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Abstract: The advent of Multilingual Language Models (MLLMs) and Large Language Models
(LLMs) has spawned innovation in many areas of natural language processing. Despite the exciting
potential of this technology, its impact on developing high‑quality Machine Translation (MT) out‑
puts for low‑resource languages remains relatively under‑explored. Furthermore, an open‑source
application, dedicated to both fine‑tuning MLLMs and managing the complete MT workflow for
low‑resources languages, remains unavailable. We aim to address these imbalances through the de‑
velopment of adaptMLLM, which streamlines all processes involved in the fine‑tuning of MLLMs
for MT. This open‑source application is tailored for developers, translators, and users who are en‑
gaged in MT. It is particularly useful for newcomers to the field, as it significantly streamlines the
configuration of the development environment. An intuitive interface allows for easy customisation
of hyperparameters, and the application offers a range of metrics for model evaluation and the ca‑
pability to deploy models as a translation service directly within the application. As a multilingual
tool, we used adaptMLLM to fine‑tune models for two low‑resource language pairs: English to Irish
(EN↔ GA) and English to Marathi (EN↔MR). Compared with baselines from the LoResMT2021
Shared Task, the adaptMLLM system demonstrated significant improvements. In the EN → GA
direction, an improvement of 5.2 BLEU points was observed and an increase of 40.5 BLEU points
was recorded in the GA → EN direction representing relative improvements of 14% and 117%, re‑
spectively. Significant improvements in the translation performance of the EN↔MR pair were also
observed notably in theMR→ ENdirectionwith an increase of 21.3 BLEU points which corresponds
to a relative improvement of 68%. Finally, a fine‑grained human evaluation of the MLLM output on
the EN → GA pair was conducted using the Multidimensional Quality Metrics and Scalar Quality
Metrics error taxonomies. The application and models are freely available.

Keywords: MLLMs; LLMs; multilingual language models; large language models; low‑resource
languages; neural machine translation; human evaluation; Irish; Marathi

1. Introduction
Large Language Models (LLMs), are AI models that use deep learning techniques

to generate human‑like text. These models are trained on vast amounts of text data, often
using unsupervised learning, to learn the patterns and relationships within language. This
results in models that can generate text which is often indistinguishable from text written
by a human.

The excitement surrounding LLMs stems from their potential to revolutionise many
fields, from language translation [1] and content generation [2] to chatbots e.g., https://op
enai.com/blog/chatgpt (accessed on 22 November 2023) and virtual assistants e.g., https:
//genie.stanford.edu/ (accessed on 22 November 2023). With their ability to understand
natural language and generate complex responses, LLMs have the potential to enhance hu‑
man communication and productivity in ways that were previously unimaginable. LLMs
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can also be used in creative applications, such as generating music e.g., https://soundraw
.io/ (accessed on 22 November 2023) or art e.g., https://labs.openai.com/ (accessed on 22
November 2023).

No Language Left Behind (NLLB) [1] represents a groundbreaking AI project in the
area of Multilingual Language Models (MLLMs). The project has released open‑source
models proficient in delivering high‑quality translations across 200 languages and has en‑
hanced translations for low‑resource languages on platforms like Facebook and Instagram.
The NLLB‑200 model, integrated into the Wikimedia Foundation’s Content Translation
tool, aids Wikipedia editors in translating content into their preferred languages. These
editors can now more effectively translate articles from lesser‑known languages, such as
Luganda and Icelandic, enriching Wikipedia’s language diversity. The open‑sourced na‑
ture of the NLLB‑200 model also empowers the research community andWikipedia editor
groups to expand upon their findings.

When building LLMs, the focus is on designing and training the model architecture.
This involves selecting the appropriate neural network architecture and hyperparameters,
as well as deciding on the training data and optimisation techniques to use.

Tuning anMLLMor LLM, on the other hand, involves adjusting the parameters of the
model to improve its performance on a specific task. In neural networks such as MLLMs
andLLMs, theweights and biases are parameters that the network adjusts through training
to minimise a cost function. This is performed by training the model on a task‑specific
dataset and adjusting the model’s hyperparameters to optimise its performance. Tuning
an MLLM can be a challenging task, as the model is often very complex and the training
process can take a long time. Our paper concentrates on fine‑tuning pre‑built MLLMs to
enhance machine translation (MT) with a particular focus on low‑resource language pairs.

The process of fine‑tuning anMLLM involves several distinct stageswhich are broken
down into individual steps. These steps include setting up the environment, preparing the
dataset, parameterising and fine‑tuning the chosen MLLM, and evaluating and deploying
the model. This modular approach has proven to be effective in fine‑tuning MLLMs, and
we have structured our adaptMLLM application to cater for both developers and transla‑
tors. In light of the environmental impact of developing and running large AImodels [3,4],
we also calculate carbon emissions in a “green report”. It is envisaged that such a report
will incentivise more responsible and sustainable model development.

A significant aspect of our research involves creating applications and models to ad‑
dress language technology challenges. Similar to our previous work, which focused on
developing NMTmodels [5], we hope this paper will be particularly helpful for those new
to MT wishing to learn more about fine‑tuning MLLMs.

Unlike many translation toolkits, our application does not use a command line in‑
terface. Instead, we have designed and fully implemented the interface in Google Colab,
(https://colab.research.google.com, accessed on 22 November 2023) a cloud‑hosted solu‑
tion (https://cloud.google.com, accessed on 22 November 2023) that is more intuitive for
both educational and research settings. Furthermore, our application provides Graphical
User Interface (GUI) controls within adaptMLLM, enabling users to customise all key hy‑
perparameters required for MLLMs.

Our application is designed to operate as a platform as a service (PaaS) cloud comput‑
ing application, allowing for quick and efficient scaling of the infrastructure. Additionally,
the deploy function allows for immediate deployment of trained models.

This paper is organised by initially presenting related work and background informa‑
tion on MLLMs and LLMs in Section 2. This is followed by a description of our datasets
in Section 3. The key features of the adaptMLLM architecture are discussed in Section 4
and an empirical evaluation of our trained models, including a human evaluation is car‑
ried out in Section 5. The system is discussed in Section 6 before drawing conclusions and
describing future work in Section 7.

https://soundraw.io/
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2. Related Work
2.1. Transformer Architecture

After the attention mechanism was introduced, researchers naturally began to ex‑
plore whether attention alone could handle the bulk of the translation task. Accordingly,
Vaswani et al. proposed that “attention is all you need” in their Transformer architec‑
ture [6], which has achieved state‑of‑the‑art (SOTA) performance on many natural lan‑
guage processing (NLP) benchmarks by exclusively using an attention mechanism, elimi‑
nating the need for recurrence and convolution, and enabling the employment of far sim‑
pler feed‑forward neural networks.

In the context of our research, we have previously demonstrated that Transformer‑
based models deliver high‑functioning models for the low‑resource EN → GA language
pair [7].

The default Transformer architecture follows an encoder–decoder structure generat‑
ing its output without relying on recurrence and convolutions. The encoder’s role is to
convert an input sequence into a series of continuous representations, which are subse‑
quently fed into a decoder. The decoder produces an output sequence by using the en‑
coder’s output in combination with the output generated by the decoder at the preceding
time step.

2.2. Multilingual Language Models—NLLB
MT has become a significant area of research in AI with the aim of eliminating lan‑

guage barriers worldwide. However, the current focus is limited to a small number of
languages, neglecting the vast majority of low‑resource languages. In an effort to address
this issue, the No Language Left Behind (NLLB) initiative was launched. This project aims
to overcome the challenges of using MT for low‑resource language translation by develop‑
ing datasets and models that bridge the performance gap between low‑ and high‑resource
languages. The NLLB team has also created architectural and training enhancements tai‑
lored to support MT for low‑resource languages. Their work is open source, (https://gith
ub.com/facebookresearch/fairseq/tree/nllb, accessed on 22 November 2023), and many of
their models serve as baselines for fine‑tuning with adaptMLLM.

2.3. Large Language Models
The increasing availability of large datasets provides the raw material for LLM train‑

ing [8–10], enabling performance improvement onNLP tasks, which can learn from awide
variety of sources.

Another key factor in driving the ubiquity of LLMs has been the growth in computa‑
tional power dedicated to the domain. As a consequence, more powerful computers now
have the capability to train LLMs on massive datasets which, in turn, has led to SOTA
results on many common NLP tasks [11]. New training algorithms developed through
advancement in AI research has further boosted LLM performance [12].

LLMs have the potential to improve the use of technology across a wide range of
domains, among which include medicine, education and computational linguistics. In
education, LLMs may be used for personalised student learning experiences [13], while in
the medical domain, analysing large amounts of medical files can assist doctors in treating
patients [14]. Of particular interest to our research is the manner in which LLMs can be
used within the realm of computational linguistics, more specifically in the field of MT.

2.3.1. GPT‑J
Transformers are increasingly the architecture of choice for NLP problems, replacing

Recurrent Neural Networks (RNNs) such as Long Short‑Term Memory (LSTM) [15].
GPT‑J is an open‑source implementation of a particular class of LLMsknownasGener‑

ative Pre‑trained Transformer (GPT)models [16]. GPT‑J is a Transformermodel trained us‑
ing Wang’s Mesh Transformer JAX (https://github.com/kingoflolz/mesh‑transformer‑jax,
accessed on 22 November 2023). GPT‑J‑6B (https://6b.eleuther.ai, accessed on 22 Novem‑

https://github.com/facebookresearch/fairseq/tree/nllb
https://github.com/facebookresearch/fairseq/tree/nllb
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ber 2023) is an autoregressive languagemodel, created by EleutherAI (https://www.eleuth
er.ai, accessed on 22 November 2023), with 6 billion trainable parameters. As an advanced
alternative to OpenAI’s GPT‑3, it performs very well on a wide array of NLP tasks such as
chat, summarisation, and question answering.

2.3.2. GPT‑4
The primary distinction between GPT‑3.5 and GPT‑4 (https://openai.com/product/g

pt‑4, accessed on 22 November 2023) is that while the former is a text‑to‑text model, the
latter is more of a data‑to‑text model, exhibiting the ability to perform tasks that its pre‑
decessor could not. For example, GPT‑4 is capable of processing visual input as part of a
prompt, such as images or web pages, and can even generate text that explains the humour
in memes. Consequently, GPT‑4 can be classified as a “multimodal model”. Furthermore,
GPT‑4 has a longer memory than its previous versions, with a short‑term memory closer
to 64,000 words, enabling it to maintain coherence during extended interactions. GPT‑4
also enables users to select different personalities for the model’s responses.

