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Abstract: Brain tumors (BT) present a considerable global health concern because of their high mor-
tality rates across diverse age groups. A delay in diagnosing BT can lead to death. Therefore, a timely
and accurate diagnosis through magnetic resonance imaging (MRI) is crucial. A radiologist makes
the final decision to identify the tumor through MRI. However, manual assessments are flawed,
time-consuming, and rely on experienced radiologists or neurologists to identify and diagnose a BT.
Computer-aided classification models often lack performance and explainability for clinical transla-
tion, particularly in neuroscience research, resulting in physicians perceiving the model results as
inadequate due to the black box model. Explainable deep learning (XDL) can advance neuroscientific
research and healthcare tasks. To enhance the explainability of deep learning (DL) and provide
diagnostic support, we propose a new classification and localization model, combining existing
methods to enhance the explainability of DL and provide diagnostic support. We adopt a pre-trained
visual geometry group (pre-trained-VGG-19), scratch-VGG-19, and EfficientNet model that runs a
modified form of the class activation mapping (CAM), gradient-weighted class activation mapping
(Grad-CAM) and Grad-CAM++ algorithms. These algorithms, introduced into a convolutional
neural network (CNN), uncover a crucial part of the classification and can provide an explanatory
interface for diagnosing BT. The experimental results demonstrate that the pre-trained-VGG-19
with Grad-CAM provides better classification and visualization results than the scratch-VGG-19,
EfficientNet, and cutting-edge DL techniques regarding visual and quantitative evaluations with
increased accuracy. The proposed approach may contribute to reducing the diagnostic uncertainty
and validating BT classification.

Keywords: model explainability; VGG-19; transfer learning; Grad-CAM

1. Introduction

A brain tumor (BT) develops due to the abnormal growth of brain tissue which can
harm brain cells [1,2]. It is a severe neurological disorder affecting people of all ages and
genders [3–5]. The brain controls the functionality of the entire body, and tumors can alter
both the behavior and structure of the brain. Therefore, brain damage can be harmful
to the body [6]. According to projections by the American Cancer Society, there will be
1,958,310 cancer cases and 609,820 cancer-related deaths in the United States by 2023 [7].
Thus, early and accurate diagnosis through magnetic resonance imaging (MRI) can enhance
the evaluation and prognosis of BT. Brain cancer can be treated in various ways: mainly
including surgery, radiotherapy, and chemotherapy [8]. However, visually differentiating
a BT from the surrounding brain parenchyma is difficult, and physically locating and
removing pathological targets is nearly impossible [9].
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In practice, MRI is often used to detect BT because it provides soft tissue images that
assist physicians in localizing and defining tumor boundaries [10]. BT-MRI images have
varying shapes, locations, and image contrasts, making it challenging for radiologists and
neurologists to interpret them in multi-class (glioma, meningioma, pituitary, and no tumor)
and binary-class (tumor and no tumor) classifications. However, early diagnosis is crucial
for patients, and failure to provide one within a short time period could cause physical
and financial discomfort [8]. To minimize these inconveniences, computer-aided diagnoses
(CADs) can be used to detect BTs using multi-class and binary-class BT-MRI images [11].
The CAD system assists radiologists and neurologists in comprehensively interpreting,
analyzing, and evaluating BT-MRI data within a short time period [12,13].

With the tremendous advances in artificial intelligence (AI) and deep learning (DL)
brain imaging, image processing algorithms are helping physicians detect disorders as early
as possible compared with human-led examinations [14]. Technological advancements in
the medical field require reliable and efficient solutions because they are intimately con-
nected to human life and mistakes could endanger life. An automated method is required
to support medical diagnosis. Despite their potential, DL techniques have limitations in
clinical settings [15]. However, in the traditional method, features are hand-crafted and rely
on human interaction. In contrast, DL automatically extracts salient features to improve
performance despite trade-offs in computational resources and training time. However, DL
has shown much better results than traditional computer vision techniques in addressing
these challenges [16]. A major problem of DL is that it only accepts input images and
outputs results without providing a clear understanding of how information flows within
the internal layers of the network. In sensitive applications, such as brain imaging, under-
standing the reasons behind a DL network’s prediction to obtain an accurate correction
estimate is crucial. In [17], Huang et al. proposed an end-to-end ViT-AMC network using
adaptive model fusion and multi-objective optimization to combine ViT with attention
mechanism-integrated convolution (AMC) blocks. In laryngeal cancer grading, the ViT-
AMC performed well. This study [18] presented an additional approach to recognizing
laryngeal cancer in the early stages. This study developed a model to analyze laryngeal
cancer utilizing the CNN method. Furthermore, the authors evaluated the performance
parameters compared to the existing approach in a series of trials for testing and validating
the proposed model. The accuracy of this method was increased by 25% over the previ-
ous method. However, this model is inefficient in the modern technological age, where
many datasets are being generated daily for medical diagnosis. Recently, explainable deep
learning (XDL) has gained significant interest for studying the “black box” nature of DL
networks in healthcare [15,19,20]. Using XDL methods, researchers, developers, and end
users can develop transparent DL models that explain their decisions clearly. Medical
end users are increasingly demanding that they feel more confident about DL techniques
and are encouraged to use these systems to support clinical procedures. There are several
DL-based solutions for the binary classification of tumors. However, almost all of these
are black boxes. Consequently, they are less intelligible to humans. Regardless of human
explainability, most existing methods aim to increase accuracy [21–27]. In addition, the
model should be understood by medical professionals.

This study compares a fine-tuned, pre-trained-VGG-19 model, a scratch-VGG-19
model trained from scratch, and a fine-tuned EfficientNet model. Fine-tuning a pre-trained
model by training it on a specific dataset with the target task facilitates the model’ efficient
adaptation to new data and tasks. In contrast, a scratch model is trained on the same dataset
without pre-training, which can be time-consuming and requires more data. In classifying
brain MRI tumors into multiple classes, fine-tuning a pre-trained-VGG-19 and EfficientNet
model may have the advantage over training a scratch-VGG-19 model. This is because
pre-trained models have a diverse set of features from a large dataset, which can be utilized
for similar tasks, such as the classification of brain MRI tumors into multiple classes. By fine-
tuning the pre-trained-VGG-19 model for a particular task of tumor classification, the model
can effectively and precisely adjust to the new data. This can improve performance metrics,
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such as accuracy, precision, recall, and F1-score. Additionally, fine-tuning a pre-trained
VGG-19 model can significantly decrease the training time and labeled data requirements
for the task. This is because the pre-trained models have learned low-level features that can
be leveraged for the proposed task. Therefore, fine-tuning pre-trained models requires less
time and data than training a scratch model. Training deep neural networks without pre-
trained models can be challenging. This is due to several factors, such as the imbalance in
the data, in which there are more samples of normal and abnormal data. Second, annotating
large unlabeled datasets is challenging for experts. Finally, the model fails to generalize
when applied to a new dataset and requires enormous computational resources [28–30].

To achieve a high level of generalization when training a deep convolutional neural
network (DCNN), it is essential to have a vast collection of BT MRI images as the dataset.
Unfortunately, the MRI benchmark datasets are inadequate. Therefore, researchers have
used transfer learning (TL) methods instead of training CNN models from scratch to classify
BT based on small-scale MRI images [31,32]. However, training the DCNN models from
scratch (full training) is difficult [33], first, the training data must be labeled before the
CNN can be trained. The second reason for the lengthy training process of DL models is
the requirement for a high level of computational and memory resources. Third, overfitting
and convergence problems often complicate the training of the DL models. For this solution,
the learning parameters or network architecture must be repeatedly adjusted to ensure that
all the layers learn at a comparable rate. In conclusion, training a DL model from scratch
can be challenging and time-consuming, and requires attention, patience, and expertise.
Therefore, a better alternative to training scratch models is the fine-tuning of the pre-trained
models from other applications is preferable. Pre-trained models have been successfully
used as feature generators or TL basis [33–36].

