of the proposed GANs.

Keywords: Internet of things (IoT); generative adversarial networks (GANs); deep learning; audio-
visual speech recognition

1. Introduction

The Internet of things (IoT) refers to the connection of physical and virtual objects to
the Internet for data collection, exchange, and automated operations, to provide a smarter
and more convenient living and working experience. Initially introduced in 1999, the
IoT has since evolved from its early stages to become a tangible reality, driven by the
rapid advancement and extensive utilization of cloud computing [1] and wireless sensor
networks [2]. It has been applied to many fields, which include smart homes, environment
monitoring, and intelligent transportation. The wide application of IoT is due to a variety
of key technologies, including radio-frequency identification (RFID) technology [3], sensor
networks, computer vision technology, and intelligent computing techniques [4].

The IoT leverages the mentioned key technologies to collaboratively enhance envi-
ronmental sensing capabilities, giving it a distinct advantage. Inspired by this property,
we apply the IoT paradigm to multimodal audio-visual speech recognition. Traditional
audio-visual speech recognition (AVSR) only recognizes video—audio in a single scene for
classification. In contrast to them, IoT with heterogeneous sensors provides an opportunity
for effective multimodal audio-visual speech recognition. Specifically, the IoT not only cap-
tures the visual data of the speaker through visual sensors, but also collects the speaker’s
environmental information, such as ambient noise and lighting conditions, in combination
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with audio sensors. Multiple environmental factors can improve the classification accuracy
of AVSR.

However, IoT generates a large amount of multimodal data, and these big data have
complex characteristics that pose significant challenges for data storage and identification.
The motivation of this paper was to investigate a novel multimodal generative adversarial
network AVSR architecture, which simultaneously guarantees energy efficiency for IoT and
classification accuracy for multimodal audio-visual speech recognition. The architecture
should fulfill the following requirements: (1) First, the processed data can be stored in a
small storage space; and (2) second, the processed data can correctly reflect the feature in-
formation of the original data for further applications. Specifically, we utilize the processed
data for audio-visual speech recognition classification.

In recent decades, great efforts have been made toward accurate audio-visual speech
recognition classification. Audio-visual speech recognition was an early application of
multimodal audio-visual sensing in the 1950s. This type of research was influenced by the
McGurk effect [5], which states that vision and sound interact. The AVSR sensor architecture
is constructed from three modules: (1) an audio/acoustic module, which extracts speech
features and is robust to noise; (2) a visual/image module, which extracts contour and
color information from the mouth area; and (3) a fusion module, which combines/fuses the
extracted audio features and visual features. One example of a fusion module uses hidden
Markov models (HMMs) [6]. The earliest work on AVSR can be dated back to around
two decades ago, when using hand-crafted visual features to improve HMM-based ASR
systems was proposed [7]. The first modern AVSR system [8] proposed using deep neural
networks. The field has been rapidly developing since then. Most works are devoted to
architectural improvements; for example, Zhang et al. [9] proposed a temporal focal block
and spatiotemporal fusion. Another line of research focuses on a more diversified learning
scheme to improve AVSR performance. Li et al. [10] used a cross-modal student-teacher
training scheme.

In tandem with the advancement of precise audio-visual speech recognition classifica-
tion, researchers have initiated the integration of AVSR into Internet of things (IoT) devices.
In a prior investigation, Mehrabani et al. [11] introduced the incorporation of HMM-based
ASR systems into smart connected homes, enhancing convenience and bolstering security.
Additionally, Dabran et al. [12] developed tools for real-time caption generation, to assist
those with hearing impairments. Nevertheless, the application of HMM-based speech
recognition models in real-world scenarios has yielded unsatisfactory classification perfor-
mance. Furthermore, Ma et al. [13] identified that the speech recognition framework for
smart IoT devices transmitted speech data in plain text, posing a potential risk to user pri-
vacy. Consequently, an outsourced privacy-preserving speech recognition framework was
proposed, utilizing long short-term memory (LSTM) neural networks and edge computing,
thereby enhancing the classification performance, while preserving data security. With the
increasing adoption of speech recognition technology in IoT devices, Backstrom [14] inves-
tigated the establishment of unified and standardized communication protocols among
voice-operated devices, emphasizing the paramount importance of preserving privacy in
IoT devices. Subsequently, privacy protection has emerged as a foremost consideration in
the realm of IoT application technologies.

Recently, generative adversarial networks (GANs) have been extensively researched
and have made significant progress in optimizing many areas. The flexibility of GANs
means they can be used in machine learning to solve different problems, from generative
tasks such as image synthesis [15], style transfer [16], super-resolution [17], and image
completion [18], to decision-making tasks such as classification [19] and segmentation [20].
In early research on the super-resolution of GANSs, style-based generative adversarial
networks (StyleGAN) [21] were the primary generative models. In 2017, the authors of
the StyleGAN series proposed progressive growing of GANs (Progressive-GAN) [22],
which is based on the idea of gradually increasing the resolution of the generator and
discriminator during training. However, shifting to high-resolution produces a different
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level of effectiveness. Therefore, Tero Karras et al. proposed StyleGAN in 2018. StyleGAN is
a high-resolution image generation model that includes facial expressions, face orientation,
and hairstyle, as well as texture details such as skin tone and brightness. At this stage,
StyleGAN has been proven to work reliably on various datasets. StyleGAN2 [23] optimized
and improved the image quality of StyleGAN and addressed the issue of image artifacts.
Based on the ability of StyleGAN2 to generate sufficiently realistic face images, generative
facial prior generative adversarial networks (GFP-GAN) [24] were proposed for performing
face restoration. The core of GFP-GAN utilizes the “knowledge” contained in the trained
face generation model, termed a generative facial prior (GFP), such as in StyleGAN2. GFP
contains rich details of features and face color and treats the face as a whole, dealing with
hair, ears, and facial contours. Compared to other face super-resolution methods, GFP-
GAN provides better detail in the recovery of features, a more natural overall appearance,
and enhanced color. However, the existing generative adversarial architectures are not
suitable for generating multimodal audio-visual speech recognition data.

The aim of this paper is to propose a novel multimodal generative adversarial network
AVSR architecture for IoT. First, we discuss different variants of the GAN algorithmic
architecture and briefly summarize the proposed GAN variants. Second, we propose a
GAN architecture for multimodal audio-visual sensing. We apply a fusion of a GFP-GAN
and an audio-visual speech recognition model to the super-resolution processing of low-
quality images generated by IoT sensors, to enhance facial feature details and allow for
more accurate feature extraction on the visual side to improve performance.

