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Abstract: In a world where the interconnection and interaction between human and artificial agents
are continuously increasing, the dynamics of social bonds and dependence networks play a funda-
mental role. The core of our investigation revolves around the intricate interplay between dependence
and trust within a hybrid society, populated by human and artificial agents. By means of a structural
theory, this study offers valuable insights into the utilization of dependence networks and their
impact on collaborative dynamics and resource management. Most notably, agents that leverage
dependence, even at the cost of interacting with low-trustworthiness partners, achieve superior
performance in resource-constrained environments. On the other hand, in contexts where the use of
dependence is limited, the role of trust is emphasized. These findings underscore the significance of
dependence networks and their practical implications in real-world contexts, offering useful practical
implications in areas such as robotics, resource management, and collaboration among human and
artificial agents.
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1. Introduction

The dynamics of social bonds are a widely explored subject within the realm of social
sciences, encompassing both theoretical and empirical perspectives [1–3]. This subject holds
clear relevance within these fields. Understanding how these relationships develop, evolve,
and influence human behavior is crucial for a deeper understanding of society. Indeed,
many contributions in the literature address various aspects of social relationships and
demonstrate how they impact health, well-being, and a range of human behaviors [4–7].
Furthermore, the dynamics of social bonds have a significant impact on individuals’ and
communities’ decisions. People are often influenced by the opinions and actions of their
social groups [8]. Understanding how these dynamics influence behavior is essential for
more accurate predictions and for the planning of social and economic interventions.

The extensive array of research available in the literature provides an in-depth under-
standing of the various facets and applications of social networks. The conducted studies
have unveiled the pivotal significance of the structure of these networks in influencing
various phenomena, such as the analysis of how ideas diffuse [9–11] or how consump-
tion trends propagate [12,13]. These networks enable us to gain a unique perspective on
collective phenomena and social behaviors.

Numerous studies across diverse contexts, ranging from academia to business, have
revealed the critical role of social network structures in information dissemination and the
success of various initiatives [14,15]. Remarkably, social network studies offer a rich and
diversified perspective on the intricacies of human relationships and the ways in which
these relationships influence and guide a wide array of phenomena.

The primitive functions of these relational structures play a crucial role in both collabo-
rative dynamics and interactions that are more neutral or conflictual. These elements form
the basis of what we could define as “extended sociality” [16], a concept that extends to
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both artificial and human agents. In order to concretely achieve effective high-level collabo-
ration between human and artificial agents, it is imperative for the latter to possess social
capabilities akin to those of humans. Among the various elements to be implemented,
the “theory of mind” [17–19] plays a pivotal role. Firstly, it entails the awareness that
other individuals have a mind with thoughts and internal mental states that influence
their decisions and behavior. Therefore, the theory of mind enables the recognition and
understanding of the intentions, beliefs, and motivations of others [20,21]. This skill not
only pertains to the interpretation of objective data from reality but also involves anticipat-
ing the cognitive processes of other actors at play. In other words, the capacity to acquire
knowledge about the convictions and desires of other agents is fundamental, as these pieces
of information play a crucial role in social interactions. This concept is intriguing as it sheds
light on the intricate nuances of both human and artificial interactions, emphasizing how
an understanding of cognitive dynamics is pivotal in fostering effective and productive
relationships within an increasingly interconnected reality.

Our goal is to investigate the fundamentals of collaboration within a world cohab-
ited by artificial and human agents. Specifically, we inquire about the dependence net-
work [22–24] enriched by agents’ beliefs about the reliability of their counterparts. By
employing a comprehensive theory encompassing the type of beliefs in play, we can not
only address pivotal issues regarding agents’ influence in a network but also gain insights
into the dynamic facets of relational capital.

Thus, building upon the theoretical framework presented in [16], within this con-
tribution, we introduce a simulation-based implementation of dependence networks to
investigate their utilization and resultant effects. Specifically, our focus lies in conducting
a comparative analysis between the concepts of dependence and trust, examining the
roles they play in shaping interactions among agents. In our analysis, we refer to the con-
cepts of agent and multi-agent systems, considering in particular the BDI—beliefs, desires,
intentions—model of the rational agent [25–27]. In more detail, in this work, we will make
use of the blocks world. The choice to reference this context is linked to the specific aspects
we intend to investigate. In fact, the block world allows us to adequately represent contexts
in which agents pursue their personal goals, based on the beliefs they have on the world.
Yet they share common and limited resources. Within such a context, we are interested in
examining how agents achieve better results the more they are capable of choosing their
collaboration partners wisely. We investigate the agents’ ability to accurately identify the
dependencies that spontaneously arise and to use them profitably for their own goals. In
addition to the concept of dependence, we also take into account the reliability of partners.

This study serves two fundamental purposes:

1. Firstly, it advances our understanding of the dynamics of collaboration in a hybrid
society, where cognitive artificial and human agents interact.

2. Secondly, it empirically explores the intricate interplay between dependence and trust
in this context.

By doing so, we aim to shed light on the mechanisms that underlie effective coop-
eration, offering valuable insights for various domains, including artificial intelligence,
sociology, and organizational science.