The number of parameters utilised in the training of GPT‑4 has not been disclosed
by OpenAI; however, other sources, such as AX Semantics (https://en.ax‑semantics.com/,
accessed on 22 November 2023), have estimated the number to be around 100 trillion. AX
Semantics maintains that such a number makes the language model more akin to the func‑
tioning of the human brain with respect to language and logic (https://en.ax‑semantics.co
m/blog/gpt‑4‑and‑whats‑different‑from‑gpt‑3/, accessed on 22 November 2023).

Additionally, GPT‑4 outperformed GPT‑3.5 in various standardised tests, such as the
LSAT, SAT, Uniform Bar Exam, and GRE, and was shown to be 82% less likely to respond
when prompted inappropriately and 60% less likely to generate false information [17].

2.3.3. BARD
BARD (https://bard.google.com/, accessed on 22November 2023) utilises a lightweight

version of the Language Model for Dialogue Applications (LaMDA) [18], which is an AI
engine developed by Google. BARD has two primary objectives: to ensure the accuracy of
its responses and to integrate the benefits of AI into Google’s everyday products. Google
has a rich history of employing AI to improve the search experience for billions of users.
Its earlier Transformermodel, BERT (https://github.com/google‑research/bert, accessed on
22 November 2023), was a breakthrough in comprehending the intricacies of human lan‑
guage. The company has since introduced MUM (https://blog.google/products/search/in
troducing‑mum/, accessed on 22 November 2023), which is a thousand times more potent
than BERT. Recent AI technologies like LaMDA, PaLM, Imagen, and MusicLM are build‑
ing on these developments, creating newways to interact with information from language
and images to video and audio. Furthermore, in 2018, Google was one of the pioneering
companies to release a set of AI principles (https://ai.google/principles/, accessed on 22
November 2023).

Apart from its own products, Google aims to assist developers in innovating with
AI by simplifying and scaling the benefits of these advances. In the future, the company
intends to create a suite of tools and APIs that will make it easier to build innovative appli‑
cations with BARD and more generally with its AI.

2.4. DeepSpeed
The advent of DeepSpeed [19], a free software library from Microsoft, was a signifi‑

cant breakthrough for researchers looking to implement and fine‑tune MLLMs and LLMs
with limited resources. Large model training, in terms of scale, speed, and cost, is now
achievable for most people. Additionally, DeepSpeed’s most recent Transformer kernel
improvements enabled the DeepSpeed team to achieve SOTA performance, setting a new
record for the fastest BERT [11] pre‑training.

For small teams, DeepSpeed’s Zero Redundancy Optimizer (ZeRO) is particularly ad‑
vantageous, providing fresh memory optimisation for large‑scale distributed deep learn‑

https://www.eleuther.ai
https://www.eleuther.ai
https://openai.com/product/gpt-4
https://openai.com/product/gpt-4
https://en.ax-semantics.com/
https://en.ax-semantics.com/blog/gpt-4-and-whats-different-from-gpt-3/
https://en.ax-semantics.com/blog/gpt-4-and-whats-different-from-gpt-3/
https://bard.google.com/
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ing. With minor changes to a PyTorchmodel, DeepSpeed can improve the speed and scale
of model training.

2.5. HuggingFace
The Hugging Face Transformers library (https://github.com/huggingface/transform

ers, accessed on 22 November 2023) [20] is an open‑source software library that provides
a wide range of pre‑trained SOTANLPmodels, including models for language modelling,
question answering, text classification, and MT, among others.

The library is built on top of popular deep learning frameworks such as PyTorch
(https://github.com/pytorch/pytorch, accessed on 22 November 2023) and TensorFlow, (ht
tps://github.com/tensorflow/tensorflow, accessed on 22 November 2023) and it provides
a simple and consistent API for accessing pre‑trained models and fine‑tuning them for
downstream tasks. The library also includes a set of tools for data preprocessing, model
evaluation, and visualisation, which make it easier for researchers and developers to ex‑
periment with different NLP models and tasks.

The Hugging Face Transformers library has become one of the most popular and
widely used NLP libraries in the industry and the research community, and it has been
adopted by many companies and organisations to build NLP applications and systems.

2.6. Human Evaluation
Within the fields of NLP and MT, human evaluation is increasingly recognised as

critical, often meriting its own specialised research track or workshop at leading confer‑
ences [21]. This emphasis has spurred a wealth of studies focusing on human evaluation
related to MT, proving especially valuable in assessing low‑resource languages [22,23].

A set of best practices for human evaluation in MT has emerged, detailed in a collec‑
tion of suggested guidelines [24]. Our study incorporates these guidelines, aligning with
comparable EN ↔ GA studies at the ADAPT centre. To enhance these guidelines, a de‑
tailed human analysiswas conducted, employing both the ScalarQualityMetric (SQM) [25]
and theMultidimensional QualityMetric (MQM) [26] for a nuanced assessment. SQM and
MQM, are both widely used in industry and academia, to evaluate the quality of machine‑
generated text.

SQM is a simple, single‑number metric that is used to measure the overall MT quality.
It is often used when a quick evaluation of the quality of the text is required.

MQM, on the other hand, is a more complex metric that measures the quality of the
text across multiple dimensions such as fluency, adequacy, and coherence, to name a few.
It provides a more comprehensive evaluation of MT by measuring the quality of the text
across different aspects.

3. Datasets
3.1. Language Pairs

To evaluate the translation performance of adaptMLLM in fine‑tuning MLLMs for
low‑resource languages, we had to choose suitable language pairs. Furthermore, appro‑
priate datasets upon which we could benchmark our performance also had to be sourced.
The EN↔ GA and EN↔MR language pairs were selected since they fulfilled the criteria
of low‑resource languages.

The Irish language, also known as Irish Gaelic, is the first official language of the
Republic of Ireland, and is also recognised as a minority language in Northern Ireland.
According to the 2022 Irish census (https://www.cso.ie/en/releasesandpublications/ep/p
‑cpsr/censusofpopulation2022‑summaryresults/educationandirishlanguage/, accessed on
22 November 2023), 1.87 million people in the Republic of Ireland reported being able to
speak Irish to some degree, which represents 40.4% of the population. Irish is also spoken
by a small number of people in other countries, particularly in the United States, Canada,
and Australia, as well as in Irish‑speaking communities in other parts of the world. It is
also one of the official languages of the European Union and a recognised minority lan‑

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/pytorch/pytorch
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://www.cso.ie/en/releasesandpublications/ep/p-cpsr/censusofpopulation2022-summaryresults/educationandirishlanguage/
https://www.cso.ie/en/releasesandpublications/ep/p-cpsr/censusofpopulation2022-summaryresults/educationandirishlanguage/
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guage in Northern Ireland with an ISO code of “GA” (https://www.iso.org/, accessed on
22 November 2023).

The dominant language spoken in India’s Maharashtra state is Marathi, with an ISO
code of “MR”. It has over 83 million speakers, and it is a member of the Indo‑Aryan lan‑
guage family. Despite being spoken by a significant number of people, Marathi is consid‑
ered to be relatively under‑resourcedwhen compared to other languages used in the region.

3.2. Shared Task Datasets
To benchmark the performance of our EN↔ GAmodels, trained using adaptMLLM,

datasets from the LoResMT2021 Shared Task (https://github.com/loresmt/loresmt‑2021, ac‑
cessed on 22 November 2023) [27] were used. These datasets enabled the evaluation of
adaptMLLM models, since the shared task focused on low‑resource languages which in‑
cluded both the EN↔GApair and the EN↔MRpair. Furthermore, using official datasets
from a shared task enables our models’ performance to be directly compared with models
entered by other teams.

Both datasets focused on the specific domain of translation of COVID‑related data. A
parallel corpus of EN ↔ GA sentences concentrating on the COVID domain were mainly
drawn from the Government of Ireland (https://www.gov.ie/, accessed on 22 November
2023) and the Health Service Executive (https://www.hse.ie/, accessed on 22 November
2023) websites. EN ↔ MR parallel Covid sentences were extracted from the Government
of India (https://www.mygov.in/, accessed on 22 November 2023) website, BBC Marathi
(https://www.bbc.com/marathi, accessed on 22 November 2023) and online newspapers.
A detailed breakdown of all sources is available in [27].

The datasets from the shared task provided 502 Irish and 500 Marathi validation sen‑
tences whereas 250 (GA→ EN), 500 (EN→GA), and 500 (EN↔MR) sentences weremade
available in the test datasets, i.e., exactly the same as our other experiments to allow direct
comparison with previous work. Training data consisted of 20,933 lines of parallel data
for the EN ↔ MR language pair and 13,171 lines of parallel data were used to train the
EN↔ GA models.

4. Approach
After outlining the background that gave rise to the creation ofMLLMs and LLMs, we

now introduce the adaptMLLM tool. This tool allows users to customise these components
to their liking. Figure 1 offers a high‑level overview of the platform’s system architecture.

The application is designed as an IPython notebook and employs Pytorch for model
training. The utilisation of a Jupyter notebook format facilitates easy sharing within the
AI community. Additionally, the challenge of configuring the proper development envi‑
ronment is substantially reduced, as all necessary packages are automatically downloaded
while the application is running.

There are options to run the system for fine‑tuning MLLMs, evaluating MLLM trans‑
lation performance, testing LLM playgrounds and conducting a human evaluation of the
translation performance. The application is run as a Colab instance on the Google Cloud.
Translation models are developed using aligned text corpora from both the original and
the target languages. Tensorboard offers a live graphical representation of the training pro‑
cess of the model. The system is primarily employed for training models and functioning
as a translation service, either of which can be chosen at run‑time.