We aim to develop a lightweight and computationally efficient XDL framework that
addresses model explainability in conventional DL models. To this end, we designed and
implemented pre-trained-VGG-19, scratch-VGG-19, and EfficientNet models utilizing Class
Activation Mapping (CAM), Gradient-Weighted Class Activation Mapping (Grad-CAM),
and Grad-CAM++ on two benchmark MRI datasets. We assessed the performance of the
proposed models using metrics such as precision, recall, F1-score, accuracy, and visual heat
map results. This framework will help clinicians understand and trust DL algorithms. The
study makes the following contributions.

• We present a novel lightweight class-discriminative localization approach employing
CAM, Grad-CAM, and Grad-CAM++ on pre-trained VGG-19, scratch VGG-19, and the
EfficientNet model. This approach enhances the visual interpretability for multi-class
and binary-class brain MRI tumor classification without architecture changes. The
effectiveness of this approach was assessed by heatmap localization and model fidelity
while maintaining a high performance.

• The proposed framework models were evaluated based on precision, recall, F1-score,
accuracy, and heatmap results. We recommend the best model for both classification
and localization.

• We perform CAM, Grad-CAM, and Grad-CAM++ evaluations to provide humans with
understandable justifications for BT-MRI images with multi-class and binary-class
architectures.

• We evaluate the performance and applicability of the proposed method in practical
settings using cross-dataset.

This study employs a DL model to classify BT MRI images into multiple binary classes.
Moreover, this approach visualizes the critical regions of the MR image involved in the
prediction process. This study explicates the black box structure of the DL model and
promotes its adoption throughout the healthcare sector. The remainder of this paper is
organized as follows. Section 2 covers related work and Section 3 describes the methodology
proposed in this study. Section 4 presents the numerical values obtained during the training
phase of the classifier and the outcomes of the CAM, Grad-CAM, and Grad-CAM++.
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Section 5 provides details on the ablation study. The conclusions of this paper are discussed
in Section 6.

2. Related Works

Several studies on the classification of BT-MRI images using CNN [37–41], pre-trained
CNN models using TL [42–44], and tumor, polyp, and ulcer detection using a cascade
approach [45] have been reported with remarkable results. However, these models lack
explainability [21,22,31,46]. Although many XDL methods have been proposed for natural
image problems [47–49], relatively less attention has been paid to model explainability in
the context of brain imaging applications [19,50]. Consequently, the lack of interpretability
in the models has been a concern for radiologists and healthcare professionals that find the
black-box nature of the models inadequate for their needs. However, the development of
XDL frameworks can advance neuroscientific research and healthcare by providing trans-
parent and interpretable models. For this purpose, a fast and efficient multi-classification
BT and localization framework using an XDL model has to be developed. An explainable
framework is required to explain why particular predictions were made [51]. Many re-
searchers have applied attribution-based explainability approaches to interpret DL [52].
In attribution-based techniques for medical images, multiple methods, such as saliency
maps [53], activation maps [54], CAM [55], Grad-CAM [56], Gradient [57], and shapely
additive explanations, are used [58]. The adoption of CAMs in diverse applications has
recently seen the emergence of CNN-based algorithms [55,56,59–64].

The Grad-CAM technique [56] has recently been proposed to visualize essential fea-
tures from the input image conserved by the CNN layers for classification. Grad-CAM has
been used in various disciplines; however, it is preferred by the health sector. An extension
of Grad-CAM, segmented-Grad-CAM, which enables the creation of heat maps that show
the relevance of specific pixels or regions within the input images for semantic segmenta-
tion, has been proposed [63]. It generates heatmaps that indicate the relevance of certain
pixels or regions within the input images for segmentation. In [64], class-selective relevance
mapping (CRM), CAM, and Grad-CAM approaches were presented for the visual inter-
pretation of different medical imaging modalities (i.e., abdomen CT, brain MRI, and chest
X-ray) to clarify the prediction of the CNN-based DL model. Yang and Ranka enhanced
the Grad-CAM approach to provide a 3D heatmap to visually explain and categorize cases
of Alzheimer’s disease [65]. These techniques have seldom been employed for binary
tumor localization [66] and are not used for multi-class BT MRI localization for model
explainability. However, they are often used to interpret classification judgments [52].
In [67], a modified version of the ResNet-152 model was introduced to identify cutaneous
tumors. The performance of the model was comparable with that of 16 dermatologists,
and Grad-CAM was used to enhance the interpretability of the model. The success of an
algorithm is significant. However, to improve the performance of explainable models, a
method has to be developed for evaluating the effectiveness of an explanation [68]. In [69],
deep neural networks (particularly InceptionV3 and DenseNet121) were used to generate
saliency maps for chest X-ray images. They then evaluated the effectiveness of these maps
by measuring the degree of overlap between the maps and human-annotated ground
truths. The maps generated by these models were found to have a high degree of overlap
with human annotations, indicating their potential usefulness in explainable AI in medical
imaging. Interestingly, the study reported in [70] identified the improved indicators via
regions (XRAI) as an effective method for generating explanations for DL models. The
various DL and XDL methods proposed for the automatic classification and localization of
tumors are summarized in Table 1.
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Table 1. Summarized related works on the classification and localization of BT.

Refs. Method Classification Mode of Explanation

[71] Feedforward neural
network and DWT Binary-class classification Not used

[72] CNN Three-class BT classification Not used
[73] Multiscale CNN (MSCNN) Four-class BT Classification Not used
[74] Multi-pathway CNN Three-class BT classification Not used

[75] CNN Multi-class brain tumor
Classification Not used

[76] CNN with Grad-CAM X-ray breast cancer
mammogram image Heatmap

[77] CNN Chest X-ray image Heatmap

[78] CNN Multiple sclerosis MRI
image Heatmap

Table 1 shows the related approaches discussed in [76–78]. These studies evaluated
the performances of various CNN-based classifiers on medical images and compared their
characteristics by generating heatmaps. Based on these studies, Grad-CAM exhibits the
most accurate localization, which is desirable for heatmaps. A localized heatmap makes it
easier to identify the features that significantly contribute to the CNN classification results.
Unlike the feature maps of convolutional layers, these heatmaps show the hierarchy of the
importance of locations in the feature maps that contribute to classification.

3. Materials and Methods

This study aims to develop an XDL model as a promising method for categorizing
and localizing multi-class and binary-class brain MRI images. The goal was to provide an
autonomous system for radiologists or neurologists using CAM, Grad-CAM, and Grad-
CAM++ techniques, thus enabling the accurate and efficient classification and localization
of brain abnormalities. Grad-CAM has proven its ability to interpret complex neural
networks, which are commonly referred to as black box models because of their complexity.
The proposed method consists of the four following steps. First, the MRI dataset was
prepared by pre-processing the MRI images (as discussed in Section 3.2) and utilizing data
augmentation techniques to expand the MRI dataset Section 3.3). Second, three XDL models
were developed for deep feature representations (as discussed in Sections 3.4 and 3.5) based
on the pre-processed MRI images. Third, the outputs of the three XDL models, pre-trained-
VGG-19, scratch-VGG-19, and EfficientNet models were stacked to perform BT classification
using the global average pooling (GAP) and fully connected layers, followed by a SoftMax
function. Finally, CAM, Grad-CAM, and Grad-CAM++ approach was used to generate
heatmaps highlighting the tumor areas of the MRI images that were most relevant to the
CNN model’s predictions. This technique provides visual explanations of the model’s
decision-making process, enabling radiologists or neurologists to understand the features
that contribute to the model’s predictions better. Figure 1 illustrates the general process of
the proposed method.