This section has highlighted the research gaps and the contribution we intend to
realize. The rest of this article is organized as follows. In Section 2, we consider related
works about trust and dependence networks in the domain of agents. In Section 3, we
provide a theoretical formulation social dependence, while in Section 4 we introduce the
framework of our work, together with the related concepts and issues. On the basis of these
theoretical premises, Section 5 discusses the implementation we realized, whose results are
presented in Section 6 and discussed in Section 7. Section 8 summarizes the contribution of
the whole work.
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2. Related Work

Within this section, we will analyze the role of trust and dependency networks in the
state of the art, aiming to provide a conceptual context for our contribution by discussing
the most impactful research in these fields.

2.1. Trust

Trust is a complex and multifaceted concept [28]. It is a key concept in agent inter-
actions, whether human or artificial [29], cognitive or otherwise [30]. This significance
becomes even more pronounced when we consider social interaction among cognitive
agents. The role of trust in multi-agent systems is pivotal [31,32], especially in contexts
where autonomous agents need to interact and collaborate. Trust among agents can foster
mutual cooperation, as agents are more inclined to share resources, knowledge, or efforts
if they trust each other [33]. Trust is instrumental in forming coalitions and accomplish-
ing complex tasks requiring the collaboration of multiple agents [34]. Furthermore, trust
serves as an essential tool for managing uncertainty about other agents [35]. When an
agent can rely on another, it can make more informed and predictable decisions. This is
particularly valuable in scenarios where uncertainty could lead to undesirable outcomes or
inefficiencies, aiding agents in mitigating risks.

To quantify the appropriate level of trust to place in potential partners, it is necessary
to introduce mechanisms for assessing their trustworthiness [36,37]. Trustworthiness is
an intrinsic property of the trustee and, as such, cannot be accessed directly but only esti-
mated. Therefore, the trustor needs to estimate and infer how reliable its potential partners
would be in executing the task of interest [38]. These learning mechanisms rely on direct
experience, reputation/recommendation [39–41], and categories/stereotypes/inferential
reasoning [42,43] as channels of information to evaluate agents’ trustworthiness.

Trust also plays a central role in dependence networks, where it is not only a question
of establishing who is capable of doing what and who can be relied upon to achieve specific
goals. It is also essential to know how willing, available, and trustworthy a potential
partner, on whom one depends, is when it comes to fulfilling a task. In this regard, it is
interesting to note that, more than the objective trustworthiness of an agent, what matters
in dependence networks (enhanced by the concept of trust) is the trust that others attribute
to their respective potential partners in collaborations [30].

2.2. Dependence Network

Several works have, over time, delved into the utilization of dependence networks.
A notable contribution is found in [44], where the authors introduce a Distributed

Artificial Intelligence (DAI) system known as DEPNET, specifically designed to address
communication and coordination challenges in a distributed environment. This system
possesses the capability to compute dependence relationships within a population of
artificial agents sharing a common world. The authors employ this system to illustrate
how intricate structures of interdependencies emerge from agents with straightforward
architectures situated in a common world. These structures, in turn, influence various
properties of the system, both at the individual level (pertaining to agents’ disparities and
negotiation abilities) and the collective level (involving the emergence of coalitions and
organizational structures, among other aspects).

In [24], the authors propose an abstract structure termed a ‘dependence graph’, which
extends the concept of dependence networks. The advantage of this structure lies in its
capacity to be applied to multi-agent scenarios, whereas dependence networks primarily
analyze dependence relationships between individual agents. This contribution serves as a
theoretical expansion of the field of dependence.

Dependence and trust are two closely related concepts. On the one hand, the belief
in dependence serves as a prerequisite for the act of trust [28]. Conversely, awareness of
dependence networks alone does not suffice for the allocation of tasks to a trustee; it is
imperative to consider the actual reliability of potential partners. However, even though
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numerous studies have explored the pivotal role of trust in agent interactions, limited
attention has been given to its role within dependence relationships. To the best of our
knowledge, the existing literature predominantly consists of purely theoretical works that
lack concrete implementations.

One such instance is presented in [45], where the authors propose an architecture
involving cognitive agents and the environment within which they operate and interact.
This theoretical framework was devised as a tool for examining the dynamics of information
sharing, collaboration, and collective action within various service systems. Notably, the
authors introduce a trust mechanism founded on agents’ competence, assuming the absence
of malicious agents. An agent’s trustworthiness is assessed based on its responsiveness to
incoming requests. Nonetheless, the authors do not detail how trust should be effectively
employed in conjunction with dependence networks.

Hence, the current state of the art still lacks concrete implementations that explore the
role of trust within dependence networks.

3. Agents and Social Dependence

In this section, we summarize the theory that was developed in [16], concerning the
role of social dependence in agents’ societies. Within a shared “common world”, agents
move and act in order to realize their goals, wielding limited power and control over the
world and its components. Moreover, given that agents’ power to act upon the world is
limited, they will most likely need to interact with others in order to perform useful actions
for them. An agent’s action can support or undermine the goal of another agent. Therefore,
they also require social powers, denoting the capacity to leverage the abilities of other
agents for their individual goals. Hence, it is necessary for agents to identify situations
where they need to interact, correctly identifying who they depend on to accomplish their
tasks and when and with whom it is appropriate to interact. Knowing which other agents
each agent depends on (or believes they depend on) is also crucial.