The application is primarily run as a Google Colab application but may also be run
as an Jupyter notebook. Given the ease of integrating Google drive storage into Colab, we
have used adaptMLLMexclusively as aGoogle Colab application for our own experiments,
some of which are described in Section 5. Key features of the notebook are highlighted in
Figure 2.

https://www.iso.org/
https://github.com/loresmt/loresmt-2021
https://www.gov.ie/
https://www.hse.ie/
https://www.mygov.in/
https://www.bbc.com/marathi
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4.1. Initialisation and Pre‑Processing
Initialisation enables connection to Google Drive to run experiments, automatic in‑

stallation of Python, SentencePiece (https://github.com/google/sentencepiece, accessed on
22 November 2023) [28], Pytorch, HuggingFace Transformer’s library (cf. Section 2.5), and
other libraries.

The train, validation, and test splits for both source and target languages may be up‑
loaded by the users. In cases where a user has not already created the required splits for
model training, single source and target files may be uploaded. The necessary splits to
form the training, validation, and test files will be automatically created based on the split
ratio specified by the user.

Figure 1. Proposed architecture for adaptMLLM: a system for fine‑tuning MLLMs.

4.2. Modes of Operation
There are severalmodes of operation, namelyMLLMfine‑tuning, evaluation ofMLLM

translation performance, experimentation with LLM playgrounds, and a human evalua‑
tion of the translation output.

WithMLLMfine‑tuning, the application develops models using Google’s GPU‑based
cloud platform. For a monthly subscription, the Google Colab Pro+ is a prerequisite since
fine‑tuning demands access to high‑end GPU and compute resources.

Apart from low‑cost access to a high‑spec infrastructure, model development on the
GoogleCloud is also recommendedgiven the platformuses 100% renewables [29]. This has
emerged as an economical choice for practitioners in the field of low‑resource languages,
as the creation of smaller models involves reduced training times.

 https://github.com/google/sentencepiece
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Figure 2. Overview of adaptMLLM. Key areas include initialisation, menu of operationmodes, load‑
ing and pre‑processing, MLLM fine‑tuning, visualisation, deployment, a green report, MLLM trans‑
lation and evaluation, LLM playgrounds and human evaluation (cf. Section 4).
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4.3. Fine‑Tuning and Visualisation
The system has been designed to enable users to choose variations of the base MLLM

architecture. In the current release, users can choose to fine‑tune the following baselines:
(i) NLLB‑200‑600M, (ii) NLLB‑200‑1.3M, (iii) NLLB‑200‑3.3B, or (iv) a user‑specified base‑
line. The fine‑tuning mode allow users to specify, using GUI controls, the exact hyperpa‑
rameters required for the chosen approach.

The visualisation segment provides live graphing of model progression, allowing for
the monitoring of model convergence. All log files are preserved and accessible for review
to examine the training convergence, as well as to evaluate the model’s accuracy during
training and validation phases.

4.4. Deployment
Gradio (https://gradio.app/, accessed on 22 November 2023) [30] is an open‑source

Python library that enables the development of easy‑to‑use web applications for machine
learning models. The library integrates with the most popular Python libraries, including
Scikit‑learn and PyTorch.

A key advantage is that it allows interaction with a web app developed for a Jupyter
or Colab notebook. Consequently, it was selected as the library used for the deployment
of our custom fine‑tuned models.

4.5. Green Report
In recent years, the ecological footprint of technology, alongwith the assessment of its

impacts, has become increasingly prominent [4]. Indeed, this may be viewed as a natural
response to truly massive NLP models which have been developed by large multinational
corporations with little apparent regard for their environmental impact.

Specifically, HPO for finely‑tuned MLLMs can be especially demanding when the
fine‑tuning of hyperparameters spans a wide search space.

Consequently, a wide array of tools for assessing NLP’s carbon footprint has been
created [31], and the idea of sustainable NLP has emerged as a significant area of research.
This has been recognised at numerous prestigious conferences; for instance, the Green and
Sustainable NLP track at EACL 2021 (https://2021.eacl.org/news/green‑and‑sustainable‑n
lp, accessed on 22 November 2023).

Reflecting these advancements, adaptMLLM has integrated a “green report” feature
that records the kgCO2 emitted during the development of the model. This aligns closely
with the current industrymovement towardsmeasuring the environmental impact ofNLP ac‑
tivities.

4.6. MLLMs: Translation and Evaluation
Besides facilitating model fine‑tuning, the application also provides functionality for

translation and assessing model performance. The use of pre‑trained models for transla‑
tion is also parameterised; users specify the model’s name as a hyperparameter, which is
then used to perform translation and evaluation on the test files.

After building the system, users can select the model they wish to use for translation
of the test set. While human judgment is often the most reliable for assessing translation
quality, human evaluators are not always accessible, may have differing opinions, and can
be costly to engage for experimental purposes. As a result, automatic evaluation metrics
are commonly employed, particularly by developers who are tracking the step‑by‑step
advancement of their systems.

Several automatic evaluation metrics provided by SacreBleu (https://github.com/m
jpost/sacrebleu, accessed on 22 November 2023) [32] are used: BLEU [33], TER [34] and
ChrF [35]. Translation quality can also be evaluated using Meteor [36] and F1 score [37].

It is important to recognise that BLEU, ChrF, Meteor, and F1 are metrics based on pre‑
cision, thus higher values signify better performance. On the other hand, TER is a metric
based on errors, with lower values denoting superior translation quality. The available

https://gradio.app/
https://2021.eacl.org/news/green-and-sustainable-nlp
https://2021.eacl.org/news/green-and-sustainable-nlp
https://github.com/mjpost/sacrebleu
https://github.com/mjpost/sacrebleu
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evaluation options include standard (truecase) and lowercase BLEU scores, along with
sentence‑level BLEU scoring, as well as ChrF1 and ChrF3.

Logging occurs at three tiers: a model development log for charting progress, an out‑
put log from the training console, and a log of the evaluation outcomes. Additionally,
there is a references section that provides materials pertinent to the development, utili‑
sation, and comprehension of adaptMLLM. Presently, validation throughout the training
process is performed based on model loss.

4.7. LLMs: Playgrounds
When OpenAI (https://openai.com/, accessed on 22 November 2023) released a play‑

ground for its GPT‑3 model, the community was quick to create demos. Given that Ope‑
nAI’s GPT‑3 is proprietary, generating text using its API would incorporate a cost and
involve sending data to the site. Ideally, we sought to host an open‑source text generation
model, and associated playground app in our own environment.

In 2021, Eleuther AI created GPT‑J, an open source text generation model to rival
GPT‑3 and the model is freely available on the Hugging Face Model Hub allowing us to
download variations of this model. In this spirit, we have developed our own fully cus‑
tomisable text generation playground using GPT‑J. Using Gradio, a web interface that can
interact with these GPT‑J models was developed.

5. Empirical Evaluation
After outlining the theoretical framework and the tool itself, we proceed to assess the

efficacy of the adaptMLLM methodology by training models for the EN ↔ GA and the
EN↔MR language pairs.

5.1. Infrastructure and Hyperparameters
A Google Colab Pro+ subscription facilitated rapid development of prototypes us‑

ing NVIDIA 40 GB GPU graphics cards (A100‑SXM4‑40 GB) and compute resources of up
to 89 GB of system memory when available [38]. All MT models were trained using the
adaptMLLM application.

The DeepSpeed library (cf. Section 2.4) is a critical component in making the adaptM‑
LLM system work, since it enables our models to be loaded across both GPU and system
memory. Without such a library, very significant compute resources would be required
which would be prohibitively costly for our team to hire. The hyperparameters used for
developing models for both language pairs are outlined in Table 1.

Table 1. HPO with optimal hyperparameters, within the search space, are highlighted in bold.

Hyperparameter Values

Epochs 1, 3, 5

Batch size 8, 12, 16

Gradient accumulation steps 2, 4, 8

Learning rate 1 × 10−5 , 3 × 10−5, 9 × 10−5

Weight decay 0.01, 0.1, 1, 2

Mixed precision False, True

5.2. Results: Automatic Evaluation
To determine the quality of our translations, automated metrics were employed. For

comparison with our prior studies, the performance of models was gauged using three
evaluativemetrics: BLEU, TER, andChrF. Thesemetrics reflect the precision of translations
produced by our finely‑tuned MLLM systems. We report case‑insensitive BLEU scores at
the corpus level. Note that BLEU and ChrF are precision‑based metrics, so higher scores

https://openai.com/
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are better, whereas TER is an error‑based metric and lower scores indicate better transla‑
tion quality.

5.2.1. Translation in the EN↔ GA Directions
The experimental results from the LoResMT2021 Shared Task in the EN↔ GA direc‑

tions are summarised in Tables 2 and 3 and are compared with our experimental findings,
adaptMLLM, achieved by fine‑tuning a 3.3B parameter NLLB MLLM.

The highest‑performing EN→ GA system in the LoResMT2021 Shared Task was sub‑
mitted by the ADAPT team [39]. The model was developed with an in‑house application,
adaptNMT [5] using a Transformer architecture. It performed well across all key transla‑
tion metrics (BLEU: 36.0, TER: 0.531 and ChrF3: 0.6).

Subsequently, these results were improved upon (BLEU: 37.6, TER: 0.577 and ChrF3:
0.57) by training a Transformer model on a bespoke health dataset, gaHealth [40].

By fine‑tuning the NLLB MLLM, using the parameters outlined in Table 1, a signifi‑
cant improvement in translation performance was achieved. The adaptMLLM EN → GA
en2ga system, shown in Table 2, achieves a BLEU score of 41.2, which is 5.2 BLEU points
higher than our previous score which won the shared task in 2021. This represents a rela‑
tive improvement of 14%.

Table 2. EN → GA: adaptMLLM systems compared with LoResMT2021. The impact of fine‑tuning
the baseline NLLB model is evident with the BLEU score rising from 29.7 to 41.2 representing a
39% relative improvement. Models developed using adaptMLLM were trained using the optimal
hyperparameters set out in Table 1.

Team System BLEU ↑ TER ↓ ChrF3 ↑
adaptMLLM en2ga‑tuned 41.2 0.51 0.48
adapt covid_extended 36.0 0.531 0.60
adapt combined 32.8 0.590 0.57
adaptMLLM en2ga‑baseline 29.7 0.595 0.559
IIITT en2ga‑b 25.8 0.629 0.53
UCF en2ga‑b 13.5 0.756 0.37

Table 3. GA → EN: adaptMLLM systems compared with LoResMT2021. The impact of fine‑tuning
the baseline NLLB model is evident with the BLEU score rising from 47.8 to 75.1 representing a
57% relative improvement. Models developed using adaptMLLM were trained using the optimal
hyperparameters set out in Table 1.