3.1. Dataset

Two publicly available open source MRI datasets were used in the experiments. The
first dataset, which we obtained from the Kaggle website [79], represented the brain MRI-4C
dataset. The brain MRI-4C dataset includes four types of MRI images (glioma, meningioma,
pituitary, and no tumor), as shown in Figure 2. The details of this dataset are listed in
Table 2. The second dataset, the MRI-2C dataset, was obtained from Kaggle [80]. The
MRI-2C dataset used in this study comprised two classes of MR images: tumor and normal,
as illustrated in Figure 3. The details of this dataset are listed in Table 3. The MRI datasets
used in this study include three different views: axial, coronal, and sagittal, as shown in
Figure 4.
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Figure 1. General representation of the proposed methods.

Table 2. Details of the brain MRI-4C dataset.

Tumor Type No of MRI Images MRI Views

Glioma tumor 926 Axial, coronal, sagittal
Meningioma tumor 937 Axial, coronal, sagittal

Pituitary tumor 901 Axial, coronal, sagittal
No tumor 501

Total number of images 3265

Table 3. Details of brain MRI-2C dataset.

Tumor Type No of MRI Images MRI Views

Tumor 1500 Axial, coronal, sagittal
Normal 1500

Total number of images 3000

Figure 2. Brain MRI-4C dataset samples.
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Figure 3. Brain MRI-2C dataset samples.

Figure 4. Three different views of the brain MRI-4C dataset.

3.2. Data Pre-Processing

Data pre-processing is crucial in image analysis because brain MRI datasets typically
contain extraneous spaces, regions, noise, and missing values that can negatively affect
the classifier’s performance. Therefore, unwanted regions and noise have to be removed
from MRI images. We adopted a cropping approach involving the computation of extreme
points and contours [81]. Figure 5 shows the extreme-point calculation for the cropped
images. To initiate the pre-processing, we loaded the MRI images from the BT dataset.
The RGB images were converted to grayscale, followed by thresholding to create binary
images. Furthermore, we employed dilation and erosion processes to reduce the small
noise areas. A threshold image was used to locate the contour, and the largest contour was
selected to determine the extreme points (extreme right, extreme left, extreme top, and
extreme bottom). The image was then cropped using this information. The MRI images
underwent min-max normalization before inputting into the proposed model according to
Equation (1).

Inormalize(x, y) =
Ioriginal(x, y)− Pmin

Pmax − Pmin
(1)

where Inormalize(x, y) represents the normalized pixel value, and Ioriginal(x, y) represents
the original pixel value at the same position. The maximum and minimum pixel values
of the MRI image are denoted as Pmax and Pmin, respectively. For intensity normalization,
intensity values were adjusted to an interval of [0, 1] and then the image size was reduced
to 224 × 224 before being passed to the model. This normalization step accelerates the
learning process and eliminates memory problems during the network training. For this



Information 2023, 14, 642 8 of 32

experiment, the two datasets were sorted into various categories: training, validation, and
testing. The specific MRI datasets used for each category are listed in Table 4.

Figure 5. Image pre-processing and cropping process.

Table 4. Brain MRI dataset used for the training, validation, and testing phases.

Brain MRI Dataset Training Validation Testing Total

MRI-4C dataset 2613 326 326 3265
MRI-2C dataset 2400 300 300 3000

3.3. Data Augmentation

MRI image augmentation refers to the process of artificially increasing a dataset of
MRI images. The process typically involves rotating, scaling, flipping, and translating
existing MRI images in the dataset, as shown in Figure 6. Data augmentation enhances the
diversity of the dataset to prevent overfitting and improve the performance of the proposed
model. Different augmentation procedures were used to build a new training dataset.
Initially, we had the 3265 MRI-4C and 3000 MRI-2C datasets. Through augmentation, the
MRI datasets increased to 6410 for MRI-4C and 5600 for MRI-2C. Different techniques
were used to augment the brain MRI datasets, as listed in Table 5. Table 6 shows that the
augmented MRI images were almost twice those of the original images.

Figure 6. Brain MRI data augmentation steps.



Information 2023, 14, 642 9 of 32

Table 5. Brain MRI data augmentation steps.

Parameters Values

Horizontal flip True
Vertical flip True
Range scale True
Zoom range [0.1, 1.0]

Width shift range 0.2
Height shift range 0.2

Shear range 0.2
Brightness range [0.2, 1.0]
Random rotation [0–90]

Table 6. Training dataset with and without augmentation.

Brain MRI Dataset Without Augmentation Augmented Data

MRI-4C dataset 3265 6410
MRI-2C dataset 3000 5600

3.4. Pre-Trained VGG-19

In this study, a deep CNN model and VGG-19 [82] was used as a TL. The proposed
system was trained using the ImageNet dataset [83]. VGG-19 has 19 layers, including
16 convolutional layers, 5 using max-pooling layers, 3 fully connected layers, and 1 one
SoftMax layer. VGG-19 is an improvement over its predecessor, AlexNet [84], and has been
found to outperform other models in the VGG series. TL [85] was used to effectively utilize
the available resources while adhering to predefined parameters, with a pre-trained-VGG-
19 model used for this study. The workflow of the pre-trained-VGG-19 model, as depicted
in Figure 7, involves four main components. First, the pre-processed MRI images (discussed
in Section 3.2) were input and subjected to data augmentation techniques (discussed in
Section 3.3) in the initial step. The second component involves VGG-19 pre-trained CNN
layers with 16 convolutional layers, followed by a rectified linear unit (ReLU) and five
max-pooling layers. The input for this part of the model consisted of pre-processed MRI
images with dimensions of 224 × 224. All layers in this part cannot use ImageNet weights;
therefore, they cannot be trained. The layers were frozen, enabling the model to optimize
its weights on the dataset and incorporate filters from the VGG-19 model to extract relevant
features. To reduce the required computational resources, the dimensionality of the data
was decreased using maxpooling techniques. The ReLU activation function was utilized to
introduce nonlinearity into the model, thereby improving the classification performance
while minimizing the computation time. Following feature extraction using multiple
convolutional layers, ReLU, and max pooling, the resulting images were transformed into
a (7 × 7 × 512) format. Third, the extracted features were input into the classification. The
model presented in this study incorporates GAP layers, which are followed by a fully
connected layer during the classification phase. The GAP layer compresses the multi-
dimensional feature map into a one-dimensional (1D) feature vector. Utilizing the GAP
layer avoids overfitting on this layer by not requiring parameter optimization and consumes
less computation time than the scratch-VGG-19 model. The fully connected layer consists
of 1024 filters, and 0.25% of the input neurons were dropped to reduce overfitting and
improve the model performance. Dropout [86] was implemented to address the overfitting
issue. The SoftMax function was employed to obtain the multi-class and binary-class BT
classification results.

Finally, the heatmap techniques [56] were used to identify the tumor region in the
brain MRI and interpret the predictions of the VGG-19 model (discussed in Section 4.4).
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Figure 7. Network architecture of fine-tuned pre-trained-VGG-19 model for BT classification
and localization.

Global Average Pooling

In this study, both pre-trained and scratch VGG-19 models were employed for deep
feature extraction. The resulting feature vectors are independently reduced using a two-
dimensional (2D) GAP layer. The pooling layer was utilized to either reduce the size of
the feature map or emphasize particular features. To achieve this, the GAP layer used the
output data from the convolutional layer as input. It applied an average pooling (AP) to the
entire feature map to generate a single output value for each feature map. Consequently,
the spatial information was discarded, resulting in a 1D vector with a depth equal to the
number of feature maps. In contrast to conventional AP, a sliding window was applied
to each feature map to compute the average values for the non-overlapping sub-regions.
This output feature map reduces the spatial dimension, but the depth is preserved. In
this study, we used the GAP technique to address the issue of overfitting by compressing
multi-dimensional feature maps into one-dimensional vectors. This approach significantly
reduces the number of parameters required for the model and improves the computational
efficiency of the network. Moreover, the GAP layer reduces the dimensionality of the
data by averaging all h × w values, resulting in a feature map of size 1 × 1 × d, where d
represents the number of filters. This process is illustrated in Figure 8, which illustrates
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the GAP operation. This technique can improve the model performance and accuracy in
classifying BT by only extracting the most relevant features from the input data.