The contributions of this paper can be summarized as follows:

e Introduction of a novel multimodal generative adversarial network AVSR architec-
ture for IoT: We propose an innovative AVSR architecture, leveraging a multimodal
generative adversarial network, which combines GFP-GAN and audio-visual speech
recognition models. This integration enhances facial feature details, resulting in im-
proved classification performance for IoT applications.

e  Exploration of model lightweighting techniques: we investigate various model
lightweighting techniques, such as modular task design and the integration of cache
modules. These optimizations effectively reduce the computational complexity of
the model, while preserving a high performance. This adaptability makes the model
well-suited for deployment in resource-constrained IoT devices.

e  Focus on privacy and security: we delve into the privacy and security considerations
associated with different data sources. Our research includes the establishment of
rigorous privacy protocols, authentication mechanisms, and the incorporation of
federated learning principles. These measures collectively enhance the privacy and
security of model data, which is critical for IoT applications.

e  Extensive experimental validation: through extensive experimental evaluations, we
demonstrate the versatility of our AVSR architecture in various IoT scenarios, affirming
its applicability across diverse real-world contexts.

The paper is organized as follows: Related works on different GAN variant architec-
tures are discussed in Section 2. Section 3 describes the methodology used for the study,
based on the GFP-GAN architecture for AVSR and the Wave2Lip-GAN architecture for
AVSR. Section 4 discusses the results. We give some concluding remarks in Section 5.

2. Literature Review

Since the introduction of GANs, many researchers have used GANs to enhance the data
processing, model optimization, and security of IoT systems, to improve IoT performance
and intelligence. These IoT networks using GANs have been applied to various tasks and
have shown impressive performance. In this section, we discuss several important GAN
variant architectures applied to the tasks of picture conversion, image generation, and
image super-resolution of IoT sensor data, starting with the basic GAN architecture.
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2.1. Generative Adversarial Networks

The classical approach to GANSs is an artificial neural network consisting of two
models: (1) a generator network, and (2) a discriminator network. As shown in Figure 1,
the basic theory behind GAN s is that the generator learns to create new data that are similar
to a given dataset. In contrast, the discriminator learns to differentiate between the accurate
and the generated data.

Real Image
Random Discriminator > True or False
Noise >
Generator —>|:|—
|
\
Fake Image

Figure 1. The basic structure of a GAN.

The generator takes random noise as input and attempts to generate an output that
is similar to the training data. The discriminator takes both real and generated data and
tries to distinguish between the real data and the fake data. The two models are trained
simultaneously in a game-like process, where the generator tries to produce better and more
convincing outputs, while the discriminator tries to become better at detecting fake data.

The ultimate goal of GANSs is to have a generator that can produce an output that is
indistinguishable from real data, and a discriminator that can no longer tell the difference
between real and generated data. Goodfellow provided a mathematical description of the
training loss function for the generator and discriminator mingmaxp V(D, G), denoted as
G and D, respectively. The following equation describes the aim of the GAN:

mingmaxpV (D, G) = EXdiata(x) [log D(x)] + Eszz(z) [log(1— D(G(z)))] 1)

The training of the GAN is iterated in two steps, to reach the optimization goal. First,
the discriminator is trained to differentiate the real samples from the fake samples. The
optimization objective is derived from the aforementioned formula, specifically the maxV
part. Since it is a maximization term, during the optimization process using gradient
descent, the loss function £ for optimization is as follows:

Lp = =Eyopy 108 D(X)] = E.n(zjo log(1 — D(G(2))] 2

The second step involves training the generator, denoted as G. The optimization objec-
tive is to minimize the value function V. It is important to note that the total loss function
only includes the second term related to G. Therefore, the loss function £ should be

Ls =E. N llog(1 — D(G(z))] 3)

2.2. Fully Connected Generative Adversarial Network

The original energy-based GAN utilized fully connected neural networks to construct
generators and discriminators. This architectural variant is commonly employed for
straightforward image datasets like MNIST [25] and CIFAR-10 [26]. However, in this GAN
variant, the generator employs both ReLU and sigmoid activation functions. Unfortunately,
this GAN did not exhibit satisfactory generalization performance as the complexity of
the images was increased. Consequently, the GANs could only generate lower-resolution
images of 32 x 32 pixels when applied to the MNIST dataset.
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2.3. Deep Convolutional Generative Adversarial Network

Following the successful applications of convolutional neural networks (CNNs) [27]
in computer vision tasks, researchers [28] recognized their potential and combined CNNs
with GANSs to introduce deep convolutional generative adversarial networks (DCGAN).
In this innovation, they employed a deconvolutional neural network architecture [29] for
the generator and replaced the original multi-layer perceptron (MLP) structure with fully
convolutional networks [30]. Additionally, DCGAN incorporated batch normalization [31]
and ReLU activation [32]. Consequently, DCGAN gained popularity, and the utilization
of deconvolution became a widely adopted architectural approach to GAN generators.
Figure 2 illustrates the architecture of the generator in DCGAN. However, DCGAN exhibits
better performance only on images with lower resolution, due to limitations in the model
capacity and optimization challenges.

1024

I'—‘—]
100 z {H :}4
4

Project and reshape

16

Stride 2

CONV 1

CONV 2

Figure 2. DCGAN generator architecture reproduced from Radford et al. [29].

2.4. Laplacian Pyramid Generative Adversarial Network

Prior to the development of DCGAN, Denton et al. [33] introduced the Laplacian
pyramid GAN (LAPGAN). In this GAN architecture, the resolution of the synthetic samples
is progressively increased throughout the generation process. LAPGAN utilizes a cascade
of CNNs within the framework of the Laplacian pyramid to upsample the images, enabling
the generation of synthetic images up to a resolution of 96 x 96 pixels. This cascade
structure enhances the training stability and facilitates high-resolution modeling. Figure 3
illustrates the architecture of LAPGAN.

Real/

Generated?

Generated?

Real/Generated?

Real/Generated?
Figure 3. LAPGAN network architecture reproduced from Denton et al. [33].

2.5. Self-Attention Generative Adversarial Networks

Following the proposal of DCGAN, researchers observed that conventional CNNs
were limited in their ability to capture global spatial information and effectively model
image datasets with multiple classes, such as ImageNet [34]. This posed a challenge for
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GAN networks to learn and generate such complex images. To address this, Han Zhang
et al. [35] introduced the self-attention generative adversarial network (SAGAN). SAGAN
incorporated a self-attention mechanism, allowing it to focus on relevant dependencies and
capture long-range spatial relationships in the image generation process. The self-attention
module architecture of SAGAN is depicted in Figure 4.