Team System BLEU ↑ TER ↓ ChrF3 ↑
adaptMLLM ga2en‑tuned 75.1 0.385 0.71
adaptMLLM ga2en‑baseline 47.8 0.442 0.692
IIITT ga2en‑b 34.6 0.586 0.61
UCF ga2en‑b 21.3 0.711 0.45

For translation in the GA → EN direction, illustrated in Table 3, the best‑performing
model for the LoResMT2021 Shared Task was developed by IIITT with a BLEU of 34.6, a
TER of 0.586 and ChrF3 of 0.6. Accordingly, this serves as the baseline score by which we
can benchmark our GA → EN model, developed by fine‑tuning a 3.3B parameter NLLB
using adaptMLLM. Similar to the results achieved in the EN → GA direction, significant
improvement in translation performance was observed using this new method. The per‑
formance of the adaptMLLMmodel offers an improvement across all metrics with a BLEU
score of 75.1, a TER of 0.385 and a ChrF3 result of 0.71. In particular, the 117% relative
improvement in BLEU score against the IIITT system is very significant. The adaptMLLM
model is a fine‑tuned pre‑trained NLLB 3.3B parameter MLLM, whereas the IIITT model
fine‑tuned a smaller Opus MTmodel fromHelsinki NLP. MLLMs and LLMs have already
learned to represent natural language patterns and structures from large amounts of data,
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which can be adapted to specific tasks or domains by updating the model’s parameters
with a smaller amount of annotated data. The effect of this approach is demonstrated in
the substantially higher BLEU achieved by the adaptMLLM model relative to the IIITT
model which was trained on a much smaller Opus model.

The improvement in translation performance is real andnot just a BLEUscore anomaly
given that large improvements were simultaneously observed across the BLEU, TER and
CHRF metrics. More specifically, Meta’s nllb‑200‑3.3B model has a memory footprint
of 17.58 GB enabling 3.3 billion parameters to be trained compared to the Helsinki‑NLP
model, opus‑mt‑ga‑en, which is just 295 MB and has a correspondingly much smaller set
of trainable parameters. Another aspect differentiating the adaptMLLM approach is the
relatively broad hyperparameter search space compared to systems developed by other
teams which are outlined in Table 3. We experimented with the number of epochs, the
batch size, the gradient accumulation steps, the learning rate, the weight decay and the
type of precision used. The exact hyperparameters used are illustrated in Table 1.

5.2.2. Translation in the EN↔MR Directions
The experimental results from the LoResMT2021 Shared Task in the EN↔MR direc‑

tions are summarised in Tables 4 and 5, and are compared with our experimental findings
in developing adaptMLLM. For the shared task, the highest‑performing EN → MR sys‑
tem was submitted by the IIITT team. Their model used a Transformer architecture and
achieved a BLEU score of 34.6, a TER of 0.586, and ChrF3 of 0.61.

Table 4. EN→MR: adaptMLLM systems compared with LoResMT2021. The impact of fine‑tuning
the baseline NLLB model is evident with the BLEU score rising from 19.8 to 26.4, representing a
33% relative improvement. Models developed using adaptMLLM were trained using the optimal
parameters set out in Table 1.

Team System BLEU ↑ TER ↓ ChrF3 ↑
adaptMLLM en2mr‑tuned 26.4 0.56 0.608
IIITT en2mr‑IndicTrans‑b 24.2 0.59 0.597
oneNLP‑IIITH en2mr‑Method2‑c 22.2 0.56 0.746
oneNLP‑IIITH en2mr‑Method3‑c 22.0 0.56 0.753
oneNLP‑IIITH en2mr‑Method1‑c 21.5 0.56 0.746
adaptMLLM en2mr‑baseline 19.8 0.656 0.57
adaptNMT en2mr 13.7 0.778 0.393

Table 5. MR→ EN: adaptMLLM systems compared with LoResMT2021. The impact of fine‑tuning
the baseline NLLB model is evident with the BLEU score rising from 42.7 to 52.6, representing a
23% relative improvement. Models developed using adaptMLLM were trained using the optimal
hyperparameters set out in Table 1.

Team System BLEU ↑ TER ↓ ChrF3 ↑
adaptMLLM mr2en‑tuned 52.6 0.409 0.704
adaptMLLM mr2en‑baseline 42.7 0.506 0.639
oneNLP‑IIITH mr2en‑Method3‑c 31.3 0.58 0.646
oneNLP‑IIITH mr2en‑Method2‑c 30.6 0.57 0.659
oneNLP‑IIITH mr2en‑Method1‑c 20.7 0.48 0.735
adaptNMT mr2en 19.9 0.758 0.429
UCF mr2en‑UnigramSegmentation‑b 7.7 0.24 0.833
IIITT mr2en‑IndicTrans‑b 5.1 0.22 1.002

Again the approach taken by adaptMLLM in fine‑tuning a 3.3.B parameter NLLB
MLLM yielded the best performance compared with other systems entered for the shared
task. The EN → MR adaptMLLM en2mr system achieves the highest BLEU score of 26.4
compared with IIITT, the winning team in the EN → MR shared task. IIITT had a BLEU
score of 24.2 which represents a relative improvement of 9% for the adaptMLLM system.
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The other key translation metrics of TER and ChrF3 were also improved upon indicating
that the adaptMLLM system is the best approach in the EN→MR direction.

For translation in the MR → EN direction, the best‑performing model for the
LoResMT2021 Shared Task was developed by oneNLP‑IIITT with a BLEU score of 31.3,
a TER of 0.58 and ChrF3 of 0.646. This serves as the baseline score by which our MR→ EN
model, developed using adaptMLLM, can be benchmarked. The performance of the
adaptMLLMmodel offers a significant improvement across all metrics with a BLEU score
of 52.6, a TER of 0.409 and a ChrF3 of 0.704. Again this represents a very strong relative
improvement of 68% in BLEU compared with the winning team from the shared task.

5.3. Human Evaluation Results
Irish, characterised by its complexmorphology, flexible sentence structure, and exten‑

sive inflection, presents unique challenges in translation from English. As a result, accu‑
rately producing grammatical aspects like gender or case inflections in nouns within Irish
translations often proves to be a difficult task.

This research aims to investigate the manner in which a neural machine translation
(NMT) system, like a fine‑tuned NLLB model, manages these linguistic complexities. Cur‑
rent studies imply that fine‑tunedMLLMs are likely to enhance these language features [1].
MLLMs and LLMs tackle the issue indirectly through subwordmodels in an unsupervised
fashion, without grasping the explicit formal principles of grammatical categories.

Past human evaluation studies examining EN → GA MT performance have centred
on outputs from NMT systems that did not use pre‑trained models [41]. In the context of
this research, we now conduct human evaluation on the output from our MLLM models.
The work is further differentiated in that it examines the output in both the EN→ GA and
GA→ EN directions. The approach taken in the previous study and our current work are
similar in that we use SQM and MQM as our human evaluation metrics.

While automatic evaluation metrics show that a fine‑tuned MLLM approach leads to
significant improvements compared to building a Transformer model from scratch, it fails
to address the issue of grammatical or linguistic quality in the translated output. Such
an approach does not account for the subtleties of handling gender or cases in the target
language. To gain a more comprehensive understanding of the linguistic errors produced
by MLLM systems, a fine‑grained human evaluation was conducted through a manual
error analysis. This approach allowed for the identification and categorisation of specific
translation errors associated with each of the evaluated systems, providing a foundation
for future work aimed at improving the translation quality of the models.

We also describe the annotation framework, the overall annotation process, and the
level of agreement among annotators, which broadly follows the approach taken by other
fine‑grained human evaluation studies [41,42].

5.3.1. Scalar Quality Metrics
The SQM frameworkmodifies theWMT shared‑task settings to acquire segment‑level

scalar ratingswith document context. SQMassesses the quality of translations using a scale
that ranges from 0 to 6, which is different from the WMT approach [43], which employs a
range of 0 to 100.

When using this evaluation method, annotators are required to choose a rating rang‑
ing from 0 to 6 after being presentedwith the source and target sentences. Table 6 provides
the SQM quality levels for ratings 0, 2, 4, and 6. In situations where the translations do not
precisely align with the core SQM levels, annotators may select intermediate ratings of 1,
3, or 5.
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Table 6. SQM levels explained [25].

SQM Level Details of Quality

6
Perfect Meaning and Grammar: The meaning of the translation is completely
consistent with the source and the surrounding context (if applicable). The
grammar is also correct.

4
Most Meaning Preserved and Few Grammar Mistakes: The translation retains
most of the meaning of the source. This may contain some grammar mistakes
or minor contextual inconsistencies.

2
Some Meaning Preserved: The translation preserves some of the meaning of
the source but misses significant parts. The narrative is hard to follow due to
fundamental errors. Grammar may be poor.

0 Nonsense/No meaning preserved: Nearly all information is lost between the
translation and source. Grammar is irrelevant.

The average annotator SQM scores arising from our human evaluation were com‑
pared with automatic metric scores recorded by adpatMLLM when evaluating the
EN↔ GA systems. These results, illustrated in Table 7, indicate a high level of correlation
between the automatic metrics and the SQM outputs of the human evaluation. Clearly,
the system translating in the GA → EN direction performs better, when evaluated using
both automatic and human evaluation, than its counterpart when translating in the op‑
posite direction. These results are consistent with our previous work, which also show
better GA→ EN translation performance [5]. This performance difference is attributed to
the morphologically rich nature of the Irish language, which relies heavily on inflection,
derivation, and its case system.

Table 7. Average SQM scores for adaptMLLM systems compared with automatic metrics.