Figure 8. Functionality of the GAP layer.

3.5. Scratch VGG-19

The scratch VGG-19 model was trained on an MRI brain dataset without utilizing
pre-trained network weights. This was performed to compare the performance of the
pre-trained-VGG-19 and EfficientNet models, which had already been trained using the
ImageNet dataset [83]. The model also utilized CAM, Grad-CAM, and Grad-CAM++
techniques for interpretation. The scratch-VGG-19-Grad-CAM model is composed of
several parts, including the input of MR images, pre-processing (discussed in Section 3.2),
data augmentation (discussed in Section 3.3), feature representation, the classification of BT
MRI images, and model explanation. The workflow of the proposed model is illustrated
in Figure 9. The model uses a 224 × 224 MRI image as the input and data processing
and augmentation techniques. The feature representation block in our model comprises
convolutional and ReLU layers preceded by maxpooling layers. Following the feature
extraction layer, a GAP layer was applied (as discussed in Section Global Average Pooling).
The output from the GAP layer was then fed into a fully connected layer for classification.
For classification, a dense layer with 1024 neurons was used, followed by a dropout
layer. The SoftMax activation function was applied to classify the output image into one
of the BT classes. This activation function is suitable for multi-class and binary-class
classification tasks.

We evaluated the performance of the model based on various metrics (i.e., accuracy,
precision, recall, and F1 score). By assessing these metrics, we can determine the effective-
ness of the proposed model and make necessary adjustments to improve its performance.
Additionally, we utilized the CAM, Grad-CAM, and Grad-CAM++ approach for multi-class
and binary-class tumor localization (as discussed in Section 3.7) to compare the heatmap
results with the pre-trained-VGG-19 and EfficientNet models.
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Figure 9. The network architecture of the scratch-VGG-19 model for BT classification and localization.

3.6. EfficientNet-B0

A novel method for CNNs was proposed by Tan and Le (2019) [87] by uniformly
scaling dimensions, including depth, width, and resolution. A specific architecture within
the EfficientNet family is EfficientNet B0, whose detailed structure is depicted in Figure 10.
It displays robust performance on ImageNet, and EfficientNet-B0 effectively transfers to
other datasets. A TL method, especially prevalent in conjunction with DL models, involves
training a CNN on a given dataset to extract features, enhancing predictive accuracy.
Regardless, there are some challenges to collecting an enormous amount of data, and
reliability issues arise when the data are incomplete. These issues are addressed using TL,
as illustrated in Figure 10.

Through TL, a model can sustain optimal parameters based on the training process
on a popular dataset like ImageNet. As a result, the learned features are re-used in the
following learning task, which enhances the overall model accuracy. A TL approach is
employed in this study for EfficientNet-B0 trained on ImageNet, as presented in Figure 10.

In the proposed architecture, we illustrate EfficientNet-B0 by leveraging the mobile-
inverted bottleneck (MBConv) layer suggested by Sandler et al. [88,89] as the network’s
main building block. However, at the end of the architecture, the output features of the
pre-trained EfficientNet will be fed into our proposed layers: GAP, Dense, BN, and SoftMax
activation functions. A dropout layer is incorporated with a regularization technique to
mitigate overfitting during training. Using the GAP layer, we can reduce the activation
size while maintaining performance. Although the dense layer is connected deeply, it
receives input from all neurons from its preceding layer. Through the BN layer, the overall
dimensions are normalized by evaluating the mean and variance. We adopted SoftMax as
a final classifier, making the architecture more effective at classification.
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Figure 10. The network architecture of the EfficientNet-B0 model for BT classification and localization.

Finally, we incorporated visualization techniques into our model, including CAM,
Grad-CAM, and Grad-CAM++. This enhances the interpretability and transparency of
the model by allowing qualitative comparisons between the inputs and predictions. As a
result, it provides a valuable insight into the features that influence the model’s decision-
making process.

3.7. Model Explainability

Modern DL frameworks, characterized by intricate models with millions of parameters,
often face challenges in interpretation. To address this issue and enhance interpretability,
techniques such as CAM, Grad-CAM, and Grad-CAM++ have been introduced. These
methods aim to provide insights into the decision-making processes of Convolutional
Neural Networks (CNNs).

CAM generates a class-discriminative localization map, Lc
CAM, using feature maps Ak

from the final convolutional layer and weights Wc
k obtained through GAP.

Lc
CAM = ∑

k
wc

k Ak (2)

The Equation (2), represents the CAM for a specific class c in the context of a CNN.
Grad-CAM is introduced as an extension of CAM for CNNs [55]. It serves as a valu-

able tool for localizing discriminative attributes and illuminating object regions crucial
for a CNN’s decision-making process. Unlike CAM, Grad-CAM incorporates gradient
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information, making it applicable to any CNN-based model without altering its archi-
tecture [56]. The Grad-CAM method identifies specific regions in the input image vital
for the classifier’s decision, utilizing spatial information stored in convolutional layers.
This targeted interpretation enables researchers to gain a deeper understanding of model
predictions and facilitates performance optimization.

Grad-CAM generates a class-discriminative localization map, Lc
Grad−CAM, for convo-

lutional layer of size i,j, using gradient information from feature maps (Ak) of the final
convolutional layer [56]. Equation (3) represents the class-discriminative localization map
of class c.

Lc
Grad−CAM ∈ Ri×j (3)

This is calculated for feature map activation Ak and the classification score yc for class
c, propagated back to the selected convolutional layer. The significant weights Wc

k , were
computed by GAP as the gradient to the final convolutional layer according to Equation (4).

Wc
k =

1
z ∑

m
∑
n

δyc

δAk
mn

(4)

In Equation (4), the values of Wc
k represent the importance or weightage of the feature

map k for target class c. The sum of m, n represents the GAP operation, and z is a constant
(number of pixels in the activation map). The partial derivative represents the gradient
computed through backpropagation. Subsequently, a Grad-CAM heat map was generated
by computing a weighted combination of feature maps, followed by the ReLU activation
function, as shown in Equation (5).

Lc
Grad−CAM = ReLU(∑

k
Wc

k Ak) (5)

In Equation (5), ReLU nonlinearity is only used to evaluate the pixels that have a
positive impact on the target class score [56].

For Grad-CAM++, it further refines weights computation by considering second-order
derivatives. The Grad-CAM++ localization map is define as:

Lc
Grad-CAM++ = ReLU

(
∑
k

αkWc
k Ak

)
(6)

In Equation (6), αk represents scalar weights computed from second-order gradients, further
enhancing the accuracy of the localization heat map. These equations collectively illustrate
the advancement from CAM to Grad-CAM and Grad-CAM++, underscoring the increased
sophistication in capturing and visualizing critical regions that significantly influence CNN
decision-making processes.

4. Experimental Results and Analysis

Brain MRI was used to assess patients with BT. With two independent datasets (BT-
MRI-4C and BT-MRI-2C), we performed multi-class and binary-class BT classification and
localization tasks. We used the pre-trained-VGG-19, scratch-VGG-19, and EfficientNet
models to correctly identify patients with tumors and those that were healthy. The pro-
posed methods were trained with ReLU activation function (AF) with Adam optimizer
to classify multi-class and binary-class BT from MRI images. Tables 8 and 9 provide the
numerical analyses of the proposed architectures using metrics (precision, recall, F1-score,
and accuracy) values. The bold values represent the best results.