We define an objective dependence relationship between an agent ai and another agent
aj concerning a task τk when the completion of τk involves actions, plans, and/or resources
possessed by aj and unavailable or less suitable for utilization by ai. This dependence exists
irrespective of ai’s or aj’s awareness. If, in addition to this dependence relation, it occurs
that aj has an objective dependence relationship concerning ai, we define this relationship
as a mutual dependence relationship.

Objective dependence is a pivotal element in social interactions and serves as the
foundation of society, fostering cooperation in diverse ways. However, knowledge of
objective dependence relationships is insufficient to predict the arising or absence of re-
lationships among agents. To achieve this, it is fundamental to take into account the
dependence relationships that agents are aware of or believe in. In this context, we refer to
subjective dependence.

It is worth emphasizing that when we introduce such a concept concerning the sub-
jective view of dependence relationships, we are delving into the agent’s beliefs and
perceptions regarding its dependence on others. This introduces a further dimension, the
beliefs, shifting from objective facts to the personal mental representation that agents have
about what is actually true in the world. Equally crucial is the consideration of what an
agent believes about the dependencies of other agents, i.e., how it interprets the dependen-
cies of the others. The set of objective dependencies, subjective dependencies, and others’
believed dependencies determines the fundamental relationships to initiate negotiation
processes. Note that, while the object level is factual and always present, this is not the
case for the others. Indeed, in those cases, we are dealing with beliefs that may or may not
be present in the minds of the agents. Of course, it is not necessarily the case that what is
subjectively believed by an agent actually coincides with reality in the world. This also
implies that different agents may have different views on the same dependence.

Figure 1 illustrates a potential example of objective dependence. In this scenario, the
agent ai requires the resource resj, possessed by the agent aj, to successfully complete the
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task τi of interest. This establishes an objective dependence relationship for agent ai with
respect to agent aj.

Figure 1. An example of objective dependence.

Starting from the case in Figures 1 and 2, we analyze a possible example of subjective
dependence. In the analyzed scenario, both agents are aware that agent ai requires the
resource resj, possessed by aj, to complete the task τi of interest. Therefore, in this case,
the dependence relationship is known to both. In this instance, subjective dependence
corresponds to objective dependence. Certainly, from the same objective dependence, other
subjective views could have arisen. For instance, one of the agents might not have been
aware of the dependence. Alternatively, they might have thought that the resource resj
could be missing or possessed by another agent.

Figure 2. An example of subjective dependence.

Dependence networks are highly dynamic and can change unpredictably as envi-
ronmental conditions change. For example, they change based on individual objectives.
Moreover, they evolve based on the resources in the world and the individual skills of the
agents. The entry or exit of a new agent (open world) is particularly relevant for determin-
ing dependencies. Just becoming aware of possessing (or not) a certain capability (or what
the agent/others believe about this capability) can alter possible scenarios. The decision
of a cognitive agent to pursue a goal is based on the belief, with a given level of certainty,
in possessing that capability. Consequently, if an agent is unaware of a particular power,
it does not genuinely possess it. Conversely, the attainment of power, autonomy, and
control over other agents can be attributed to the awareness of that power, not necessarily
stemming from the acquisition of external resources or skills and competencies.

Dependencies naturally emerge from the context, and their numerical values cannot
be predetermined. What can be specified is the extent to which an agent depends on others.
This dependence internally is linked to the agent’s goal, its possessed resources, its ability
to act in the world, and the beliefs it has on these dimensions. It also depends on other
network members, whether their goal conflicts with the goal of the agent, if they can offer
resources for the agent’s goal, or if they can perform actions on its behalf, and on contextual
factors such as resource availability in the world. Agents can be entirely independent if
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they have all the necessary resources and can achieve their goal autonomously, while they
become entirely dependent if they rely on others for everything. In our case, we operate
in a middle ground, where dependence relationships can emerge in any situation. On the
contrary, controlling the frequency of agents’ use of dependence relationships is possible,
as we will see in the following experiments.

In essence, a complex and multifaceted framework is being outlined, wherein concepts
like theory of mind come into play and prove essential for understanding these tools.
Possessing the ability to analyze dependence networks is crucial for comprehending,
predicting, and optimizing interactions with other agents. This is a fundamental tool
that ensures that those who employ it gain a distinct advantage over other agents when
used appropriately.

4. Practical Formulation of the Model

This section aims to explain in detail how we chose to implement the theoretical model
introduced. In this contribution, to explore the intricate dynamics of dependence networks,
we have developed an implementation of the block world [46–48]. We will now present
the practical formulation of our model, which will be utilized in the simulations. The
world under consideration consists of a table and several blocks, each possessing distinct
characteristics such as shape, color, and weight. Within the context of the simulation, agents
endeavor to create one or more combinations or sequences of blocks on the table.