System BLEU ↑ TER ↓ ChrF3 ↑ SQM ↑
adaptMLLM en2ga 41.2 0.51 0.48 4.38
adaptMLLM ga2en 75.1 0.385 0.71 5.63

5.3.2. Multidimensional Quality Metrics
Within the QTLaunchpad project (https://www.qt21.eu, accessed on 22 November

2023), the development of the MQM framework (https://www.qt21.eu/mqm‑definition/d
efinition‑2015‑12‑30.html, accessed on 22 November 2023) aimed to offer a structured ap‑
proach to conducting manual evaluations through meticulous error analysis. This frame‑
work does not mandate a uniform metric for all applications; rather, it supplies an exten‑
sive list of potential quality issues, each with standardised names and definitions, which
can be tailored to particular tasks. Beyond establishing a dependable method for quality
evaluation, the MQM framework also enables us to identify and select error tags pertinent
to our specific task.

We customised the MQM framework to suit our context by following the official sci‑
entific research guidelines [44]. Our modifications to MQM are explained below.

The original MQM guidelines propose a wide range of tags on different annotation
layers. However, for our specific annotation task, this comprehensive tagset is too detailed.
Hence, we evaluated our MT output using the smaller default set of evaluation categories
outlined in the core tagset. These standard top‑level categories, which include accuracy
and fluency, are recommended by the MQM guidelines and are presented in Table 8.

https://www.qt21.eu
https://www.qt21.eu/mqm-definition/definition-2015-12-30.html
https://www.qt21.eu/mqm-definition/definition-2015-12-30.html
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Table 8. Description of error categories within the core MQM framework [25].

Category Sub‑Category Description

Non‑translation Impossible to reliably characterise the 5 most severe errors.

Accuracy Addition Translation includes information not present in the source.
Omission Translation is missing content from the source.
Mistranslation Translation does not accurately represent the source.
Untranslated text Source text has been left untranslated.

Fluency Punctuation Incorrect punctuation
Spelling Incorrect spelling or capitalisation.
Grammar Problems with grammar, other than orthography.
Register Wrong grammatical register (e.g., inappropriately informal pronouns).
Inconsistency Internal inconsistency (not related to terminology).
Character encoding Characters are garbled due to incorrect encoding.

We used a special non‑translation error tag to label entire sentences that were so
poorly translated that individual errors could not be identified. Error severities were des‑
ignated as major or minor errors, and they were assigned independently of the category.
These corresponded to actual translation or grammatical errors and minor imperfections,
respectively. We used the default recommendedweights [44], which assign aweight of 1 to
minor errors, whilemajor errors are given aweight of 10. Additionally, the non‑translation
category was assigned a weight of 25, which is consistent with best practice established in
previous studies [25].

Our annotators were instructed to identify all errors in each sentence of the translated
output using the error categories provided in Table 8.

5.3.3. Annotation Setup
Annotations were carried out using a detailed, fine‑grained MQM approach and a

simpler SQM approach. The SQM categories are summarised in Table 6 whereas the hier‑
archical taxonomy of our MQM implementation is outlined in Table 8.

Working independently of one another, two annotators with similar backgrounds
were selected for the annotation of fine‑tuned EN ↔ GA systems. Both annotators are
fluent speakers of Irish and neither had prior experience with MQM. The annotators are
postgraduate students of the Máistir Gairmiúil san Oideas (Postgraduate Masters in Edu‑
cation) at the University of Galway (https://universityofgalway.ie, accessed on 22 Novem‑
ber 2023).

Before starting the annotation process, they were extensively briefed on the process
and the MQM annotation guidelines. These guidelines provide in‑depth directions for
carrying out annotation activities under the MQM framework.

In conducting the EN→GAhuman evaluation of the translation output, wepresented
our annotators with a test set of 25 randomly selected sentences, which consisted of the
English source text, an Irish reference translation and the unannotated fine‑tuned MLLM
EN→ GA system output.

A similar approach was adopted for the GA → EN human evaluation where the
annotator test set consisted of 25 randomly selected sentences, which consisted of the
Irish source text, an English reference translation and the unannotated fine‑tuned MLLM
GA→ EN system output.

After extracting the annotation data, the annotators individually examined the output
to assess the performance of each system across the different error categories.

5.3.4. Inter‑Annotator Agreement
In order to ensure the validity of our research findings, it is essential to assess the de‑

gree of consensus among our annotators [45]. Manual evaluation methods for MT, such
as MQM, often result in low inter‑annotator agreement (IAA) [46,47]. We computed inter‑

https://universityofgalway.ie
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annotator agreement using Cohen’s kappa (k) coefficient [48], a widely recognised metric
in the field. The evaluation was performed at the sentence level for each individual sys‑
tem, and the agreement discrepancies across systems were examined. This approach also
allowed us to obtain an overall view of the level of agreement between annotators.

Table 9 highlights the cumulative number of errors identified by the annotators for
each system. Looking at the aggregate data alone, it is evident that both annotators have
judged the EN→GA system to contain significantly more errors, which supports the find‑
ings of the automatic evaluation.

Table 9. System errors found by each annotator using the MQMmetric.

Num Errors EN→ GA GA→ EN

Annotator 1 53 7

Annotator 2 82 11

Table 9 provides a useful overview for evaluating which system performs better over‑
all, but it does not offer the detailed analysis necessary to identify specific linguistic areas
for improvement in the translations. For amore comprehensive understanding, we delved
into a detailed examination of the types of errors present, with the findings presented in
Table 10. This table breaks down the total number of error tags noted by each annotator
for each system, categorised by the type of error. The detailed analysis underscores how
the GA→ EN system outperforms the EN→GA system. Notably, the GA→ EN system’s
translations display significantly greater fluency, as evidenced by just two errors recorded
in this category.

Oneway tomeasure inter‑rater reliability is to use Cohen’s kappa, which is a rigorous
method. It determines the percentage of items that raters agree on while also taking into
account the possibility of them agreeing on some items by chance. Cohen’s kappa was
calculated separately for every error type and the findings are outlined in Table 11 and
discussed in further detail later in Section 6.2. To calculate Cohen’s kappa the following
formula is used:

k = (po − pe)/(1 − pe) (1)

po: Relative observed agreement among raters
pe: Hypothetical probability of chance agreement.

Table 10. Fine‑grained analysis with concatenated errors across both annotators.

Error Type EN→ GA Errors GA→ EN Errors

Non‑translation 0 0
Accuracy
Addition 12 5
Omission 14 3
Mistranslation 41 6
Untranslated text 9 2

Fluency
Punctuation 10 0
Spelling 6 0
Grammar 27 0
Register 19 2
Inconsistency 6 0
Character Encoding 0 0

Total errors 135 18
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5.3.5. Inter‑Annotator Reliability
In Cohen’s seminal paper [48], he precisely defines the interpretation of various k

scores. Scores ≤ 0 indicate no agreement, scores from 0.01 to 0.20 suggest none to slight
agreement, scores from 0.21 to 0.40 denote fair agreement, scores from 0.41 to 0.60 reflect
moderate agreement, scores from 0.61 to 0.80 correspond to substantial agreement, and
scores from 0.81 to 1.00 represent almost perfect agreement. The kappa values of each
error type are displayed in Table 11.

Table 11. Inter‑annotator agreement using Cohen values. Perfect observed agreement is indicated
by po = 1.

Error Type EN→ GA GA→ EN

Non‑translation pa = 1 pa = 1
Accuracy

Addition 0.24 0
Omission 0.31 0

Mistranslation 0.32 −0.11
Untranslated text 0.07 0

Fluency
Punctuation 1 po = 1
Spelling 0.24 po = 1
Grammar 0.59 po = 1
Register −0.07 0

Inconsistency 0.34 po = 1
Character Encoding po = 1 1.0

Many chance‑adjusted indices of inter‑rater reliability estimate agreement using a
distribution‑based approach. A problem arises when there is only one observed response
category, resulting in a score of NaN (Not a Number). This occurs when the observed
agreement, po and the chance agreement, pe are both 1, which cannot be computed as seen
in Equation (1). In such cases, it is better to report po instead of kappa, since there is perfect
observed agreement, i.e., po = 1.

As illustrated in Table 11, we observe a high level of agreement overall. There is either
fair agreement, or perfect observed agreement, in 16 out of 22 sub‑categories. Given these
scores, we have a high degree of confidence in the human evaluation of the fine‑tuned
MLLM outputs.

5.4. Environmental Impact
Motivated by research which examines the environmental impact of NLP [3,49], we

monitored the energy and carbon emissions required to train our models.
Model development was carried out using Colab Pro+, which as part of Google Cloud

is carbon neutral [29]. All fine‑tuning experiments of MLLMs were conducted on Google
Cloud servers and consequently were emission free (https://cloud.google.com/sustainabil
ity/region‑carbon, accessed on 22 November 2023).

In terms of energy consumption, the total power draw for each experimental run is
outlined in Table 12. As part of our Google Colab subscription, Nvidia a100‑sxm4‑40gb
graphics cardswere usedwhich have amax power consumption of 400W. The calculations
are based on the graphics card running at 80% max power during model training.

https://cloud.google.com/sustainability/region-carbon
https://cloud.google.com/sustainability/region-carbon
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Table 12. Energy consumption during MLLM fine‑tuning experiments. All experiments carried out
on Google Cloud with 0 kg CO2 emissions.

System BLEU ↑ TER ↓ ChrF3 ↑ Lines Runtime
(Hours) kWh

adaptMLLM en2ga 41.2 0.51 0.48 13 k 3.51 1.1
adaptMLLM ga2en 75.1 0.385 0.71 13 k 3.41 1.1
adaptMLLM en2mr 26.4 0.56 0.608 21 k 5.49 1.8
adaptMLLMmr2en 52.6 0.409 0.74 21 k 5.43 1.7

6. Discussion
We used the adaptMLLM application to create MT models with datasets from the

LoResMT2021 Shared Task in order to assess system efficiency when translating in the
EN↔ GA directions.

High‑performing models achieving SOTA scores were developed by fine‑tuning the
NLLBMLLMpretainedmodelswith adaptMLLM.Using an easily‑understood framework
such as adaptMLLM, the benefits of developing high‑performing fine‑tuned models with
small in‑domain datasets is thus clear.

6.1. Performance of adaptMLLMModels Relative to Google Translate
Translation engine performance, at the corpus level, was benchmarked against

Google Translate’s (https://translate.google.com, accessed on 22 November 2023)
EN↔ GA translation service, which is freely available on the internet.