Finally, we visualized the explainability of the model using the CAM, Grad-CAM, and
Grad-CAM++ methods for the BT-MRI-4C and BT-MRI-2C datasets, which are shown in
Figures 19–21 and 23.
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4.1. Hyperparameter Tuning

The main objective of this task was to develop a highly efficient model for the classifica-
tion of brain MRI images into multiple binary classes. Hyperparameter tuning involves the
selection of the optimal values for the DL or ML models. These parameters are not learned
from the data, but are set before the training begins. Hyperparameter tuning improves
the model performance and designs an optimal multi-class and binary-class classification
model for brain MRIs. During the experiments, we considered several parameters for
hyperparameter tuning (i.e., epochs, dropout rate, activation function, batch size, and
learning rate (LR)). After several trials, we adjusted the LR, batch size, regularization factor,
dropout rate, and optimizer to obtain optimal results. Table 7 lists the hyperparameters for
model training.

Table 7. Hyperparameters for the proposed models.

Sr. No. Hyperparameters Pre-Trained-VGG-19 Scratch-VGG-19

1 Number of epochs 30 30
2 Batch size 32 32
3 Image size 224 × 224 224 × 224
4 Optimizers Adam, RMSprop Adam, RMSprop
5 Activation function SoftMax, ReLU SoftMax, ReLU
6 Learning rate 0.0001 0.0001
7 Dropout rate 0.25 0.25

4.2. Classification Performance on the BT-MRI-4C and BT-MRI-2C Datasets

This study assessed the classification performance of the BT-MRI-4C and BT-MRI-2C
datasets using three DL models: pre-trained-VGG-19, scratch-VGG-19, and EfficientNet.
This evaluation was based on the key performance metrics such as precision, recall, F1-score,
and accuracy, whilst the explainability results are discussed in Section 4.4).

This evaluation covered multi-class and binary-class prediction tasks involving fine-
tuning hyperparameters such as epochs, dropout rate, activation function (ReLU), batch
size, and learning rate (LR). Notably, for the BT-MRI-4C dataset, the pre-trained-VGG-19
model gives the highest performance metrics, achieving precision, recall, F1-score, and the
accuracy of 99.89%, 99.72%, 99.81%, and 99.92%, respectively, outperforming the scratch-
VGG-19 and EfficientNet models, as shown in Table 8.

Table 8. Performance comparison of the proposed DL models on BT-MRI-4C and BT-MRI-2C datasets.

DL Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Pre-trained-VGG-19 (BT-MRI-4C) 99.89 99.72 99.81 99.92
Scratch-VGG-19 (BT-MRI-4C) 97.69 98.95 98.39 98.94

EfficientNet (BT-MRI-4C) 99.51 98.69 99.74 99.81
Pre-trained-VGG-19 (BT-MRI-2C) 98.59 99.32 98.99 99.85

Scratch-VGG-19 (BT-MRI-2C) 95.71 95.19 96.09 96.86
EfficientNet (BT-MRI-2C) 98.01 99.06 98.81 98.65

This study extended to the BT-MRI-2C dataset, aiming to develop an efficient model
for binary-class classification using the same configuration as BT-MRI-4C classification. The
proposed models, pre-trained-VGG-19, scratch-VGG-19, and EfficientNet, were tested for
binary-class classification. The pre-trained-VGG-19 model outshone the others, achieving a
precision, recall, F1-score, and accuracy of 98.59%, 99.32%, 98.99%, and 99.85%, respectively,
as listed in Table 8. Detailed class-wise classification metrics results in Table 9 further affirm-
ing the superiority of the pre-trained-VGG-19 model over scratch-VGG-19 and EfficientNet
for both datasets.
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Table 9. Class-wise metrics evaluation for both the BT-MRI-4C and BT-MRI-2C datasets using the
pre-train and scratch models

DL Model Tumor Class Precision (%) Recall (%) F1-Score (%)

Pre-trained-VGG-19 (BT-MRI-4C)

Glioma 100 99.89 100
Meningioma 96.0 99.92 98.59

Pituitary 99.8 100 99.91
No tumor 100 100 100

Scratch-VGG-19 (BT-MRI-4C)

Glioma 96.0 94.00 93.00
Meningioma 79.0 96.51 92.97

Pituitary 88.0 92.80 89.71
No tumor 98.0 97.00 95.68

EfficientNet (BT-MRI-4C)

Glioma 100 98.88 99.78
Meningioma 95.00 98.10 98.63

Pituitary 97.59 99.35 98.89
No tumor 99.90 100 99.73

Pre-trained-VGG-19 (BT-MRI-2C) Tumor 99.89 99.72 98.74
Normal 100 98.39 99.40

EfficientNet (BT-MRI-2C) Tumor 99.70 98.00 97.75
Normal 99.79 99.10 97.38

The accuracy and loss curves are crucial for analyzing the performance of the DL
models. In this experiment, we used these curves to evaluate the proposed DL models,
particularly the pre-trained-VGG-19, scratch-VGG-19, and EfficientNet models, on the
multi-class and binary-class BT-MRI datasets using the configuration described in Table 7.
The performance of the model during training was evaluated by analyzing the training
accuracy, training loss, validation accuracy, and validation loss, as shown in Figures 11–14.
The Figures 11a, 12a, 13a and 14a show that the proposed pre-trained-VGG-19 had good
convergence and minimal training and validation losses while achieving the best accuracy
for both the BT-MRI-4C and BT-MRI-2C datasets.

Figure 11. Proposed models accuracy vs. epoch performances on BT-MRI-4C dataset: (a) pre-trained
VGG-19, (b) scratch VGG-19; and (c) EfficientNet model.
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Figure 12. Proposed model loss vs. epochs performance on BT-MRI-4C dataset: (a) Pre-trained-VGG-
19; (b) Scratch VGG-19; and (c) EfficientNet model.

Figure 13. Proposed models accuracy vs. epochs performance on BT-MRI-2C dataset: (a) Pre-trained-
VGG-19; (b) Scratch VGG-19; and (c) EfficientNet model.

Figure 14. Proposed models loss vs. epochs performance on BT-MRI-2C dataset: (a) Pre-trained-
VGG-19; (b) Scratch VGG-19; and (c) EfficientNet model.

4.3. Validation of Model Performance on a Cross-Dataset

Here, we evaluate the performance of the proposed DL models on two different unseen
BT-MR image datasets obtained from Kaggle [90]. We aimed to quantify the classification
accuracy of the models and assess their ability to generalize unseen data.
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For the first task, we collected a dataset of 391 MRI images, consisting of 111 images
of gliomas, 80 images of meningiomas, 90 images of no tumors, and 110 images of pituitary
tumors. For the second task, we used a dataset of 131 MR images, consisting of 30 images
of gliomas, 29 images of meningiomas, 32 images of no tumors, and 40 images of pituitary
tumors. We compared the performance of the TL approach with that of the scratch model,
and the results are presented in Tables 10–15, Figures 15–17. This performed better in
classifying the multi-class BT from the unseen dataset compared to the scratch-VGG-19 and
EfficientNet model. This demonstrates the effectiveness of feature representation and the
usefulness of TL. We evaluated the model performance using a confusion matrix to analyze
the true positive, true negative, false positive, and false negative rates. We assessed the
predictive strength of the model [56] using performance metrics such as precision, recall,
and F1-score. These metrics provide a more detailed analysis of the model performance
and help identify areas where the model may need improvement.

Table 10. Class-wise classification report of cross-dataset for pre-trained-VGG-19 model test set 1.

Tumor Type Precision Recall F1-Score

Glioma tumor 1.00 1.00 1.00
Meningioma tumor 1.00 1.00 1.00

Pituitary tumor 1.00 1.00 1.00
No tumor 1.00 1.00 1.00

Average (%) 100 100 100

Table 11. Class-wise classification report of the cross-dataset for pre-trained-VGG-19 model test set 2.