4.1. The Blocks

As mentioned, the blocks in the world possess various shapes (cylinders, cones, cubes,
spheres), colors (red, blue, green, yellow), and weights (light, heavy). In total, there are
32 blocks in the world. These blocks can be either on the table or off the table. Additionally,
each block can have an owner, i.e., a single agent authorized to change the block’s status in
terms of position or ownership. Initially, all blocks are off the table. Some are assigned to
agents from the beginning, while others are unclaimed and can be taken by the agents.

The blocks are subject to physical constraints within the world, known to all agents:

• Stacks can consist of up to three elements.
• A light element can have at most one light element on top.
• A heavy element can have up to two elements of any kind on top. It is evident that,

due to the previous constraint, a combination of heavy–light–heavy blocks cannot
be realized.

• Cones and spheres cannot have other blocks on top of them.

The blocks represent the fundamental building units for creating stacks, which are
structures formed by stacking multiple blocks in a specific order. The underlying concept
is that these block configurations abstractly symbolize the basic elements necessary to
achieve goals.

As we will show later, we aim to consider that there are simpler tasks in reality, where
successful execution involves directly satisfying a sub-goal. In contrast, there are more
complex tasks that require multi-phase construction, relying on the knowledge of specific
methods to accomplish the goal.

4.2. The Agents

Agents, whether human or artificial, operate in the world to accomplish their goals.
Specifically, each agent is defined by:

• A goal: A specific combination of blocks that the agent aims to achieve in the world.
This configuration consists of a series of more or less articulated sub-goals.

• A set of plans to achieve its goal/sub-goals (ranging from 0 to n): In the absence of
plans, a dependency is established (towards someone) for obtaining a plan.

• A defined level of competence, indicating the agent’s ability to perform certain tasks.
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• Membership category: We considered two categories—human or artificial agents.
The category influences the characteristics of the agent. For instance, we assume
that humans can manipulate cylinders and cones, while robots can manipulate cubes
and spheres.

• Resources (blocks): Initially, each agent possesses five blocks.
• Beliefs about themselves, the world, and others. Agents’ entire perception of the

world, processing, and planning are based on beliefs, thus reflecting their individual
interpretation of reality. These beliefs can be more or less accurate or even absent.

• A σ threshold that determines how trustworthy potential partners must be for the
agent to consider their dependence usable. This threshold value, specific to each agent,
is used to verify if the partner is capable of performing certain actions. Nonetheless,
there remains a certain probability of error.

Agents need to collaborate to achieve their goals, taking into account their subjective
dependence networks, which represent their personal understanding of dependencies on
others and of others on themselves. Agents are acquainted with all other agents and blocks
in the world.

We start from the assumption that human and artificial agents are cognitively equiva-
lent, meaning that they determine their actions based on what they believe and the goals
they pursue. Certainly, there are differences at the level of physical interfacing, whereby it
is assumed that the two categories of agents interact with the physical world differently.
At an implementation level, we have translated this by allowing the ability to manipulate
different categories of objects. Of course, this is a theoretical expedient. However, even
though they possess equivalent social, reasoning, and operational capabilities, their di-
versity allows us to highlight the necessity of collaboration among agents. Furthermore,
introducing categories into this framework allows us to differentiate the characteristics of
the agents, including their manipulation and action capabilities in the world. Additionally,
it enables us to introduce and model processes of inferential reasoning [42,49,50]. Knowing
the category of an agent allows us to deduce its specific characteristics and thus—in our
case—whether it is capable of achieving certain states of the world or not. This aspect is
relevant in relation to the concept of dependence: If an agent A2 knows the category to
which another agent A1 belongs, A2 can deduce whether it depends on A1 (knowing its
own objectives/plans) or if A1 depends on A2 (knowing the goals/plans of A1).

4.3. Goals and Plans

Each agent has the goal of placing certain blocks on the table. These blocks can be
stacked in a specific order or simply positioned on the table. In this regard, the agent’s goal
is subdivided into sub-goals, which can be:

• Atomic: For example, moving a single block onto the table. This kind of task is useful
for modeling the presence of simpler tasks in the world that do not require complex
planning skills and do not need to be performed in multiple steps.

• Complex: Creating a stack, which is an ordered sequence of blocks. Constructing a
stack introduces the requirement to perform a series of actions in a specific sequence
(effectively a plan) to achieve a single sub-goal. Accomplishing only part of it is
insufficient; all actions must be executed.

The stacks of blocks in the block world are intended to represent complex and chal-
lenging tasks for AI systems. The agent must be capable of engaging in complex planning
involving blocks to achieve specific goals that cannot be realized with a single action. Given
the complexity of these tasks, within our framework, we assume that in the absence of
a specific plan containing implementation instructions, agents are unable to accomplish
these sub-goals.