—lmn Spose attention
convolution

map

softmax self-attention
. _I o featrl:c__nj_zl}fs (o)
|_: r | (%) 14

®_.|:|‘_.1
h(x) K ‘_._l
Ixleeny \jﬁ’:
i

‘ Ixleony __
Figure 4. The self-attention module for SAGAN [35].

2.6. Cycle-Consistent Adversarial Networks

Traditional GANSs can be used to generate realistic images, but they usually require
paired data, which are not readily available. In this context, Junyan Zhu et al. [36] proposed
cycle consistent adversarial network (CycleGAN). CycleGAN is an unsupervised image
transformation GAN framework that contains two generators and two discriminators.
Bidirectional transformation of two uncorrelated image domains is achieved through cyclic
consistency loss, which eliminates the need for paired data.

2.7. Bicycle Generative Adversarial Networks

After the proposal of CycleGAN, Junyan Zhu et al. found that their CycleGAN could
only satisfy the single-modal requirement. Therefore, they proposed the bicycle generative
adversarial network (BicycleGAN) [37] architecture, to introduce a new consistency con-
straint for multimodal image translation. BicycleGAN allows image translation to expand
from unimodal to multimodal. Figure 5 shows the architecture of BicycleGAN, which
consists of two generators and two discriminators to realize the bidirectional mapping
transformation.

.

gt iel)

"
‘

Figure 5. Bidirectional network architecture for BicycleGAN [37].

2.8. Star Generative Adversarial Networks

In the task of image translation, researchers need to train a separate model for each
task, which leads to a dramatic increase in the number of models. To overcome this
problem, Yunjey Choi et al. [38] proposed a unified GAN architecture (StarGAN) for multi-
domain image translation. The overall structure of StarGAN is a conditional domain-based
generative adversarial network consisting of a generator and a discriminator. This is
different from bidirectional generative adversarial networks (GANSs) because StarGAN is
designed to achieve multi-domain image translation without the need to train separate
generators and discriminators for each pair of transformations between domains. Figure 6
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shows the structure of StarGAN, where the two generators shown are split by the same
generator.

| Depth-wise concatenation l

Ongmal
-

E@ﬂ@ﬂ

. Reconstructed
Target domain Input image “ image

Depth-wise concatenation

Domain
classification

Real / Fake

Figure 6. Overview of StarGAN [38], consisting of two modules: a discriminator D, and a generator G.

2.9. Super-Resolution Generative Adversarial Network

For the generation task, how to generate high-quality and high-resolution images is
challenging. Traditional image super-resolution methods are mainly based on interpolation
or filtering techniques, and this very easily leads to image distortion and blurring. In this
context, Christian Ledig et al. [39] were pioneers in successfully applying GAN to image
super-resolution with their proposed super-resolution generative adversarial network
(SRGAN). SRGAN consists of a generator that introduces the residual dense blocks module
and a discriminator. The residual dense blocks generator captures the features and details
of an image more efficiently, which is then coupled with the perceptual loss, to generate a
more realistic and detailed high-resolution image. Figure 7 shows the internal structure of
the SRGAN generator.

Generator Network B residual blocks
A
"k3nB4s1  kanBds1 ' k3nB4s1  k3n256s1

k9n64s1 k9n3s1

PixelShuffler x2

skip connection

Figure 7. SRGAN architecture of generator [39].

2.10. Diverse Generative Adversarial Network

Although GAN has made significant developments in image super-resolution, it
lacks high-resolution textures for the generated images. Thus, Masoumeh Zareapoor
et al. [40] proposed diverse generative adversarial network (DGAN). DGAN is a diverse
GAN architecture that contains multiple generators and a discriminator. Compared to a
single generator, it recovers realistic textures using multiple generators to produce different
samples. Figure 8 shows the multiple generator architecture of DGAN. Table 1 shows
a summary of GAN architectures for image translation, image generation, and image
super-resolution representation.
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Diverse G

Shared parameters

Diverse G

Shared parameters

Real Sample

Figure 8. Multiple generator architectures of DGAN [40].
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Table 1. Architecture of GANs for image translation, image generation, and image super-resolution

representation.
Category/Domain Area Year Main Contributions Datasets Reference
CycleGAN: Proposed architecture for CycleGAN
2017 image translation without pairing data Pix2Pix JunYan Zhu etal. [36]
Research work on GANs 2018 BicycleGAN: Implementing multimodal CycleGAN JunYan Zhu et al. [37]
for image translation image translation Pix2Pix o
StarGAN: Proposed a Unified GAN CelebA
2018 architecture for multi-domain image RaFD Yunjey Choi et al. [38]
translation ImageNet
FCGAN: Early generative adversarial MNIST
2014 network models utilizing fully connected Ian Goodfellow et al.
CIFAR10
neural networks.
Research work on GANs DCGAN: The first model to combine deep MNIST
for image generation 2014 convolutional neural networks (CNN5s) Xu et al. [29]
. . . CIFAR10
with generative adversarial networks.
2019 .SAGAN: Propf)sed s.tructure for GAN ImageNet Han Zhang et al. [35]
image generation with self-attention.
LAPGAN: Step-by-step image
2015 super-resolution using the Laplace CIFAR10 Lai et al. [33]
pyramid framework.
Research work on GANs SRGAN: A milestone in the successful . .
for image super-resolution ; ; ; ; Christian Ledig
ge sup 2017 introduction of GAN into the field of Set5 etal. [39]
image super-resolution. '
2019 DGAN: Implementing a multi-sample DIV2K Masoumeh Zareapoor

image super-resolution architecture.

et al. [40]

3. Multimodal Audio-Visual Sensing

In IoT, multimodal audio-visual sensing is an important technology for multimodal
sensors, to capture visual and audio information. This section discusses the proposed
multimodal generative adversarial network AVSR architecture. The early part of this
section will detail the architecture of multimodal audio-visual sensing. The latter part of
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the section will discuss how the GAN structure is incorporated into the AVSR architecture.
Figures 9 and 10 show the proposed architecture of AVSR. The architecture utilizes deep
learning, along with a transformer model (TM-CTC) trained on CTC loss, based on the
self-attentive module.

mm s mmmm————y
1 Discriminator 1
1
1
““““““““““ T
Generator [ | .
o ' gos
o L 222
Degradation [, | Pretrained |, } Facial Component | _yplp 8 & [
Removal GAN as prior [y 7} Loss : x F 3
b v 2| e
__________________ 1 : Identity Preserving : QC_, _ - Q'
. Loss : o g § g =
1 \ = g2l 3
lemmmm e = —» 15382 = .8.
523 = @
< 3o
—» - =3
z
3| |=
2 o
STFT E
o
2 -
[
a
Figure 9. GFP-GAN multimodal AVSR architecture.
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Figure 10. Wave2Lip-GAN multimodal AVSR architecture.