Tumor Type Precision Recall F1-Score

Glioma tumor 0.97 1.00 0.98
Meningioma tumor 0.96 0.90 0.93

Pituitary tumor 1.00 1.00 1.00
No tumor 0.97 0.97 0.97

Average (%) 97.5 96.75 97.00

Table 12. Class-wise classification report of the cross-dataset for scratch VGG-19 model test set 1.

Tumor Type Precision Recall F1-Score

Glioma tumor 0.92 0.97 0.95
Meningioma tumor 0.94 0.96 0.95

Pituitary tumor 1.00 0.94 0.97
No tumor 1.00 0.99 0.99

Average (%) 96.5 96.5 96.5

Table 13. Class-wise classification report of cross-dataset for the scratch VGG-19 model test set 2.

Tumor Type Precision Recall F1-Score

Glioma tumor 0.71 0.97 0.82
Meningioma tumor 0.95 0.66 0.78

Pituitary tumor 1.00 0.95 0.97
No tumor 1.00 1.00 1.00

Average (%) 91.5 89.5 89.25
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Table 14. Class-wise classification report of cross-dataset for EfficientNet model test set 1.

Tumor Type Precision Recall F1-Score

Glioma tumor 0.98 0.98 0.98
Meningioma tumor 0.94 0.98 0.96

Pituitary tumor 0.99 0.963 0.97
No tumor 1.00 0.98 0.99

Average (%) 97.8 98.05 97.92

Table 15. Class-wise classification report of cross-dataset for EfficientNet model test set 2.

Tumor Type Precision Recall F1-Score

Glioma tumor 0.88 1.00 0.93
Meningioma tumor 0.92 0.89 0.91

Pituitary tumor 1.00 0.85 0.91
No tumor 0.91 1.00 0.95

Average (%) 93.13 93.66 93.09

(a) (b)

Figure 15. Confusion matrix for cross-dataset validation of the pre-trained-VGG-19 model: (a) Pre-
trained-VGG-19 test set 1; and (b) Pre-trained-VGG-19 test set 2 results.

(a) (b)

Figure 16. Confusion matrix for cross-dataset validation of the scratch-VGG-19 model: (a) Scratch-
VGG-19 test set 1; and (b) Scratch-VGG-19 test set 2 results.
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(a) (b)

Figure 17. Confusion matrix for cross-dataset validation of the EfficientNet model: (a) EfficientNet
test set 1; and (b) EfficientNet test set 2 results.

Precision: Ratio of true positive predictions to the sum of true positives and false
negatives.

Precision =
TP

(TP + FP)
(7)

Recall: Ratio of true positive predictions to the sum of true positives and false negatives.

Recall =
TP

(TP + FN)
(8)

F1-score: A harmonic mean is taken to combine precision and recall.

F1− Score = 2× Precision× Recall
Precision + Recall

(9)

TP, FP, and FN denote true positive, false positive, and false negative, respectively. The
evaluation results are presented in Tables 10 and 11, demonstrating that the pre-trained
VGG-19 model outperforms the Scratch-VGG-19 and EfficientNet model in terms of pre-
cision, recall, F1-score, and average scores. This contrasts with the findings presented in
Tables 12–15. This demonstrates the effectiveness of TL in improving the model perfor-
mance. The confusion matrix provides insights into the number of correctly and incorrectly
classified images using the model. Figures 15–17 present a detailed analysis of each model’s
correct and incorrect classifications on both cross-datasets. The results were deemed ac-
ceptable based on a confusion matrix. The pre-trained-VGG-19 model outperforms the
scratch-VGG-19 and EfficientNet model. Figure 15a shows that the pre-trained-VGG-19
model perfectly classified each class without misclassification for the first task on the cross-
dataset. As shown in Figure 15b, our proposed model also performed well for all classes
except two meningiomas and one no-tumor class image, which were misclassified for the
second cross-dataset task. Compared with the scratch-VGG-19 and EfficientNet model, the
ratio of misclassification in both datasets for the scratch-VGG-19 and EfficientNet model
are higher as compared to the pre-trained-VGG-19 model. Figures 16a,b and 17a,b show
the scratch-VGG-19 and EfficientNet model results for both the cross-dataset tasks.

To evaluate the effectiveness of the pre-trained-VGG-19 model, we tested the proposed
models on the MRI-2C dataset and compared the performance with scratch-VGG-19 and
EfficientNet models. The classification results are summarized in Table 16 based on various
metrics. The pre-trained-VGG-19 model gives the highest results for the BT-MRI-2C dataset,
achieving 100% precision, 96% recall, and a 98% F1-score. Notably, for the tumor class, the
pre-trained-VGG-19 model achieved significantly higher precision and F1-scores (100% and
98.00%, respectively) compared to the scratch-VGG-19 and EfficientNet models as shown
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in Table 16. Table 16 presents the class-wise performance of the models, demonstrating that
the pre-trained-VGG-19 model for binary classification achieved the most accurate results
when calculating the precision, recall, and F1-score.

Table 16. The class-wise metrics evaluation of the performances of the proposed model for BT-MRI-2C
datasets The bold method shows the highest performance.

DL Model Tumor Class Precision (%) Recall (%) F1-Score (%)

Pre-trained-VGG-19 (BT-MRI-2C) Tumor 100 96.00 98.00
No tumor 96.00 100 98.00

Scratch-VGG-19 (BT-MRI-2C) Tumor 98.10 91.96 94.93
No tumor 91.59 98.00 94.69

EfficientNet (BT-MRI-2C) Tumor 99.46 98.20 97.32
No tumor 98.02 96.12 97.06

Furthermore, Figure 18a–c shows the confusion matrix for the results of the suggested
models. Figure 18a shows the proposed pre-trained-VGG-19 model, which correctly classi-
fied 108 out of 112 patients with a tumor, and four instances where the model incorrectly
classified a sample as not having a tumor. Additionally, there were 100 instances where
the model correctly classified the sample as healthy and no instances where the model
incorrectly classified a healthy sample as having a tumor. The model performed well
overall, with a high number of correct predictions for both tumor and non-tumor samples
compared to the scratch-VGG-19 and EfficientNet models, as shown in Figure 18b,c.

Figure 18. Confusion matrix evaluation on the BT-MRI-2C dataset for: (a) Pre-trained-VGG-19;
(b) Scratch-VGG-19; and (c) EfficientNet model.

4.4. Model Explainability Results

CAM, Grad-CAM, and Grad-CAM++ were used to clearly explain the predictions
when dealing with model explainability. It was tested and found to produce better visualiza-
tion results using the proposed medical image classification model.
Figures 19–23 show the visualization results produced by our proposed models using
heatmap methods for multi-class and binary-class BT MRI images. We can differentiate
between the original images and heatmaps created using the CAM, Grad-CAM, and Grad-
CAM++ methods and the visualizations produced by overlaying the original image on the
heatmap. In Figures 19 and 21–23, the red circle indicates the ground truth for the tumor
area, whereas the green circle represents the predicted heatmap generated by the proposed
models for the multi-class and binary-class BT MRI datasets. Similarly, in Figure 20, the red
circle represents the ground truth of the tumor area, whereas the yellow circle represents
the predicted heatmaps for the scratch-VGG-19 model.

The heatmap technique uses a color range from yellow to dark red, where yellow indi-
cates low-contribution regions and dark red indicates high-contribution regions, as shown
in Figures 19–23. These figures demonstrate the MRI regions significantly contributing to
the predicted classification results, making the model more interpretable for humans. There-
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fore, anyone can understand which regions of the MRI are used for classification. When
pixel-wise correctness is not required, heatmaps can serve as alternatives for segmentation.
The labeling and training MRI datasets for segmentation using BT are computationally
intensive. Therefore, heatmaps can be an alternative and a trade-off between accuracy
and resource requirements. In Figures 19–21, GI-T, Mi-T, and Pi-T represent the glioma,
meningioma, and pituitary tumor with corresponding visualization results, respectively.