We establish that each agent needs three to five blocks to fulfill its goal. The agent’s goal
is considered as completely satisfied when all sub-goals have been achieved. Conversely, it
is considered partially satisfied if only some of the sub-goals have been attained. The goals
are not shared, in the sense that the presence of a block or a sequence on the table satisfies
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the goal/sub-goal solely of its specific owner, rather than that of other agents. A plan is
considered feasible for Agent A1 if:

1. There exists a set of unused blocks that, when properly used, satisfies it.
2. There is someone (either Agent A1 or an Agent A2 dependent on A1) who can

potentially move these blocks.
3. The plan is physically achievable, meaning that it adheres to the rules governing block

composition as defined in Section 4.1.

4.4. Agents’ Trust and Trustworthiness

In this study, we refer to the concept of trust as modeled in [28]. Trust is taken into
account by the agents when selecting dependencies, serving as a mechanism to decide
whether to interact with one partner over another.

Within the simulation context, we assume the absence of malicious agents; therefore,
we choose not to consider the influence of motivational aspects on the determination of an
agent’s trustworthiness. For completeness, it is worth emphasizing that an agent might
have conflicting motivations regarding a task. For instance, it may not want to part with a
block of interest, as it will be required to complete its sub-goals. However, this does not
imply malicious intent. In such cases, the agent will simply decline the proposed task.

Hence, we characterize agent trustworthiness in terms of competence, i.e., how ef-
fectively they can accomplish tasks in the world. Competence is defined as a real value
within the range [0, 1], where 0 implies a complete inability to act, while 1 signifies a
guaranteed success.

In the simulated world, we consider three types of tasks:

1. Obtaining a plan.
2. Acquisition of a block.
3. Repositioning of a block.

Since we have no interest in differentiating the values of competence for these tasks,
for computational simplicity, we assume that an agent’s trustworthiness is the same for
each of them. We would like to point out that this is not necessarily true in reality. Indeed,
skills on different tasks usually tend to differ. Nevertheless, considering such a difference
would have no practical impact within our scenario.

An agent is considered capable of achieving a task if it has a probability greater
than a given threshold σ of accomplishing it. This probability is assessed through its
trustworthiness evaluation. As mentioned earlier, agents possess a trustworthiness. This is
an intrinsic characteristic of the agent that determines its ability to execute tasks. However,
as such, it cannot be accessed directly, not even by the agent itself; it can only be estimated.
To estimate the trustworthiness of agents, we consider a computational model based on
the beta distribution. The beta distribution is commonly employed in the analysis of agent
trustworthiness [51–54], especially when it comes to modeling and estimating success
or failure probabilities in complex situations. The beta distribution is defined by two
parameters, denoted as α and β. As described in Equations (1) and (2), they depend on the
estimation of the number of observed successes n_successesax and failures n_ f ailuresax of
the agent ax.

αax = n_successesax + 1 (1)

βax = n_ f ailuresax + 1 (2)

In this context, the expected value of the distribution, representing the estimation of
the average trustworthiness Trustworthinessax of an agent ax, is given by Equation (3):

Trustworthinessax =
αax

αax + βax

(3)

In this regard, if Trustworthinessax is equal to x, defined within the range [0, 1], then,
for a single task with a dichotomous outcome, the probability of success is x, while the
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probability of failure is 1 − x. Generalizing to n tasks, the number of successes and failures
can be estimated as in Equations (4) and (5), respectively:

n_successesax = nx (4)

n_ f ailuresax = n(1 − x) (5)

Thus, we can estimate αax and βax as in Equations (6) and (7):

αax = nx + 1 (6)

βax = n(1 − x) + 1 (7)

Equation (8) provides us with the expected value after n attempts:

Trustworthinessax =
nx + 1

nx + 1 + n(1 − x) + 1
=

nx + 1
n + 2

(8)

Overall, the difference between the real value of x and that estimated will be:

∆Trustworthinessax = x − nx + 1
n + 2

=
2x − 1
n + 2

(9)

Equation (9) describes the behavior of a straight line; therefore, the maximum and
minimum values will be found at the endpoints of the definition interval, namely, x = 0
and x = 1. Thus, the maximum difference between the estimation and the actual value of
trustworthiness will be ± 1

n+2 . In other words, the use of the beta distribution to model
trust allows us to have a sufficiently accurate method for quantifying agent trustworthiness
with a small number of observations, as the error decreases inversely proportional to the
number of observations, n.

4.5. Beliefs

Beliefs represent the perceptions and knowledge that agents possess about the state
of the environment, other agents, and the relationships between them. These beliefs
influence the decisions and actions of the agent, thus guiding the overall evolution of
the simulation. Indeed, their fundamental role becomes even more crucial if beliefs on
dependence networks are also considered.

In our framework, agents possess beliefs about:

• Their own goals;
• Their own abilities;
• Their own plans;
• The blocks that exist in the world;
• Who the owners of the blocks are;
• The other agents that exist in the world;
• The goals of the other agents;
• The abilities of the other agents;
• The plans of the other agents (they know which ones they possess, but not how these

plans are articulated);
• Dependencies on actions;
• Dependencies on resources (blocks);
• Dependencies on plans.