3.1. Multimodal Audio-Visual Sensing

Multimodal audio-visual sensing can enhance the ability of IoT systems to comprehen-
sively sense and intelligently respond to the environment by combining multiple sensing
modalities such as audio and video. The multimodal data obtained from multimodal
sensors can contain more complex feature information such as environmental noise, light-
ing conditions, etc. This is of great significance for our subsequent classification task of
audio-visual speech recognition.

3.2. AVSR with GFP-GAN
This section details the integration of the GAN structure into the AVSR architecture.
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Figure 9 illustrates the model architecture for audio-visual speech recognition. The
architecture comprises the following components: (1) audio-modal sensing input, (2) video-
modal sensing input, and (3) audio-visual modal fusion. The top half of Figure 9 (left)
presents the architecture of the video modal sensing input, where the visual images are
processed using ResNet. Two-dimensional ResNet and three-dimensional convolution are
applied to the images, to align with the audio frames.

Figure 9 (bottom left) showcases the architectural components of the audio-only modal
sensing input. The audio signal is processed using a short-time Fourier transform (STFT)
to extract audio features. These features convert the original 16 kHz audio waveform into
vector representations across a 321-dimensional spectral amplitude. The 321-dimensional
spectral amplitude is calculated within a 40 kHz window with a hop length of 10 ms. The
video clip has a frame rate of 25 frames per second (40 ms per frame), and each video frame
corresponds to four audio frames.

Figure 9 (top left) showcases the architectural components of the visual-only modal
sensing input. Before the video sensing input enters the GFP-GAN architecture, the video
data are processed into a 112 x 112 image sequence. Figure 11 presents the generator
architecture of the AVSR using GFP-GAN. Within the network, the data first enter the
generator, which consists of a degradation removal module and a pretrained facial GAN
as a prior. The degradation removal module eliminates blurred noise and generates clean
multiresolution features. The facial prior in the generator generates features containing rich
facial details based on the multi-resolution features, ultimately producing a high-fidelity
face image through spatial transformation. The newly generated image is then fed into
a discriminator, responsible for determining the discriminative loss settlement for the
entire face and local discriminative loss calculations for specific components, such as the
left and right eyes and the mouth. The generator and discriminator are connected from
coarse to fine by direct latent code mapping and several channel-segmentation spatial-
feature-transformation (CS-SFT) layers. In the visual backend, we employ pretrained visual
features to extract image characteristics. For the pretraining of these models, we leverage
word excerpts from the extensive MVLRS [41] dataset to pretrain the visual front-end.
In this pretraining phase, a two-layer temporal convolutional back-end is employed for
segment classification. The use of pretrained visual features offers our model a generic,
efficient, and high-performance image representation. By incorporating features pretrained
on extensive datasets, our model effectively mitigates training complexity and resource
demands, thereby expediting model training and enhancing classification accuracy.

Degradation Removal:

g 4
v
N Face L v . " g =
Encoder % 8 k] Decoder
5 v - i/ Lo
Video Frames : Super-resolved
Generator Image

Figure 11. The generator architecture of the AVSR using the GFP-GAN.

Figure 9 (bottom right) demonstrates the architectural components of audio-visual
modal fusion. In this stage, the fusion of modalities relies on the TM-CTC model. Two
stacks of six transformer encoder layers form the encoder (one for each modality), and a
single stack of six transformer encoder layers forms the joint decoder. Encoded feature
vectors from these two modalities are connected and linearly transformed into 512-dim
vectors. The network generates CTC posterior probabilities for each input frame and trains
the entire stack structure to minimize CTC losses.

Figure 12 illustrates the algorithmic flowchart of GFP-GAN. The input image enters
the degradation removal module using the U-Net structure. We obtain the latent features
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and spatial features of the input image through U-net sampling. The latent features undergo
processing via a multilayer perceptron to create 16 latent codes, each having a dimension
of 512, enhancing the preservation of semantic attributes. These latent codes, in turn, give
rise to intermediate convolutional features within the StyleGan multilevel convolutional
layers situated in the facial prior module. During the concluding phase of the generator,
the intermediate convolutional features are seamlessly integrated with the initial spatial
features through spatial modulation techniques, including translation scaling. This spatial
modulation effectively aligns the realism and fidelity across distinct features. The output
image from the generator, when assessed by the discriminator, computes the total loss
function and gradient in conjunction with the original image. This computation encom-
passes adversarial loss, facial component loss, and identity preserving loss. Adversarial
loss employs a logistic regression loss function to guarantee the generation of authentic
textures. Facial component loss quantifies the discrepancy between the generated image
and the original image, focusing on specific regions of interest. Identity preserving loss
ensures that the features of the generated image remain minimally distant from those of
the original image within the deep feature space.

Input image

14—

Y

Degradation removal process

v

Generating facial a priori

|

Split-space feature
transformation

l

Generator

No

enerate outpu
images 7

Adversarial loss &
Facial Component loss &
dentity Preserving los:
is minimized?

Discriminator

Figure 12. Algorithm flowchart of GFP-GAN.

We propose multimodal audio-visual sensing using GFP-GAN, which achieves a
better balance of realism and fidelity compared to conventional multimodal audio-visual
sensing. In real-world environments, multimodal audio-visual sensing receives input data
that may contain noise and blur. This often results in a visually realistic but low-fidelity
output. The proposed multimodal audio-visual sensing architecture generates high-fidelity
and realistic face images in realistic environments, as evident from the clear visibility of
mouth movements, leading to an improved recognition accuracy.
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Video Frames

Audio

3.3. AVSR with Wave2Lip-GAN

In this section, we introduce another multimodal audio-visual sensing architecture
utilizing Wave2Lip-GAN [42]. While the previous section extensively described the AVSR
architecture, this part will directly focus on how AVSR incorporates Wave2Lip-GAN.