A full evaluation of Google Translate’s engines on the EN → GA test set generated
a BLEU score of 38.7, a TER score of 0.493 and a ChrF3 of 0.633. The comparative scores
on the test set using our fine‑tuned MLLM realised 41.2 for BLEU, 0.489 for TER and 0.653
for ChrF3. Therefore, in the EN → GA direction, the adaptMLLM system demonstrates a
relative BLEU score improvement of 6.5% compared to Google Translate.

The translation output from our fine‑tuned MLLMs was also compared with Google
Translate using random samples from the LoResMT2021 EN→ GA corpus. Table 13 high‑
lights random samples which were picked from the English source test file. A perfect
match, with a BLEU of 100, was recorded in one instance, which is unusual. However, this
may occur on occasion with the translation of short sentences. Any duplicates between
training and test data were removed prior to fine‑tuning, but the possibility exists of the
test sentence forming part of the original training of the NLLB model exists.

Translation of these samples was independently carried out on the optimal fine‑tuned
MLLM model and also using Google Translate. Case‑insensitive, sentence‑level BLEU
scores were recorded and are presented in Table 14.

Table 13. EN→ GA test dataset of LoResMT2021: samples of human reference translations.

Source Language (English) Human Translation (Irish)

Temporary COVID‑19 Wage Subsidy Scheme Scéim Fóirdheontais Shealadaigh Pá
COVID‑19

how COVID‑19 spreads and its symptoms conas a scaipeann COVID‑19 agus na
siomptóim a bhaineann leis

The translation output from our fine‑tuned MLLMs was also compared with Google
Translate using random samples from the LoResMT2021 EN → MR corpus. A full evalu‑
ation of Google Translate’s engines on the EN → MR test set, with 500 lines, generated a
BLEU score of 25.9, a TER score of 0.566 and a a ChrF3 of 0.601. The comparative scores
on the test set using our fine‑tunedMLLM realised 26.4 for BLEU, 0.565 for TER, and 0.608
for ChrF3. Therefore, in the EN→MR direction, the adaptMLLM system demonstrates a
relative BLEU score improvement of 1.9% compared to Google Translate.

https://translate.google.com
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Table 14. EN→ GA fine‑tuned MLLMmodel compared with Google Translate.

Fine‑Tuned LLM BLEU ↑ Google Translate BLEU ↑
Scéim Fóirdheontais Pá
Sealadach COVID‑19 25.4 Scéim Fóirdheontais Pá

Shealadach COVID‑19 25.4

Conas a scaipeann
COVID‑19 agus na
comharthaí a bhaineann leis

100
conas a scaipeann COVID‑19
agus na hairíonna a
bhaineann leis

65.8

Samples from the EN → MR test set, along with the corresponding human transla‑
tion, are illustrated in Table 15. The performance of these individual samples from the
MLLM output and the Google Translation output is compared in Table 16. The results
are promising and suggest that our translation models perform well on the datasets from
LoResMT2021.

Table 15. EN→MR test dataset of LoResMT2021: samples of human reference translations.

Source Language (English) Human Translation (Marathi)

Like big cities like Mumbai, Pune, Nashik, all
other districts are suffering from this.

मुबंई, पणुे, नािशकसारख्या मोठ्या शहरांप्रमाणे इतर सवर् िजल्Ļांना याचा त्रास
भोगावा लागत आह.े

It will be a lockdown for the next 15 days from
8 p.m. on 14 April. 14 एिप्रल रात्री 8 वाजल्यापासनू पढुील 15 िदवस हे लॉकडाऊन असणार आह.े

Table 16. EN → MR fine‑tuned MLLM model compared with Google Translate. MR phrases are
back translated to EN and highlighted immediately below each MR sentence pair.

Fine‑Tuned MLLM BLEU ↑ Google Translate BLEU ↑
मुबंई, पणुे, नािशकसारख्या मोठ्या शहरांप्रमाणचे इतर सवर्
िजल्हे यातच कोंबले आहते.

35.1 मुबंई, पणुे, नािशक या मोठ्या शहरांप्रमाणेच इतर सवर्
िजल्Ļांना याचा त्रास होत आह.े

2.5

Like big cities like Mumbai,
Pune, Nashik, all other districts
are covered in it.

Like Mumbai, Pune, Nashik and
other big cities, all other districts
are suffering from this.

14 एिप्रल रोजी रात्री 8 वाजल्यापासनू पढुील 15 िदवस
हा लॉकडाऊन असेल.

45.3 14 एिप्रल रोजी रात्री 8 वाजल्यापासनू पढुील 15 िदवस
लॉकडाऊन असेल.

45.6

the lockdown will be for the next
15 days from 8 p.m. on 14 April.

There will be a lockdown for the
next 15 days from 8 p.m. on 14
April.

6.2. Linguistic Observations
Table 17 provides a linguistic analysis of the EN → GA MLLM outputs, showcas‑

ing the source sentences alongside their corresponding translations. These sentences were
chosen specifically for this detailed human evaluation since they underscore the principal
types of errors observed. The approach adopted is similar to the analysis taken in our pre‑
vious human evaluation of EN → GA translation [41], in that it focuses on model output
errors which fall into the categories: ‘interpreting meaning’ and ‘core grammatical errors’.

6.2.1. Interpreting Meaning
When examining the relationship of one noun to another noun, it should not necessar‑

ily be directly translated from English to Irish. This is illustrated in EN‑2, where “COVID‑
19 information and advice” refers to the information and advice that is related to COVID.
However, the ENGA system translates this to “Comhairle COVID‑19”, which effectively
means “COVID‑19’s information and advice”, i.e., COVID‑19 is treated as a possessive
noun, which is incorrect.
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Table 17. Linguistic analysis of EN→ GA system output. Errors in the target translation are flagged
in red and the corresponding original source is highlighted in blue.

Type Sentence

EN‑1 COVID‑19 information and advice for taxpayers and agents

GA‑1 Eolas agus comhairle COVID‑19 díocóirí cánach agus dionadaithe

EN‑2 We understand the unprecedented situation facing taxpayers as a result of the
COVID‑19 pandemic.

GA‑2 Tuigeann muid an cás gan fasach atá roimh cháiníocóirí mar thoradh ar an
bpaindéim COVID‑19.

EN‑3 Further information on Employment Wage Subsidy Scheme (EWSS) is
available from the Employing people section on this website.

GA‑3 Tá tuilleadh faisnéise ar Scéim Fóirdheontais Pá Fostaíochta (EWSS) ar fáil ón
gcuid Fostaithe ar an láithreán gréasáin seo.

EN‑4 Information for employers on the Temporary COVID‑19 Wage Subsidy
Scheme is available from the Employing people section on this website.

GA‑4 Tá faisnéis dfhostóirí ar an Scéim Fóirdheontais Pá Sealadach COVID‑19 ar fáil
ón gcuid Fostaithe ar an láithreán gréasáin seo.

At times the translated output does not reflect the context in which particular words
should be used. An example of this can be seen in the translation of the word “Employer’s
section” in EN‑3, which was interpreted by the ENGA system as “gcuid Fostaithe”. In
this English source sentence, the meaning focuses on a section related to a website and the
correct translation would be “rannán Daoine a Fhostú”. This is outlined in more detail on
the reference website, Fóclóir (https://www.focloir.ie, accessed on 22November 2023). It is
interested to note that Google Translate correctly interprets this meaning in its translation
of the sentence.

Given the nature of the source text, one word frequently encountered was “Infor‑
mation”. The word was accurately translated to “faisnéis” over the text, but it is im‑
portant to note this word is not widely used in the Irish language. We recommend us‑
ing the word “eolas” (knowledge), since it is a more natural and intuitive translation
(https://www.teanglann.ie/en/fgb/eolas, accessed on 22 November 2023).

6.2.2. Core Grammatical Errors
Common mistakes which were encountered throughout the texts involved the use of

the apostrophe. Most of these mistakes were flagged as minor errors, but in some cases
a missing apostrophe conveyed an entirely different meaning. An example of this can be
seen in EN‑4 andGA‑4where “information for employers” has been translated to “faisnéis
dfhostóirí” which means “employers’ information”. By simply correcting this to “faisnéis
d’fhostóirí”, the correct meaning would have been preserved.

7. Conclusions and Future Work
We presented adaptMLLM, a comprehensive application designed for the fine‑tuning

of MLLMs that handles the entire process of model development, evaluation, and de‑
ployment. The performance of the application was showcased through the creation of
EN ↔ GA translation models, which exhibited substantial improvements over the top‑
ranked models from the EN↔ GA LoResMT2021 Shared Tasks.

In order to further validate thiswork, a fine‑grained human evaluationwas conducted
by annotators on the translation output in the EN ↔ GA directions and the findings are
outlined in Linguistic Observations (cf. Section 6.2).

As a multilingual tool, systems derived from adaptMLLM were also compared with
the winning entries from the EN↔MR LoResMT2021 Shared Tasks. Fine‑tuning 3.3B pa‑
rameterNLLBmodels, using adaptMLLMdemonstrated that ourmodels for the EN↔MR

https://www.focloir.ie
https://www.teanglann.ie/en/fgb/eolas
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language pair performed significantly better across all translation metrics when compared
with the winning entries in the EN↔MR LoResMT2021 Shared Tasks.

The performance of our translation models developed for this study was compared
with the output generated by Google Translate on both the EN ↔ GA and EN ↔ MR
language pairs. In all language directions, the performance of the adaptMLLM models
was better than that of Google Translate demonstrating a new SOTA in low‑resource MT
of the EN↔ GA and EN↔MR language pairs.

In terms of future work, there is muchwhich can be performed to extend our research.
There are several avenues which we plan on exploring further. Firstly, we would like to es‑
tablish the effects of fine‑tuning larger MLLMs, such as the 54B parameter NLLB network,
on our existing datasets. It is anticipated this will most likely improve our results, and will
also establish the trend in which increasingly larger MLLMs drive MT performance. The
availability of the MTU and ADAPT GPU clusters, coupled with the deepspeed library,
provides the platform upon which this can be achieved.

At this juncture, we have just scratched the surface of the MT performance enhance‑
ments which are possible through hyperparameter optimisation. Using a random search
approach [50], we will extend our search space by examining a greater number of hyper‑
parameters and a larger range of associated values.