Figure 19. Explainability results of the pre-trained-VGG-19 model for the localization of multi-class
BT MRI images.

Figure 20. Explainability result of the scratch-VGG-19-Grad-CAM model for the localization of
multi-class BT-MRI images.

Figure 21. Explainability result of the EfficientNet model for the localization of the multi-class BT-MRI
images.
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Figure 22. Proposed models’ explainability results comparisons: (a) pre-trained-VGG-19-Grad-CAM;
(b) scratch-VGG19-Grad-CAM; and (c) EfficientNet.

Figure 23. Explainability result of proposed models using CAM, Grad-CAM, and Grad-CAM++
heatmap visualization techniques for BT-MRI-2C dataset.

The numerical evaluation results in Tables 10–15 and model explainability results in
Figures 19–23 show that the pre-trained-VGG-19 using Grad-CAM outperforms the scratch-
VGG-19 and EfficientNet model due to its transferability knowledge of pre-trained models
for multi-class as well as binary-class brain MRI image classification and localization.

Figure 22 displays a comparative analysis of the explainability results obtained from
the pre-trained-VGG-19-Grad-CAM, scratch-VGG-19-Grad-CAM, and EfficientNet-Grad-
CAM models. These models were evaluated using the BT-MRI-4C dataset (excluding no
tumor class for localization), and the qualitative results were examined. The red boxes in
Figure 22 represent the ground-truth bounding boxes, while the green boxes indicate the
predicted bounding boxes generated by the proposed models. Upon visual inspection, it is
evident that the pre-trained-VGG-19 using the Grad-CAM model in Figure 22a exhibits a
significantly better precision for multi-class BT localization compared to the scratch-VGG-
19 in Figure 22b and the EfficientNet model shown in Figure 22c for multi-class BT-MRI-4C
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as well as the pre-trained-VGG-19 using Grad-CAM gives better localization for the BT-
MRI-2C dataset (exclude no tumor image class for localization, and only consider tumor
class) as observed in Figure 23. Interestingly, the scratch-VGG-19 and EfficientNet models
using CAM, Grad-CAM, and Grad-CAM++ model tend to identify non-discriminative
object parts, as shown in Figures 22b,c and 23.

The pre-trained-VGG-19 classification model (the most accurate) implemented via
the Grad-CAM technique showed significant accuracy in multi-class and binary-class
BT diagnosis prediction while demonstrating explainable capabilities. Grad-CAM can
diagnose possible abnormalities in MR images (gliomas, meningiomas, and pituitary
tumors) based on its ability to identify regions of interest.

4.5. Comparison with State-of-the-Art Deep Learning Models

As presented in Table 17, we compared the proposed model with existing BT and chest
X-ray images classification and segmentation methods [66,72,91–102] that utilize various DL
techniques. The comparison was based on the accuracy and the model explainability results
using Grad-CAM. The classification accuracy of our model for the BT-MRI-4C dataset
using the pre-trained-VGG-19 is 99.92%, the scratch-VGG-19 model is 98.94%, and the
EfficientNet model achieves 99.81%. Similarly, for the BT-MRI-2C dataset, the proposed pre-
trained-VGG-19 achieved 99.85%, scratch-VGG-19 achieved 96.79%, and EfficientNet model
achieved 98.65% accuracy. Furthermore, for the chest X-ray image dataset, the proposed
pre-trained-VGG-19, scratch-VGG-19, and EfficientNet models achieved an accuracy of
98.03%, 96.09%, and 97.59%. We used model explainability techniques using the CAM,
Grad-CAM, and Grad-CAM++ to visualize the regions that are most relevant to a specific
prediction. Thus, researchers can gain insights into how the model works and how it can
be improved to increase its accuracy and performance.

Table 17 shows that our proposed model gives better classification and explainability
results using CAM, Grad-CAM, and Grad-CAM++. The results of this study demonstrate
the reliability of the proposed system. In [91], a CNN model with different classifiers
was used for a three-class (glioma, meningioma, and pituitary tumor) MRI dataset and
obtained the best accuracy of 98.30% using the K-NN classifier. However, they did not
use a model-explainability study. The authors [72,92] proposed different CNN models
using the SoftMax classifier for three-class classification, but they did not introduce the
best prediction results. In [93], the author used an attention-guided CNN (AG-CNN)
model for multi-(four-class, three-class) and binary class classification, obtaining a better
recognition accuracy for the binary class, which was 99.83%, and did not obtain good
recognition accuracy for either the four-class or three-class BT, which were 95.71% and
97.23%, respectively. Owing to the imbalance in the dataset, the AG-CNN model tended to
be more biased toward the glioma class in the three-class and four-class datasets, resulting
in poor classification. Moreover, they do not explain the model’s explainability. The authors
in [66] proposed the EfficientNet-B0 CNN model for binary-class (tumor and healthy)
classification, achieving an accuracy of 99.33% without data augmentation techniques. In
this study, the tumor class was visualized through a heatmap using Grad-CAM techniques.
This study only focused on binary classes and not on multi-class BT-MR images.

Our proposed pre-trained-VGG-19 utilizing Grad-CAM demonstrated superiority
over existing methods for the multi-class and binary-class classification of the BT-MRI
dataset, as evidenced by the performance evaluation. Table 17 compares our method with
the existing quantitative and qualitative literature. We found our approach to be the most
accurate. We believe that this study is the first to use CAM, Grad-CAM, and Grad-CAM++
to localize and classify the BT-MRI and chest X-ray images, with the model explainability
making a significant contribution to the field.
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Table 17. Performance-based comparison of the proposed model with state-of-the-art DL models.

Ref Method Parameters Dataset Accuracy Model Explainability

[91]
CNN, 97.60%
SVM, Not mentioned Three-class 98.30% Not used

KNN, SoftMax 94.90%

[92] CNN, SoftMax Not mentioned Three-class 97.42% Not used

[72] CNN, SoftMax Not mentioned Three-class 95.23% Not used

[98]
VGG-16 95.9%

DenseNet-161 Not mentioned Three-class 98.9% Not used
ResNet-18 76%

[101] GCNN Not mentioned Two-class 99.8% Not used
GCNN Not mentioned Three-class 97.14% Not used

[99] Lightweight CNN 0.59 M Two class 98.55% Not used
Lightweight CNN 0.59 M Three class 96.83% Not used

[100] VGG16 Not mentioned Three-class 97.80% Not used
ResNet50 Not mentioned Three-class 97.40% Not used

[93]
Four-class 95.71%

CNN, Not mentioned Three-class 97.23% Not used
SoftMax Binary-class 99.83%

[66] CNN, SoftMax Not mentioned Binary-class 99.33% Grad-CAM for binary-class prediction

Our proposed model

Pre-trained-VGG-19, SoftMax 20 M BT-MRI-4C 99.92%
Scratch VGG-19, SoftMax 139 M BT-MRI-4C 98.94%

EfficientNet, SoftMax 10 M BT-MRI-4C 99.81%

Pre-trained-VGG-19, SoftMax 12 M BT-MRI-2C 99.85% CAM, Grad-CAM and Grad-CAM++
for binary and multi-class predication

Scratch-VGG-19, SoftMax 9 M BT-MRI-2C 96.79%
EfficientNet, SoftMax 10 M BT-MRI-2C 98.65%

5. Ablation Study

In this ablation study, we thoroughly evaluated the performance of the proposed
neural network architectures: pre-trained VGG-19, scratch-VGG-19, and EfficientNet for
BT-MRI-4C and BT-MRI-2C classification. As shown in Tables 18 and 19, the pre-trained-
VGG-19 performance was notable across all metrics and exhibited excellent precision,
recall, F1-score, and accuracy. Using pre-trained weights from ImageNet contributed
to VGG-19 exceptional performance in recognizing BT patterns by providing a robust
foundation. While EfficientNet did not outperform pre-trained-VGG-19 in all metrics, it
showed commendable stability. Its efficient scaling strategy, balancing model size and
performance, led to consistent results. It was interesting to note that the proposed models
performed better with Adam compared to RMSprop as shown in Tables 18 and 19. In terms
of performance, the scratch-VGG-19 showed competitive results but slightly fell behind the
pre-trained VGG-19 and EfficientNet models. It can directly learn relevant features from
the BT-MRI dataset, illustrating its effectiveness without pre-existing weights.