Figure 13 illustrates the architecture of Wave2Lip-GAN for AVSR. Prior to entering the
TM-CTC architecture, the audio and video sensing input undergoes processing through
Wave2Lip-GAN. The generator network consists of two encoders and a decoder. The
face encoder generates intermediate facial features for the video frames, while the audio
encoder generates intermediate audio features from the audio signals. These generated
video and audio features are combined and fed into the face decoder, which produces lip
and audio synchronized output frames. The generated frames then undergo evaluation by
the discriminator, to assess the quality of the lip video and synchronization. The outcome
of this process is a new dataset to be trained in the TM-CTC.

Visual Quality Discriminator

» Face Encoder |——»

Face
Decoder

Audio Encoder ——» " : .
Lip synced image

Generator

Figure 13. The proposed architecture uses Wave2Lip-GAN for AVSR.

We utilized the Wave2Lip-GAN model, which includes two discriminator modules.
The first discriminator module assesses the synchronization quality between the generated
lip image and the audio. The second discriminator module evaluates the quality of the lip
image generated by the generator, comparing it with the synchronized lip image.

We propose multimodal audio-visual perception using Wave2Lip-GAN, which achieves
a superior alignment between modalities compared to the average methods. Multimodal
audio-visual sensing requires modal fusion, due to the independent nature of audio and
video modalities. The challenge in fusing these modalities lies in achieving proper align-
ment. The architecture we propose for multimodal audio-visual sensing enables syn-
chronization between the audio and video modalities, allowing for authentic alignment
judgment and ultimately improving video quality.

4. Experiments

To validate the effectiveness of our architecture, we evaluated it on a multimodal
audio-visual dataset. In this section, we first introduce the multimodal audio-visual dataset
collected through IoT audio-visual sensors. Then, we elaborate on the implementation
details of the AVSR architecture for multimodal generative adversarial networks for IoT.
Finally, we analyze the classification results and the results of IoT energy efficiency.

4.1. Description of Datasets

This section provides a description of the datasets used for training and evaluation
purposes. The Lip Reading Sentence 2 (LRS2) and Lip Reading Sentences 3 (LRS3) datasets
were utilized for these tasks.

The LRS2 dataset [43] consists of a vast collection of audio and video data, totaling
224 h of content. It comprises 144,000 video sequences extracted from British Broadcasting
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Corporation (BBC) recordings. In particular, there are 96,318 utterances for pretraining
(195 h), 45,839 for training (28 h), 1082 for validation (0.6 h), and 1243 for testing (0.5 h).
The dataset exhibits diversity in terms of various factors, including head pose, lighting con-
ditions, video type, and the presence of multiple speakers. This diversity ensured a robust
training and evaluation environment for the proposed multimodal audio-visual sensing
architectures. In our study, LRS2 encompassed a diverse range of speech data collected
from various scenarios, including news reports, cinematic dialogues, educational lectures,
interviews, and more. These speech datasets exhibit notable variations, encompassing a
wide spectrum of accents, speech tempos, and language styles characteristic of distinct
speakers. Additionally, this dataset comprises multimodal data, encompassing not only
speech but also relevant mouth movements, further enriching its informational content.

The LRS3 dataset [44] provides an extensive collection of audio and video data,
amounting to over 438 h. It contains 151,819 video sequences extracted from TED and
TEDx presentations. Specifically, there are 118,516 utterances in the pretraining set (408 h),
31,982 utterances in the training-validation set (30 h), and 1321 utterances in the test set (0.9
h). In addition to being used for training and evaluation, this dataset was also employed to
train external language models. These language models were trained using a text corpus
that incorporated subtitles, enabling them to enhance the language processing capabilities
of the multimodal audio-visual sensing architectures. The LRS3 dataset captures video
data from TED and TEDx events available on the YouTube channel. It encompasses a
wide spectrum of individuals, not only actors in scripted films or theatrical productions.
Additionally, the video footage exhibits reduced variability, resulting in a higher frequency
of complete sentences accompanied by continuous facial trajectories.

Figure 14a,b showcase examples from the LRS2 and LRS3 datasets, respectively. These
examples provide visual representations of the data present in the datasets, highlighting
the variation in visual cues, lip movements, and speaker characteristics captured in the
dataset samples. The LRS2 and LRS3 datasets are provided as mp4 files with a frame rate
of 25 fps, encoded using the h264 codec. The audio data are presented in a format with a
single channel, featuring a 16-bit bit depth and a sampling frequency of 16 kHz, while the
corresponding text and the alignment boundaries of each word are included in the plain
text files. The utilization of these datasets in the experiments ensured the evaluation of
the proposed multimodal audio-visual sensing architectures on real-world, diverse, and
challenging data.

Figure 14. Sample images from datasets. (a) Sample images from LRS2 [43]. (b) Sample images from
LRS3 [44].
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4.2. Experiment 1-GFP-GAN

In this subsection, we present the results obtained from the AVSR architecture using
the GFP-GAN setup. As part of the experimental procedure, we performed pre-processing
and data augmentation steps on the data. Specifically, we modularized the code for
data preprocessing and data enhancement, to handle data from different IoT devices. In
the preprocessing module, the data came in mp4 format, and we used the open-source
tool FFmpeg (Fast Forward Moving Picture Experts Group) to extract the audio, while
converting the video into a sequence of images with a size of 224 x 224 per frame. Then,
a bounding box of 120 x 120 was used to crop the mouth ROIs. The cropped frames
were further converted to gray-scale and normalized with respect to the overall mean and
variance of the training set.

In the data augmentation module, we removed random frames and horizontal flipping
with a probability of 0.5 after random cropping of size 112 x 112 of all frames of a given
image sequence, in order to eliminate variations associated with facial rotation and scaling.
Additionally, we introduced clutter to the audio data by adding background noise with
a signal-to-noise ratio (SNR) of 5 dB and an audio stream with a probability of pn = 0.25.
We generated babble noise samples by mixing a combination of 20 different audio samples
from the LRS2 dataset. This was carried out to assess and enhance the model’s ability to
generalize in the presence of audio noise.

Following the random cropping of the 112 x 112 mouth image sequence, the data were
fed into the GFP-GAN architecture. To preserve the original size of the image sequence,
while improving clarity, we set the scaling factor to 1. This ensured that the image sequence
was processed without any distortion in size.

To evaluate the performance of the AVSR architecture, we utilized word error rate
(WER) as the evaluation metric. The WER is calculated using the following equation:

S+D+1
WER = ———— )
where S, D, I, and N represent the number of substitutions, deletions, insertions, and words
in the reference, respectively.

By employing WER as the evaluation metric, we were able to assess the accuracy and
effectiveness of the AVSR architecture in transcribing spoken words from the input audio
and visual data. The lower the WER, the higher the accuracy and alignment between the
predicted transcription and the reference transcription.