Beliefs are a fundamental aspect of both the theoretical framework and the simulations
we consider. In fact, agents reason entirely based on beliefs, meaning, their personal
perception of the world. Firstly, both the assessment of partner trustworthiness and the
perception of their own and others’ dependencies are belief-based. Furthermore, other key
aspects we consider are belief-based. As a remarkable example, consider the knowledge of
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the blocks or their owner: An agent might potentially be unaware of the existence of a block
in the world, might not know that it can take ownership of it, or might still not know that it
can move it. These beliefs significantly influence both its choices and the achievement of
its goals.

4.6. The Blackboard

As introduced in Section 3, the difference between objective dependencies and sub-
jective ones is that the former are real and factual, while the latter represent the agents’
subjective perception of what dependencies exist in the world. Of course, only an observer
outside the world who has control over the simulation system is capable of knowing what
the objective dependencies are, since these by their very nature are not directly knowable.
Objective dependencies can only be known by the system. Therefore, when agents consider
a dependence relationship, it will always and only be a subjective dependence. This type
of modeling is consistent with the principle that, in the world of agents, as in the real
world, individuals always possess partial and subjective knowledge. As a result, agents
may not know the fact of being dependent on another agent (partial knowledge) and may
also mistakenly believe they are or are not dependent on another agent (in this regard, it is
important to clarify that not knowing that you are dependent on an agent is semantically
different from knowing that you are not dependent on an agent). In this context, the only
way agents interact is through the blackboard. Through its utilization, others can discover
the needs (which create dependencies) of an agent, and the agent, in turn, gains insight into
the needs of others. The blackboard facilitates the recognition of subjectively experienced
dependencies within the world, which objectively existed beforehand. The blackboard
serves as the tool that transforms an objective dependency into a subjective one.

We assume that agents are capable of autonomously determining their dependencies,
solely through the observation of the world, which they then process through their beliefs.
This assumption is reasonable, because they can ascertain who is capable of what using
inferential processes on categories and because the possession of resources in the world
is public. However, this represents limited and partial knowledge which, in the event
of an error, could also prove to be incorrect. Moreover, it is not guaranteed that agents
can independently determine who depends on them. In order to establish a protocol of
agent interaction based on these principles, we introduced in the world the presence of a
blackboard. The blackboard represents the system that agents use for communication and
for verifying dependencies. At the beginning of each simulation, each agent will declare
the goal it intends to pursue. Then, whenever it needs to perform a task to continue its
plan, it will check the blackboard.

Firstly, it will verify the existence of a mutual dependence. The agent will determine if,
among the agents with a trust rating higher than its internal threshold σ, there are requests
that it can fulfill, and if there is someone who can satisfy its task. In the case of a negative
outcome, the agent will simply post its request on the blackboard, awaiting another agent
to select it for a mutual dependence in the future. Conversely, if mutual dependencies are
identified, the agent will proceed to initiate a negotiation phase. If both agents agree, each
will proceed to fulfill the other’s request.

4.7. Workflow

The agent starts each cycle by updating its beliefs. This is crucial because, in the
previous cycle, the state of the world may have been altered by the actions of the agents.
For example, ownership of blocks may have changed, or blocks may have been moved. In
each cycle, the agents are limited to performing only one action: retrieving a plan from
other agents, obtaining a block, or moving a block.

At first, each agent evaluates whether it possesses at least one feasible plan to achieve
its goals. If this condition does not hold, in this cycle it focuses on obtaining a plan. If the
agent does not require external resources to achieve its goal, then it simply declares its goal
on the blackboard, starting to execute the first task necessary to achieve it. Otherwise:
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1. The agent establishes how to proceed in obtaining the required elements, following
internal priority criteria.

2. It checks previous requests, updating its subjective view on the dependence network,
and verifies in the blackboard if any of the agents having active dependence on it
can provide the needed resource. Where this is the case, a mutual dependence is
explicit, and the agent attempts a negotiation to formalize the exchange. If a partner
is found, both requests are executed. If no partner is found, the agent declares on
the blackboard its request and the goal it is pursuing. Then, it waits for a future
mutual dependence.

Figure 3 provides us with graphical indications regarding the simulation workflow.

Figure 3. Workflow of the simulation.

It is worth emphasizing that, within the complex system defined, dependence is not
just a necessity but also a resource in itself. The fact that someone depends on me provides
me with the opportunity to access the resources that the other has to offer. Therefore,
while being independent of everyone could be considered an advantage, the simulation
world has been designed to make this possibility unlikely. Conversely, the fact that no one
depends on us represents a significant competitive disadvantage.

Regarding the ranking criteria, the agent ranks the sub-goals it can address in the
specific cycle, according to the following principles:

• Abstraction level of the sub-goal: It will prioritize less abstract sub-goals since, as the
need for the sub-goal becomes more specific, the availability of blocks in the world
that can satisfy this request becomes more restricted.

• Reasoning about others’ goals: Starting with knowledge about other agents’ goals, an
agent estimates which blocks it need that are most likely to be used by other agents.
It might even find it better to take possession of the final block of a stack, even if the
base has not been constructed yet (typical market problem: offer/demand dynamics).