Against this backdrop, it will be possible to apply adaptMLLM to new shared tasks
and WMT competitions. This will also address another goal of our future work, which is
to apply our approach to other low‑resource language pairs.

Furthermore, integration of GPT‑3, GPT‑4, and BARD (cf. Section 2.3) playgrounds
into adaptMLLM, in addition to fine‑tuning of these LLMs, will be explored in the future.

Once the preserve of large research teams with very significant compute infrastruc‑
ture, our approach has shown it is possible for much smaller research teams to fine‑tune
MLLMs on modest budgets. In doing so, we have succeeded in developing SOTA results
for two low‑resource language pairs. As an open‑source initiative, we look forward to the
community contributing to its advancement through the addition of fresh concepts and
feature enhancements.

We have shown in the context of our low‑resourced EN ↔ MR and EN ↔ GA pairs
that fine‑tuning a pre‑trained MLLM such as NLLB is a more efficient and effective ap‑
proach than training a bespoke Transformer model from scratch.

In addition to improved performance, fine‑tuning MLLM saves both time and com‑
putational resources. Consequently, given the right infrastructure, we recommend using
such an approach when developing MT systems for low‑resource pairs in the future.

8. Limitations of the Study
With additional resources, some elements of this research could be expanded upon.

While there is a satisfactory level of agreement between annotators, the inclusion of a larger
pool of annotators would be beneficial. Moreover, evaluating amore extensive selection of
lines with a finer classification of the MQM taxonomy could yield deeper understanding
of the MT outputs.

Whereas fine‑tuning the baseline NLLBmodels highlighted a demonstrable improve‑
ment in translation quality using automatic metrics, a corresponding human evaluation of
the baseline NLLB outputs was not conducted. As part of our future work, it is planned to
conduct such an evaluation.

The focus of the study primarily centred on fine‑tuning the NLLB base model, since it
was the most likely candidate for success in producing high quality MT output for low‑
resource languages. Other LLMs, such as GPT‑J, should also be investigated for fine‑
tuning experiments.

With more hardware resources, and a larger research team, the impact of even larger
models such as NLLB‑54B would have been explored. It is planned to address these limi‑
tations in our future work (cf. Section 7).



Information 2023, 14, 638 22 of 24

Author Contributions: Writing—original draft, S.L.; Writing—review & editing, H.A. and A.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by Science Foundation Ireland through ADAPT Centre
(Grant 13/RC/2106) (https://www.adaptcentre.ie, accessed on 22 November 2023) at Dublin City
University. This research was also funded by the Staff Doctorate Scheme at the Munster
Technological University.

Institutional Review Board Statement: In the “Related Work” section of this paper, we discuss aca‑
demic papers published at conferences and in academic journals. We ensure that all data used in our
analysis were obtained legally and ethically. With regard to licensing for our application, adaptM‑
LLM, it is covered by the Creative Commons Attribution 4.0 International License. We recognise the
importance of responsible and ethical conduct in AI research, and will continue to prioritise these
values in our work.

Data Availability Statement: The data presented in this study are openly available and can be found
at https://github.com/adaptNMT/adaptMLLM/ (accessed on 22 November 2023).

Acknowledgments: We also thank our anonymous reviewers for their comments, and our anno‑
tators Darragh Lankford and Muireann Ní Chorcora for their meticulous work in annotating the
system outputs.

Conflicts of Interest: the authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Costa‑jussà, M.; Cross, J.; Çelebi, O.; Elbayad, M.; Heafield, K.; Heffernan, K.; Kalbassi, E.; Lam, J.; Licht, D.; Maillard, J.; et al.

No language left behind: Scaling human‑centered machine translation. arXiv 2022, arXiv:2207.04672.
2. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few‑shot learners. In Proceedings of the 34th Conference on Neural Information Processing Systems
(NeurIPS 2020), Vancouver, BC, Canada, 6–12 December 2020; Volume 33, pp. 1877–1901. Available online: https://dl.acm.org
/doi/pdf/10.5555/3495724.3495883 (accessed on 22 November 2023).

3. Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Deep Learning in NLP. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 3645–3650.
Available online: https://aclanthology.org/P19‑1355/ (accessed on 22 November 2023).

4. Henderson, P.; Hu, J.; Romoff, J.; Brunskill, E.; Jurafsky, D.; Pineau, J. Towards the systematic reporting of the energy and carbon
footprints of machine learning. J. Mach. Learn. Res. 2020, 21, 10039–10081. Available online: https://dl.acm.org/doi/pdf/10.5555
/3455716.3455964 (accessed on 22 November 2023).

5. Lankford, S.; Afli, H.; Way, A. adaptNMT: An open‑source, language‑agnostic development environment for Neural Machine
Translation. Lang. Resour. Eval. 2023, 57, 1671–1696. [CrossRef]

6. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 Decem‑
ber 2017; pp. 6000–6010. Available online: https://dl.acm.org/doi/pdf/10.5555/3295222.3295349 (accessed on 22 November 2023).

7. Lankford, S.; Alfi, H.; Way, A. Transformers for Low‑Resource Languages: Is Féidir Linn! In Proceedings of the Machine Trans‑
lation Summit XVIII: Research Track, Virtual, 16–20 August 2021; pp. 48–60. Available online: https://aclanthology.org/2021.mt
summit‑research.5 (accessed on 22 November 2023).

8. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Languagemodels are unsupervisedmultitask learners. OpenAI
Blog 2019, 1, 9.

9. Winata, G.; Madotto, A.; Lin, Z.; Liu, R.; Yosinski, J.; Fung, P. Language Models are Few‑shot Multilingual Learners. In Proceed‑
ings of the 1st Workshop on Multilingual Representation Learning, Punta Cana, Dominican Republic, 7–11 November 2011; pp.
1–15. Available online: https://aclanthology.org/2021.mrl‑1.1 (accessed on 22 November 2023).

10. Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott,M.; Zettlemoyer, L.; Stoyanov, V.
Unsupervised Cross‑lingual Representation Learning at Scale. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online, 5–10 July 2020; pp. 8440–8451. Available online: https://aclanthology.org/2020.acl‑main.747
(accessed on 22 November 2023).

11. Devlin, J.; Chang,M.; Lee, K.; Toutanova, K. BERT: Pre‑training ofDeepBidirectional Transformers for LanguageUnderstanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. Available
online: https://aclanthology.org/N19‑1423 (accessed on 22 November 2023).

https://www.adaptcentre.ie
https://github.com/adaptNMT/adaptMLLM/
https://dl.acm.org/doi/pdf/10.5555/3495724.3495883
https://dl.acm.org/doi/pdf/10.5555/3495724.3495883
https://aclanthology.org/P19-1355/
https://dl.acm.org/doi/pdf/10.5555/3455716.3455964
https://dl.acm.org/doi/pdf/10.5555/3455716.3455964
http://doi.org/10.1007/s10579-023-09671-2
https://dl.acm.org/doi/pdf/10.5555/3295222.3295349
https://aclanthology.org/2021.mtsummit-research.5
https://aclanthology.org/2021.mtsummit-research.5
https://aclanthology.org/2021.mrl-1.1
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/N19-1423


Information 2023, 14, 638 23 of 24

12. Lepikhin, D.; Lee, H.; Xu, Y.; Chen, D.; Firat, O.; Huang, Y.; Krikun, M.; Shazeer, N.; Chen, Z. Gshard: Scaling giant models with
conditional computation and automatic sharding. arXiv 2020, arXiv:2006.16668.

13. Kasneci, E.; Sessler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüller‑
meier, E.; et al. ChatGPT for good? on opportunities and challenges of large language models for education. Learn. Individ.
Differ. 2023, 103, 102274. Available online: https://www.sciencedirect.com/science/article/pii/S1041608023000195 (accessed on
22 November 2023). [CrossRef]

14. Iftikhar, L.; Iftikhar, M.F.; Hanif, M.I. DocGPT: Impact of ChatGPT‑3 on Health Services as a Virtual Doctor. EC Paediatr. 2023,
12, 45–55.

15. Hochreiter, S.; Schmidhuber, J. Long short‑term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
16. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre‑Training; Technical

Report; OpenAI: San Francisco, CA, USA, 2018.
17. OpenAI. OpenAI GPT‑4 Technical Report. arXiv 2023, arXiv:2303.08774.
18. Thoppilan, R.; De Freitas, D.; Hall, J.; Shazeer, N.; Kulshreshtha, A.; Cheng, H.; Jin, A.; Bos, T.; Baker, L.; Du, Y.; et al. Lamda:

Language models for dialog applications. arXiv 2022, arXiv:2201.08239.
19. Rasley, J.; Rajbhandari, S.; Ruwase, O.; He, Y. DeepSpeed: System Optimizations Enable Training Deep Learning Models with

Over 100 Billion Parameters. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, Virtual, 6–10 July 2020; pp. 3505–3506. [CrossRef]

20. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
Transformers: State‑of‑the‑Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Meth‑
ods In Natural Language Processing: System Demonstrations, Online, 16–20 October 2020; pp. 38–45. Available online:
https://aclanthology.org/2020.emnlp‑demos.6 (accessed on 22 November 2023).

21. Belz, A.; Agarwal, S.; Graham, Y.; Reiter, E.; Shimorina, A. Proceedings of the Workshop on Human Evaluation of NLP Systems
(HumEval), Online, April 2021. Available online: https://aclanthology.org/2021.humeval‑1.0 (accessed on 22 November 2023).

22. Bayón, M.; Sánchez‑Gijón, P. Evaluating machine translation in a low‑resource language combination: Spanish‑Galician. In
Proceedings of the Machine Translation Summit XVII: Translator, Project and User Tracks, Dublin, Ireland, 19–23 August 2019;
pp. 30–35. Available online: https://aclanthology.org/W19‑6705 (accessed on 22 November 2023).

23. Imankulova, A.; Dabre, R.; Fujita, A.; Imamura, K. Exploiting out‑of‑domain parallel data throughmultilingual transfer learning
for low‑resource neural machine translation. In Proceedings of the Machine Translation Summit XVIII: Research Track, Virtual,
16–20 August 2021. Available online: https://aclanthology.org/W19‑6613 (accessed on 22 November 2023).