In our experiments, we utilized the PyTorch library for implementation, leveraging
the computational power of an NVIDIA V100 GPU with 40 GB of memory. The NVIDA
V100 is a public version of the card manufactured by NVIDIA, and the device is sourced
from the United States. During GPU training of the model, the minibatch size (default = 32)
was reduced by half each time we encountered an out of memory error. We used an early
stopping tactic and hyperparameter tuning to avoid the overfitting effect. Within each
iterative cycle, our attention was directed towards scrutinizing the model’s performance
on the validation dataset, all while meticulously tracking the influence of the learning
rate on the performance. Once the validation set WER had been flattened, training was
forced to terminate. At the same time, we set an initial learning rate of 10~*, which was
reduced by a factor of 2 every time the validation error plateaued, down to a final learning
rate of 107°. The network models were trained using the ADAM optimizer, which is a
popular choice for deep learning tasks. Moreover, we undertook additional measures
to enhance the robustness and overall generalization prowess of our model. To achieve
this, we implemented a fusion of dropout and label smoothing techniques, employing a
parameter value of p = 0.1. In the context of a dropout with p = 0.1, a stochastic process
was introduced, whereby each neuron possessed a 10% probability of being randomly
excluded during each training iteration. This strategic approach effectively mitigated the
model complexity. Simultaneously, within the realm of label smoothing, the original single
thermal-encoded labels underwent a transformation into a more diffuse distribution. This
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transformation served to instill a degree of uncertainty into the model’s label predictions,
thereby thwarting excessive confidence and, subsequently, combating overfitting.

During the model training process, we implemented a curriculum-based learning
strategy. We initiated the training by exclusively using single-word examples and pro-
gressively increased the sequence length as the network continued to learn. These shorter
sequences were originally part of longer sentences in the dataset. This approach had several
noteworthy benefits: the convergence on the training set was significantly expedited, and
the curriculum substantially mitigated overfitting. This improvement could be attributed
to the natural way of introducing data into the training process. Additionally, we had the
flexibility to fine-tune the model by adjusting the iterations at which we introduced curricu-
lum learning. The number of words incorporated into each iteration of curriculum learning
followed a sequential pattern: 1,2, 3,5,7,9, 13, 17, 21, 29, and 37, totaling 11 iterations in
all.

4.3. Experiment 2—Wave2Lip-GAN

In this subsection, we first outline the experimental setup of the proposed architec-
ture. Subsequently, we will present the results obtained from the AVSR system using the
Wave2Lip-GAN setup.

In experiment 2, the data underwent a preprocessing step before being fed into the
AVSR architecture. The audio and video inputs for multimodal audio-visual sensing were
initially processed through the Wave2Lip-GAN block. To accurately detect the face region,
the bounding box parameters were set with pads = (0 20 0 0), ensuring the inclusion of the
entire face area, including the chin. The parameter nosmooth = true was utilized in the
framework to prevent excessive smoothing during face detection.

After passing through the Wave2Lip-GAN block, the new data followed the same
preprocessing steps as in experiment 1. This included adding noise, randomly cropping
the image sequence to a size of 112 x 112, and horizontally flipping the images. To
evaluate the performance of the AVSR system in experiment 2, the same evaluation metric,
WER, was employed as in experiment 1. This facilitated a direct comparison between the
two architectures.

4.4. Comparison Results for Classification and Discussion

In this subsection, we compare the two multimodal generative adversarial network
AVSR architectures together with a multimodal AVSR architecture. Tables 2 and 3 present
the experimental results, showcasing the performance in terms of word error rate (WER)
on the LRS2 and LRS3 datasets, respectively. The experiments were conducted under
two conditions: clean input (without noise), and added noise. The performance of the
AVSR architecture and its individual components was compared in three scenarios: using
GFP-GAN, using Wave2Lip-GAN, and using nothing. This comparison allowed us to
evaluate the impact and effectiveness of incorporating the GFP-GAN for improving the
performance of the AVSR system.

Table 2. Performance of AVSR on the LRS2 dataset.

AVSR Architecture ‘ Greedy Search Beam Search (+LM)
Clean Input
TM-CTC+ GFP-GAN AV 10.20% 6.80%
TM-CTC+Wav2Lip GANs AV 11.90% 8.40%
TM-CTC AV 10.60% 7.00%
Added Noise
TM-CTC+GFP-GAN AV 29.40% 22.40%
TM-CTC+Wav2Lip Gans AV 35.70% 27.90%
TM-CTC AV 30.30% 22.80%
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Table 3. Performance of AVSR on the LRS3 dataset.

AVSR Architecture Greedy Search Beam Search (+LM)
Clean Input
TM-CTC+GFP-GAN AV 11.60% 8.00%
TM-CTC+Wav2Lip GANs AV 13.80% 12.60%
TM-CTC AV 12.20% 10.80%
Added Noise
TM-CTC+GFP-GAN AV 32.40% 25.50%
TM-CTC+Wav2Lip Gans AV 39.20% 31.90%
TM-CTC AV 34.70% 26.80%

In our experiments, we introduced noise into the audio input of both AVSR frame-
works that utilized the GFP-GAN. The noise was generated by adding murmurs to the
original audio. Recognition of multimodal audio-visual sensing in the presence of noise
poses a challenging problem that needs to be addressed. In the AVSR framework, the
addition of noise led to a decrease in word error rate (WER) by more than 20% compared
to the AVSR performance without added noise. In addition, we can also clearly observe
from the experimental results in Figures 15 and 16 that the results of the model with added
noise were much higher than the results in clean environments, both on the LRS2 and LRS3
datasets. The results in the clean environment all remained below 15%, while the results in
the noisy environment were all above 20%. Furthermore, the AVSR framework utilizing
the GFP-GAN outperformed another framework in the presence of loud sounds in the

environment.

Performance of AVSR on LRS2 dataset.

TM-CTC+GFP-GAN  TM-CTC+Wav2Lip TM-CTC
GANs

B Greedy Search

TM-CTC+GFP-GAN +
Noise

M Beam Search (+LM)

TM-CTC+Wav2Lip TM-CTC + Noise
Gans + Noise

Figure 15. Bar chart of all experimental results on the LRS2 dataset.

Performance of AVSR on LRS3 dataset.