5. Simulation Experiments

Once the practical model has been introduced, our next step involves a comprehensive
examination of its simulation implementations, with a primary focus on investigating the
efficacy of dependence networks. Additionally, we aim to delve into the role of trust within
this experimental context. The proposed simulation is motivated by several key factors that
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underscore its necessity and validity. First of all, the simulation allows for the exploration
of complex dynamics that emerge when autonomous agents interact and collaborate in
pursuing their goals. This provides an opportunity to analyze interactions in a controlled
environment, facilitating a better understanding of the underlying mechanisms governing
agents’ interactions. The simulation also aims to assess the effectiveness of dependence
networks in optimizing collaboration among agents. This is particularly relevant in sce-
narios where trust and mutual dependence play a critical role, as in interactions among
autonomous agents. As this marks the preliminary stage of our experiment, we initiate the
exploration by considering the dynamics that unfold within a relatively compact network
of agents, all within a controlled setting, providing a solid foundation for understanding
such dynamics in more complex scenarios. Overall, the simulation provides a detailed
framework to explore, test, and understand the functioning of the proposed model in a
variety of scenarios, enabling targeted refinement and optimization of the approach.

Within the simulated environment, we considered a total of six agents. To ensure
fairness and eliminate any potential advantage or disadvantage arising from the complexity
of assigned goals, we introduced a unique goal for all agents. This goal entails the creation
of a stack composed of two blue blocks and the placement of two lightweight blocks on
the table, as visually represented in Figure 4. This controlled scenario allows us to closely
observe the interactions and dependencies among the agents, providing valuable insights
into the functioning of the proposed model. The limited scale of the network and the unique
goal set the foundation for an initial exploration of how the agents collaborate, showcasing
the potential impact of dependence networks and shedding light on the interplay of trust
within the system.

Figure 4. In the figure, The label on the block indicates the ID of the agent that owns it. In this specific
case, agent 5 completely realized its goal, as he managed to place a stack of two blue blocks and two
lightweight blocks on the table.

In general, agents are capable of accurately observing the world, meaning that their
subjective perception aligns with objective occurrences. However, there is one exception to
this. Consider the scenario in which an agent fails to execute a specific action necessary
for achieving one of its sub-goals. However, despite being deemed a failure, this action
could still satisfy another sub-goal of the same agent. For instance, referring to the task of
interest in this simulation (which involves creating a stack composed of two blue blocks
and placing two lightweight blocks on the table), an agent might have intended to place a
lightweight blue block on the table but mistakenly places a lightweight green block instead.
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Nonetheless, this lightweight green block might still satisfy a second sub-goal of the agent.
In this sense, the action will be perceived as a failure by the executing agent. However,
since agents’ beliefs are grounded in their observations of the world, the rest of the agents
are unable to accurately identify this situation, as the truth about what happened is internal
to the agent who performed the action. Consequently, the other agents will interpret this
action as correct.

To elaborate further, agents reveal their potential requests when pursuing their own
goals, and as a result, they become active on the blackboard.

Comparison Metric

We need to define a metric for evaluating and comparing the performance of agents.
This metric should be designed to reward agents that can accomplish more complex actions.
For instance, creating a stack of two blocks is more complex than simply placing two blocks
on the table, both in terms of planning and due to the possibility of resources running
out in the meantime, given the stricter constraints on block composition. Therefore, we
decided that:

1. Successfully placing a block of interest on the table is worth one point;
2. Successfully completing a stack earns an additional point;
3. Successfully completing all goals grants an additional point;

Overall, considering the set goals for the agents, the maximum achievable score for an
agent is 6. Naturally, considering that not all agents have correct plans available to achieve
their goals, that agents make mistakes, and that resources in the world become engaged at
some point, we expect the average score to decrease significantly.

6. Results

Within this section, we present the results of the conducted experiments. We have
considered three simulation scenarios in which to assess the effectiveness of using depen-
dence networks, specifically comparing their effectiveness with trust. The experiments
were conducted using agent-based simulation, implementing what was described in the
previous sections on the 3D version of the NetLogo platform [55]. The experiments are
designed in such a way as to increasingly disadvantage the utility of dependence: in the
first simulation, it plays a significant role, while in the others, it is progressively limited.
In the simulations, we consider a total of six agents, comprising three humans and three
artificial agents. We decided to allocate five blocks to each agent right from the start. Indeed,
we had initially considered the possibility of assigning a lower number of blocks. However,
from the initial results, it became evident that such a setup significantly disadvantaged
trust in favor of dependence.

Regarding trust, we considered agents with three different σ threshold levels: 0.25,
0.5, and 0.75. The first threshold identifies agents willing to interact with almost all
available partners. The second one pertains to agents who are willing to interact only with
partners with above-average performance, thus, on average, interacting with only half of
the available agents. The last group make a strict selection of their partners, which, however,
significantly reduce the availability of agents to interact with. The results we report pertain
to a window of 30 interactions among the agents, which is sufficient to stabilize the
interactions. Moreover, we considered the results averaged over 1000 simulations, in such a
way as to eliminate the variability introduced by the random effects on the individual runs.