24. Läubli, S.; Castilho, S.; Neubig, G.; Sennrich, R.; Shen, Q.; Toral, A. A set of recommendations for assessing human–machine
parity in language translation. J. Artif. Intell. Res. 2020, 67, 653–672. [CrossRef]

25. Freitag, M.; Foster, G.; Grangier, D.; Ratnakar, V.; Tan, Q.; Macherey, W. Experts, errors, and context: A large‑scale study
of human evaluation for machine translation. Trans. Assoc. Comput. Linguist. 2021, 9, 1460–1474. Available online: https:
//aclanthology.org/2021.tacl‑1.87 (accessed on 22 November 2023). [CrossRef]

26. Lommel, A.; Uszkoreit, H.; Burchardt, A. Multidimensional quality metrics (MQM): A framework for declaring and describing
translation quality metrics. Tradumàtica 2014, 455–463. [CrossRef]

27. Ojha, A.; Liu, C.; Kann, K.; Ortega, J.; Shatam, S.; Fransen, T. Findings of the LoResMT 2021 Shared Task on COVID and Sign
Language for Low‑resource Languages. In Proceedings of the 4thWorkshop onTechnologies forMTof LowResource Languages
(LoResMT2021), Virtual, 16–20 August 2021; pp. 114–123. Available online: https://aclanthology.org/2021.mtsummit‑loresmt.11
(accessed on 22 November 2023).

28. Kudo, T.; Richardson, J. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text
Processing. In Proceedings of the 2018 Conference on Empirical Methods In Natural Language Processing: System Demonstra‑
tions, Brussels, Belgium, 31October–4November 2018; pp. 66–71. Available online: https://aclanthology.org/D18‑2012 (accessed
on 22 November 2023).

29. Lacoste, A.; Luccioni, A.; Schmidt, V.; Dandres, T. Quantifying the carbon emissions of machine learning. arXiv 2019,
arXiv:1910.09700.

30. Abid, A.; Abdalla, A.; Abid, A.; Khan, D.; Alfozan, A.; Zou, J. Gradio: Hassle‑free sharing and testing of ml models in the wild.
arXiv 2019, arXiv:1906.02569.

31. Bannour, N.; Ghannay, S.; Névéol, A.; Ligozat, A. Evaluating the carbon footprint of NLP methods: A survey and analysis
of existing tools. In Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing, Virtual, 7–11
November 2021; pp. 11–21. Available online: https://aclanthology.org/2021.sustainlp‑1.2 (accessed on 22 November 2023).

32. Post, M. A Call for Clarity in Reporting BLEU Scores. In Proceedings of the Third Conference onMachine Translation: Research
Papers, Brussels, Belgium, 31 October–1 November 2018; pp. 186–191. Available online: https://aclanthology.org/W18‑6319
(accessed on 22 November 2023).

33. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W. Bleu: AMethod for Automatic Evaluation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318.
Available online: https://aclanthology.org/P02‑1040 (accessed on 22 November 2023).

https://www.sciencedirect.com/science/article/pii/S1041608023000195
http://dx.doi.org/10.1016/j.lindif.2023.102274
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1145/3394486.3406703
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2021.humeval-1.0
https://aclanthology.org/W19-6705
https://aclanthology.org/W19-6613
http://dx.doi.org/10.1613/jair.1.11371
https://aclanthology.org/2021.tacl-1.87
https://aclanthology.org/2021.tacl-1.87
http://dx.doi.org/10.1162/tacl_a_00437
http://dx.doi.org/10.5565/rev/tradumatica.77
https://aclanthology.org/2021.mtsummit-loresmt.11
https://aclanthology.org/D18-2012
https://aclanthology.org/2021.sustainlp-1.2
https://aclanthology.org/W18-6319
https://aclanthology.org/P02-1040


Information 2023, 14, 638 24 of 24

34. Snover, M.; Dorr, B.; Schwartz, R.; Micciulla, L.; Makhoul, J. A Study of Translation Edit Rate with Targeted Human Annota‑
tion. In Proceedings of the 7th Conference of the Association for Machine Translation In the Americas: Technical Papers, Cam‑
bridge, MA, USA, 8–12 August 2006; pp. 223–231. Available online: https://aclanthology.org/2006.amta‑papers.25 (accessed on
22 November 2023).

35. Popović, M. chrF: Character n‑gram F‑score for automatic MT evaluation. In Proceedings of the Tenth Workshop on Statistical
Machine Translation, Lisbon, Portugal, 17–18 September 2015; pp. 392–395. Available online: https://aclanthology.org/W15‑3049
(accessed on 22 November 2023).

36. Denkowski, M.; Lavie, A.Meteor Universal: Language Specific Translation Evaluation for Any Target Language. In Proceedings
of the Ninth Workshop on Statistical Machine Translation, Baltimore, ML, USA, 26–27 June 2016; pp. 376–380. Available online:
https://aclanthology.org/W14‑3348 (accessed on 22 November 2023).

37. Melamed, I.; Green, R.; Turian, J. Precision and Recall of Machine Translation. In Companion Volume of the Proceedings of HLT‑
NAACL 2003—Short Papers; 2003; pp. 61–63. Available online: https://aclanthology.org/N03‑2021 (accessed on 22 November
2023).

38. Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners;
Apress: Berkeley, CA, USA, 2019. [CrossRef]

39. Lankford, S.; Afli, H.; Way, A. Machine Translation in the Covid domain: An English‑Irish case study for LoResMT 2021. In
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021), Virtual, 16–20 August
2021; pp. 144–150. Available online: https://aclanthology.org/2021.mtsummit‑loresmt.15 (accessed on 22 November 2023).

40. Lankford, S.; Afli, H.; Nı́ Loinsigh, Ó.; Way, A. gaHealth: An English–Irish Bilingual Corpus of Health Data. In Proceedings of
the Thirteenth Language Resources and Evaluation Conference, Marseille, France, 21–23 June 2022; pp. 6753–6758. Available
online: https://aclanthology.org/2022.lrec‑1.727 (accessed on 22 November 2023).

41. Lankford, S.; Afli, H.; Way, A. Human Evaluation of English–Irish Transformer‑BasedNMT. Information 2022, 13, 309. [CrossRef]
42. Klubička, F.; Toral, A.; Sánchez‑Cartagena, V. Quantitative fine‑grained human evaluation of machine translation systems: A

case study on English to Croatian. Mach. Transl. 2018, 32, 195–215. . [CrossRef]
43. Ma, Q.; Graham, Y.; Wang, S.; Liu, Q. Blend: A Novel Combined MT Metric Based on Direct Assessment—CASICT‑DCU sub‑

mission to WMT17Metrics Task. In Proceedings of the Second Conference on Machine Translation, Copenhagen, Denmark, 7–8
September 2017; pp. 598–603. Available online: https://aclanthology.org/W17‑4768 (accessed on 22 November 2023).

44. Lommel, A. Metrics for Translation Quality Assessment: A Case for Standardising Error Typologies. In Translation Quality
Assessment: From Principles to Practice; Springer: Cham, Switzerland, 2018; pp. 109–127. [CrossRef]

45. Artstein, R. Inter‑annotator agreement. In Handbook of Linguistic Annotation; Springer: Dordrecht, The Netherlands, 2017;
pp. 297–313. [CrossRef]

46. Lommel, A.; Burchardt, A.; Popović, M.; Harris, K.; Avramidis, E.; Uszkoreit, H. Using a new analyticmeasure for the annotation
and analysis of MT errors on real data. In Proceedings of the 17th Annual Conference of the European Association for Machine
Translation, Dubrovnik, Croatia, 16–18 June 2014; pp. 165–172. Available online: https://aclanthology.org/2014.eamt‑1.38 (ac‑
cessed on 22 November 2023).

47. Callison‑Burch, C.; Fordyce, C.; Koehn, P.; Monz, C.; Schroeder, J. (Meta‑) Evaluation of Machine Translation. In Proceedings of
the Second Workshop on Statistical Machine Translation, Prague, Czech Republic, 23 June 2014; pp. 136–158. Available online:
https://aclanthology.org/W07‑0718 (accessed on 22 November 2023).

48. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
49. Bender, E.; Gebru, T.; McMillan‑Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too

Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual, 3–10 March 2021;
pp. 610–623. [CrossRef]

50. Bergstra, J.; Bengio, Y. Random Search for Hyper‑Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. Available
online: http://jmlr.org/papers/v13/bergstra12a.html (accessed on 22 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/W15-3049
https://aclanthology.org/W14-3348
https://aclanthology.org/N03-2021
http://dx.doi.org/10.1007/978-1-4842-4470-8-7
https://aclanthology.org/2021.mtsummit-loresmt.15
https://aclanthology.org/2022.lrec-1.727
http://dx.doi.org/10.3390/info13070309
.
http://dx.doi.org/10.1007/s10590-018-9214-x
https://aclanthology.org/W17-4768
http://dx.doi.org/10.1007/978-3-319-91241-7-6
http://dx.doi.org/10.1007/978-94-024-0881-2_11
https://aclanthology.org/2014.eamt-1.38
https://aclanthology.org/W07-0718
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1145/3442188.3445922
http://jmlr.org/papers/v13/bergstra12a.html

	Introduction
	Related Work
	Transformer Architecture
	Multilingual Language Models—NLLB
	Large Language Models
	GPT-J
	GPT-4
	BARD

	DeepSpeed
	HuggingFace
	Human Evaluation

	Datasets
	Language Pairs
	Shared Task Datasets

	Approach
	Initialisation and Pre-Processing
	Modes of Operation
	Fine-Tuning and Visualisation
	Deployment
	Green Report
	MLLMs: Translation and Evaluation
	LLMs: Playgrounds

	Empirical Evaluation
	Infrastructure and Hyperparameters
	Results: Automatic Evaluation
	Translation in the EN  GA Directions
	Translation in the EN  MR Directions

	Human Evaluation Results
	Scalar Quality Metrics
	Multidimensional Quality Metrics
	Annotation Setup
	Inter-Annotator Agreement
	Inter-Annotator Reliability

	Environmental Impact

	Discussion
	Performance of adaptMLLM Models Relative to Google Translate
	Linguistic Observations
	Interpreting Meaning
	Core Grammatical Errors


	Conclusions and Future Work
	Limitations of the Study
	References