TM-CTC+GFP-GAN +  TM-CTC+Wav2Lip TM-CTC + Noise

TM-CTC+GFP-GAN  TM-CTC+Wav2Lip TM-CTC
GANs

B Greedy Search

Noise

M Beam Search (+LM)

Gans + Noise

Figure 16. Bar chart of all experimental results on the LRS3 dataset.
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The movement of the lips in the AVSR architecture provides valuable cues for speech
recognition, particularly when the speech signal is heavily corrupted by noise. When
the GFP-GAN was used in conjunction with the AVSR architecture, both architectures
outperformed the AVSR architecture alone, in terms of performance. In the AVSR architec-
ture with TM-CTC decoding, incorporating beam search and an external language model
proved beneficial for improving performance. A notable characteristic observed in all
three different AVSR architectures was that beam search yielded better results compared to
greedy search. We also clearly observed that the results using beam search (red bars) were
all lower than the results of greedy search (blue bars), as shown by the experimental results
in Figures 15 and 16. This suggests that multimodal audio-visual sensing can achieve
explicit linguistic consistency when integrated with external language models. Figure 17
shows some samples that reflect the AVSR results during our experiments. We can clearly
observe that the texture appears to be significantly sharper in Figure 17a, performing well
under the AVSR framework, compared to Figure 17b, performing poorly. In addition, using
the GFP-GAN framework shown in Figure 17c clearly improved the facial texture clarity
as well.

Figure 17. Example images after preprocessing. (a,b) show two different speakers in the same dataset
and using the same preprocessing. (b,c) show the same speaker, the difference is (c) used GFP-GAN
preprocessing. (a) Best examples of AVSR results after preprocessing from LRS2 [43]. (b) Worst
examples of AVSR results after preprocessing from LRS2 [43]. (c) Worst examples of AVSR results
after preprocessing and GFP-GAN from LRS2 [43].

Overall, the discussed findings highlight the effectiveness of the AVSR architectures,
particularly when incorporating GFP-GAN, in addressing the challenges posed by noise in
multimodal audio-visual sensing. The improvements in performance and linguistic consis-
tency demonstrate the potential of these architectures for enhancing speech recognition in
real-world environments.

4.5. Comparison Results for Energy Efficiency Generalizability and Discussion

In this subsection, we explore the energy efficiency of the proposed method. Tables 4
and 5 show the training time of the multimodal generative adversarial network AVSR
architecture in the different cases. In IoT applications, assessing the energy efficiency of
resources holds significant importance, especially considering hardware limitations. We
gauged the resource energy efficiency by measuring the training time of the computational
architecture model. By the time modal fusion was executed, the feature vector representa-
tion had expanded to 512 dimensions in our test architecture model. The required storage
space varied depending on the number of video frames in the dataset. For instance, in
the case of Figure 17a, our picture sequence necessitated 400 kilobytes of storage space,
calculated as ((512 x 8)/1024) x 10. Compared to the video and audio space size of 160 KB
that the IoT sensor collected initially, this reduced the storage space by 37%.
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Table 4. Training efficiency of AVSR on the LRS2 dataset. The runtime means the time spent on the
model training simulation, and this result is based on equipment of an NVIDIA V100 GPU with
40 GB of memory.

AVSR Architecture Greedy Search Run Time (h) Beam Search (+LM) Run Time (h)
Clean Input
TM-CTC+GFP-GAN | AV 72 90
g\lgll-\(I:STC+Wav2Lip AV 69 88
TM-CTC AV 96 115
Added Noise
TM-CTC+GFP-GAN | AV 75 97
TM-CTC+Wav2Lip AV 79 9
Gans
TM-CTC AV 100 122

Table 5. Training efficiency of AVSR on the LRS3 dataset.

AVSR Architecture Greedy Search Run Time (h) Beam Search (+LM) Run Time (h)
Clean Input

TM-CTC+GFP-GAN | AV 78 104

TM-CTC+Wav2Lip

GANs AV 80 98

TM-CTC AV 100 118
Added Noise

TM-CTC+GFP-GAN | AV 79 109

TM-CTC+Wav2Lip

Gans AV 89 115

TM-CTC AV 103 126

To ensure that the versatility of our AVSR architecture extended beyond the confines
of the LRS2 and LRS3 datasets, we further diversified our validation process by randomly
selecting datasets from various scenarios within Lip Reading in the Wild (LRW) [45]. LRW,
as the largest audio-visual dataset, boasts an expansive collection of over 500 h of video
clips, spanning a multitude of scenarios and contexts, closely resembling the audio-visual
data source format prevalent in IoT devices. Our AVSR architecture possesses the capability
of handling audio-visual datasets sourced from diverse origins. The preprocessing module
played a pivotal role in this process, as it standardized audio-visual data into the requisite
picture sequences and waveform files essential for seamless integration with the AVSR
architecture, employing advanced FFMPEG technology. Table 6 clearly illustrates that our
AVSR architecture remained adaptable and consistently demonstrated robust performance
when applied to alternative datasets.

Table 6. Performance of AVSR on the LRW dataset.

AVSR Architecture ‘ Greedy Search Beam Search (+LM)
Clean Input
TM-CTC+GFP-GAN AV 13.40% 10.50%
TM-CTC+Wav2Lip GANs AV 17.30% 16.20%
TM-CTC AV 15.30% 13.80%
Added Noise
TM-CTC+GFP-GAN AV 34.80% 27.30%
TM-CTC+Wav2Lip Gans AV 42.20% 34.50%
TM-CTC AV 37.60% 29.20%

In the experiments on resource energy efficiency, both the GFP-GAN AVSR architec-
ture and the Wave2Lip-GAN architecture showed a significant improvement in resource
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energy efficiency on training, with a maximum improvement of more than 20 h, which
saved nearly one-fifth of the resource usage for the device. The experiments with both
architectures emphasized the untapped potential of the multimodal generative adversarial
network AVSR architecture for further applications for IoT devices and IoT energy efficiency.
Furthermore, our AVSR architecture places a paramount emphasis on processing data from
an array of IoT devices, underscoring its heightened potential for broader application and
scalability across diverse IoT device ecosystems.

5. Audio-Visual Speech Recognition for IoT

In the realm of IoT applications, the significance of model accuracy is paramount.
However, equally critical to us is the seamless integration of this model into IoT devices.
In this section, we explore the technical aspects and considerations vital for the effective
implementation of the multimodal generative adversarial network AVSR architecture into
the IoT ecosystem. The first segment of this section discusses the privacy and security
issues of IoT data sources. The latter part of this section focuses on the optimization and
deployment strategies pertinent to the multimodal generative adversarial network AVSR
architecture within the context of IoT.