Table 18. Performance comparison of proposed models for both optimizers and evaluation matrices
for the BT-MRI-4C dataset.

Model Optimizer Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Pre-trained-VGG-19 Adam 99.89 99.72 99.81 99.92
RMSprop 99.10 98.99 99.08 99.69

Scratch-VGG-19 Adam 97.69 98.95 98.39 98.94
RMSprop 97.57 97.09 98.99 97.09

EfficientNet Adam 99.51 98.69 99.74 99.81
RMSprop 98.42 98.75 98.14 99.62
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Table 19. Performance comparison of proposed models for both optimizer and evaluation matrices
for the BT-MRI-2C dataset.

Model Optimizer Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Pre-trained-VGG-19 Adam 98.59 99.32 98.99 99.85
RMSprop 98.57 98.59 97.80 98.12

Scratch-VGG-19 Adam 96.30 95.79 96.90 96.79
RMSprop 96.01 94.38 96.00 95.92

EfficientNet Adam 98.01 99.06 98.81 98.65
RMSprop 98.26 97.31 97.40 98.01

To check the effectiveness of the proposed study, we extended our study to the Chest
X-ray images dataset [103]. The pre-trained VGG-19 continued to excel, achieving 98.03%
accuracy, 97.91% precision, 97.01% recall, and 96.84% F1-score, compared to the scratch-
VGG-19 and EfficientNet models, as shown in Table 20. In light of this versatility, the
pre-trained VGG-19 is suitable for many different applications in the medical imaging
field. Furthermore, heatmap visualization techniques, such as Grad-CAM, were more
interpretable than CAM and Grad-CAM++, as shown in Figure 24. The Grad-CAM visual
explanation highlighted the most important region in the input images, allowing clinicians
to gain much-needed insights into the model decisions.

Table 20. Performance comparison of proposed models for both the optimizer and evaluation
matrices for the chest X-ray dataset.

Model Optimizer Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Pre-trained-VGG-19 Adam 97.91 97.01 96.84 98.03
RMSprop 97.11 96.85 96.21 97.09

Scratch-VGG-19 Adam 95.31 94.86 95.37 96.09
RMSprop 95.01 94.28 95.41 95.71

EfficientNet Adam 97.59 96.88 96.61 97.59
RMSprop 97.15 96.08 95.97 97.53

Figure 24. Explainability result of the proposed models: (a) Pre-trained-VGG-19; (b) Scratch-VGG-19;
and (c) EfficientNet model for the Chest X-ray’s images using CAM, Grad-CAM, and Grad-CAM++.

6. Conclusions

In this study, we introduce an XDL model based on real-world diagnostic procedures
to detect multi-class and binary-class BT-MRI images. The interpretability of models is
essential in high-stack domains for DL solutions. Research on applying explainable DL for
multi-class BT classification and localization was rare despite the large number of papers
on binary-class BT classification and segmentation using DL and ML. Hence, in this study,
we presented three DL models (pre-trained-VGG-19, scratch-VGG-19, and EfficientNet)
for multi-class and binary-class BT classification and localization using CAM, Grad-CAM,
and Grad-CAM++. The pre-trained-VGG-19 and EfficientNet models were used as the TL
approach, whereas scratch-VGG-19 was trained from scratch for the brain MRI dataset using
different optimizers (ADAM and RMSprop) and medical datasets. The proposed DL model
was visualized using heatmap techniques to facilitate understanding and explanation.
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The experimental results demonstrated that the pre-trained-VGG-19 model utilizing the
Grad-CAM technique performed better than the scratch-VGG-19 and EfficientNet model
and the other cutting-edge DL techniques, both in the visual and quantitative evaluations,
with improved accuracy. This indicates the efficacy of our suggested strategy and the
potential for adopting DL for quick BT diagnoses using MRI images. Radiologists can use
the proposed method to obtain a secondary opinion. It minimizes the calculation time
and improves the accuracy. An automatic classification system can significantly reduce
the diagnosis time and manpower requirements. Consequently, this was performed to
minimize misclassification.

The proposed approach will be tested on various tumor imaging challenges using the
transformer model in future studies. The model will be further refined and its performance
enhanced through experimentation with the challenging medical imaging dataset.

Author Contributions: In this research endeavor, T.H. and H.S. collaboratively conceptualized the
study’s objectives and framework. T.H. took the lead in implementing the methodology, conducting
the experiments, and collecting the data, while H.S. provided valuable guidance and contributed to
methodological design. T.H. authored the initial draft of the manuscript, and both authors, T.H. and
H.S., played essential roles in reviewing and enhancing the manuscript’s quality. H.S. supervised the
project, offering oversight and expertise throughout the research process. Together, their combined
efforts culminated in this manuscript’s completion. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is publicly available, as I already mentioned in the text.

Acknowledgments: I am immensely grateful for my supervisor’s exceptional support, whose guid-
ance made this research possible. Their expertise and dedication were invaluable throughout the
entire process.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

XDL Explainable deep learning
MRI Magnetic resonance imaging
VGG Visual geometry group
BT Brain tumor
CAM Class activation mapping
Grad-CAM Gradient weighted class activation mapping
Grad-CAM++ Gradient weighted class activation mapping plus plus
CAD Computer-aided diagnosis
DL Deep learning
AI Artificial intelligence
CNN Convolutional neural network
DCNN Deep convolutional neural network
CRM Class-selective relevance mapping
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
XRAI Improved indicators via regions
GAP Global average pooling
GI-T Glioma tumor
Mi-T Meningioma tumor
Pi-T Pituitary tumor



Information 2023, 14, 642 28 of 32

References
1. Amin, J.; Sharif, M.; Yasmin, M.; Fernandes, S.L. A distinctive approach in brain tumor detection and classification using MRI.

Pattern Recognit. Lett. 2020, 139, 118–127. [CrossRef]
2. Amin, J.; Sharif, M.; Yasmin, M.; Fernandes, S.L. Big data analysis for brain tumor detection: Deep convolutional neural networks.

Future Gener. Comput. Syst. 2018, 87, 290–297. [CrossRef]
3. Nazir, M.; Shakil, S.; Khurshid, K. Role of deep learning in brain tumor detection and classification (2015 to 2020): A review.

Comput. Med Imaging Graph. 2021, 91, 101940. [CrossRef] [PubMed]
4. Tiwari, A.; Srivastava, S.; Pant, M. Brain tumor segmentation and classification from magnetic resonance images: Review of

selected methods from 2014 to 2019. Pattern Recognit. Lett. 2020, 131, 244–260. [CrossRef]
5. Mohan, G.; Subashini, M.M. MRI based medical image analysis: Survey on brain tumor grade classification. Biomed. Signal

Process. Control 2018, 39, 139–161. [CrossRef]
6. Ayadi, W.; Charfi, I.; Elhamzi, W.; Atri, M. Brain tumor classification based on hybrid approach. Vis. Comput. 2022, 38, 107–117.

[CrossRef]
7. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [CrossRef] [PubMed]
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