5.1. Privacy and Security of Audio-Visual Data

In the context of real-world IoT scenarios, our foremost considerations revolve around
the preservation of privacy and the security of audio-visual data sources. Notably, our data
sources, LRS2 and LRS3, were meticulously curated from the BBC, necessitating a rigorous
adherence to a privacy policy agreement with the BBC itself. This stringent agreement is in
place to guarantee that sensitive data are exclusively accessible to duly authorized devices
and users. As part of our security measures, we deployed stringent password protocols and
integrated multi-factor authentication mechanisms, all working in concert to meticulously
limit data access to authorized entities. Furthermore, it is imperative that data access be
contingent upon the execution of a stringent privacy policy agreement. This agreement
delineates crucial facets, including the data type, processing objectives, storage duration,
and user authorization, with a notable emphasis on data security measures and user rights.
Furthermore, it encompasses provisions for notifying and managing policy alterations and
incorporates a dispute resolution mechanism, thus furnishing users with a transparent and
dependable framework for data governance.

To fortify the security of audio-visual data storage, we have embraced the federated
learning approach. Rather than centralizing data collection, our models can be downloaded
and trained on distinct local devices. This approach serves as a robust guardian of user
privacy, ensuring that data remain securely confined within the confines of the local device.
Simultaneously, this decentralized data storage method possesses the capacity to effectively
isolate different data sources, thus preempting any unintended mixing or leakage of data.

5.2. Extension and Application of AVSR

Optimizing and deploying our AVSR architecture is imperative for bolstering its
scalability to IoT devices. We implemented lightweight optimizations to enhance the
performance of our AVSR architecture. Initially, we introduced modularity to our AVSR
architecture by segregating each task into distinct modules, facilitating diverse task schedul-
ing. Simultaneously, a caching module was incorporated, to allow for direct storage of
trained model parameters and weights, thus preventing unnecessary computational re-
source expenditure through repeated model runs. Throughout the model’s inference
process, we cached intermediate results for subsequent reuse. This proactive caching
strategy effectively obviated the necessity for redundant retraining and furnished an unin-
terrupted approach for storing and retrieving model outputs in the presence of repetitive
data inputs, thereby mitigating computational overheads linked to repetitive computations.

To broaden the applicability of our AVSR architecture, we encapsulated the model
as an invocable service within docker containers. This enables neighboring IoT devices
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to locally retrieve the model through authenticated requests directed at the container’s
designated port. Given the diverse resource profiles of various IoT devices, we offer a
versatile low-latency processing solution. Our multimodal AVSR architecture seamlessly
accommodates IoT devices with video and audio data sources, facilitated by our prepro-
cessing module’s capacity to standardize these data sources into sequences of images and
waveform files for model inference. Simultaneously, we adapt the batch size to match the
hardware specifications of distinct IoT devices, leveraging batch processing to enhance
inference speed. Furthermore, our AVSR model is available for local downloads, thus posi-
tioning model inference in closer proximity to the data source, effectively curtailing data
transmission delays. Leveraging cached models for data reasoning results in a substantial
boost in computational speed. For instance, processing 0.9 h of data requires a mere 13 s.

Leveraging extensive and diverse real-world datasets from LRS2 and LRS3, our AVSR
architecture demonstrated its strength in solving real-world applications. Given both the
LRS2 and LRS3 datasets are derived from authentic real-world settings, our AVSR archi-
tecture consistently demonstrated a remarkable classification performance across an array
of real-world contexts, encompassing scenarios like subway environments, educational
interviews, and news interviews. These outcomes underscore the significant potential
of our AVSR architecture in real-world application scenarios. To further underscore the
versatile applicability of our AVSR architecture across multiple scenarios, we additionally
employed random selection of datasets from various scenarios within LRW for validation
purposes. The commendable performance observed in these diverse scenarios reaffirmed
the adaptability and efficacy of our AVSR architecture in tackling real-world IoT scenarios.

Beyond the scenarios within our dataset, the potential real-world applications of
our AVSR architecture are manifold. In the realm of smart homes, audio-visual speech
recognition empowers users to command home devices such as smart lighting, thermostats,
and security systems through simple verbal directives. This not only enhances the quality
of daily living but also fosters energy efficiency. Furthermore, in the healthcare sector,
audio-visual speech recognition could revolutionize the interaction with medical devices,
aiding healthcare professionals in recording and retrieving patient information, thereby
elevating the efficiency and precision of medical services. Within the domain of intelligent
transportation systems, audio-visual speech recognition technology is poised to elevate
the driving experience, by enabling drivers to control vehicle functions, access navigation
instructions, and acquire traffic information through voice commands, thereby enhancing
road safety and driving efficiency. Moreover, audio-visual speech recognition plays a
pivotal role in diverse sectors, including industrial automation, smart cities, and education.
Its integration brings greater intelligence and interactivity to IoT devices, promising to
transform and elevate the capabilities of these systems.

6. Conclusions

This paper focused on the application of a novel multimodal generative adversarial
network AVSR architecture for artificial intelligence Internet of things (IoT) and its per-
formance in AVSR classification accuracy. This research explored the use of traditional
and GAN-based generative adversarial network (GAN) techniques to enhance the AVSR
architecture. Experiments conducted on real datasets such as LRS2 and LRS3 demonstrated
the effectiveness of the proposed AVSR architecture. The results validated that the GAN ar-
chitecture was well suited for multimodal sensor inputs and improved on the performance
of the AVSR framework. They also verified that our multimodal generative adversarial
network AVSR architecture has efficient processing in terms of resource loss and energy
efficiency. In our research, there were potential limitations. We focused on exploring and
validating multimodal generative adversarial network AVSR architectures for artificially
intelligent IoT. However, it is important to note that there is still considerable potential for
further development in enhancing the robustness of multimodal generative adversarial
networks and applying them to different IoT devices. Moreover, when considering the
deployment of the AVSR architecture across various IoT devices, it becomes imperative to
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address critical concerns such as privacy security and the imperative need for low-latency
processing of data sources. In the future, we aim to further explore the application and
performance of the multimodal generative adversarial network AVSR architecture in Al
IoT to meet the hardware constraints of IoT devices. This includes the scalability of the
modal generation adversarial network AVSR architecture to different IoT devices and its
applicability to different scenarios. This provides potential avenues to extend the research
and applications in IoT to improve the generalizability of the multimodal generative ad-
versarial network AVSR architecture on IoT hardware. Furthermore, the management of
sensitive data in IoT devices constitutes a crucial concern for our prospective exploration
of AVSR architectures for Al-driven IoT. Algorithms like data encryption storage present
promising avenues for addressing this challenge.
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