6.1. First Simulation

Within this first scenario, agents identify mutual dependencies by means of the black-
board. Then, they select their potential partners by filtering them based on their personal σ
threshold. Finally, they rank the remaining partners according to their trust evaluation and
contact partners based on the established order until a partner is found or until all available
partners have refused.

The experiments were conducted using the following settings:
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• Number of human agents: 3;
• Number of artificial agents: 3;
• Three blocks per agent;
• Agents’ competence randomly assigned in the range [0, 1];
• σ Threshold randomly assigned between 0.25, 0.5, and 0.75.

Within this experiment, we aim to investigate the value of trustworthiness within this
type of network, comparing it with the effect of dependence.

From the results in Table 1, it paradoxically emerges that agents operating with a lower
threshold of 0.25 achieved superior outcomes. The agents with a threshold of 0.25 exhibited
a higher score, which was 9.3% higher than those with a threshold of 0.75. The agents with
a threshold of 0.5 achieved a 6.3% higher score, compared to the agents with a threshold
of 0.75.

Table 1. First experiment results.

σ Average Score Completed Tasks Percentage of
Delegated Task

Success Rate of
Delegated Tasks

0.25 1.39 13.31 0.32 0.53
0.5 1.35 13.0 0.18 0.68

0.75 1.27 12.64 0.06 0.76

This phenomenon occurs due to the presence of a context in which errors do not
lead to substantial or effective losses. In the event of task failure, agents do not incur any
economic loss nor lose the possibility of accomplishing the task in the future. Under these
conditions, attempting reliance until the selected trustee succeeds proves to be the winning
strategy, ensuring better results. Furthermore, in this experiment, it is noteworthy that all
agents always approach their trustees in order of trust (requesting assistance from the most
trusted to the least trusted). Therefore, having a high threshold introduces a disadvantage,
as those with a low threshold can always attempt with other agents in case of rejection,
whereas having a high threshold means forfeiting task execution if a partner with sufficient
trustworthiness is not found.

In fact, upon observing other metrics, it is noted that, although the success rate of
delegated tasks is significantly lower (0.53 for the 0.25 threshold compared to 0.76 for the
0.75 threshold), the agents with a threshold of 0.25 manage to delegate tasks five times
more than the agents with a threshold of 0.75. This, in turn, results in these agents being
able to complete an average of 0.67 more tasks.

6.2. Second Simulation

Given the significant weight of dependence in this context, in this second experiment,
we attempted to identify certain conditions that can mitigate its effect. Specifically, agents
are constrained to use dependence only once. Furthermore, we are examining what occurs
when partner selection is randomized among those chosen via the threshold σ.

In this case, the trend identified in the previous scenario is reversed. Remarkably,
as we can see in Table 2, the influence of trust becomes more significant compared to
dependence. Agents with σ = 0.75 achieved a superior average performance by 3.15% and
were able to complete an average of 0.3 more tasks, compared to agents with σ = 0.25.
It is worth noting that, although the effects are relatively small, they pertain to a single
delegated task, thus the actual difference in performance remains limited.
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Table 2. Second experiment results.

σ Average Score Completed Tasks Percentage of
Delegated Task

Success Rate of
Delegated Tasks

0.25 1.21 12.2 0.13 0.52
0.5 1.22 12.38 0.09 0.65

0.75 1.25 12.5 0.04 0.68

6.3. Third Simulation

In this scenario, similarly to the previous one, we restrict agents’ use of dependence
to only once. Additionally, here too, partner selection occurs randomly among those
surpassing the threshold σ. Furthermore, we attempt to further reinforce the utilization
of trust by fixing the agents’ performances at 0.4 (three randomly chosen agents) and
0.9 (three randomly chosen agents), making a clear division between trustworthy and
untrustworthy agents. Due to this simplification, we consider only two threshold values,
0.25 and 0.75, as the threshold of 0.5 would yield results similar to that of 0.75.

Compared to the previous scenario, there are more agents considered trustworthy.
This has an impact on several dimensions of the simulation. Firstly, as emerges from Table 3,
more delegation was achieved. This is precisely a direct consequence of the fact that, with
the same potential use of the dependence, in a network with more reliable agents, it is easier
to exploit dependence. Additionally, the average number of completed tasks decreases in
favor of higher scores, as fewer tasks are needed to achieve the same results. Once again,
we can observe a slight increase in terms of both score and average performance. The
difference is more pronounced when observing completed tasks. With a threshold of 0.75,
an average of 0.35 more tasks are completed. The performance of delegated tasks also
differs significantly: 0.63 versus 0.78.

Table 3. Third experiment results.

σ Average Score Completed Tasks Percentage of
Delegated Task

Success Rate of
Delegated Tasks

0.25 1.55 8.45 0.22 0.63
0.75 1.57 8.8 0.07 0.78

7. Discussion

The starting point of this work is the idea that the study and understanding of de-
pendence networks is a key issue for cognitive agents [16]. In fact, in the majority of
real-world scenarios, agents are closely interconnected in the execution of tasks of their
concern [56,57]. This is because the abilities and resources they possess and control in the
world are limited [44,58]. And, above all, in order for an agent to increase the quantity
and type of tasks to be obtained, it is necessary to be able to correctly represent one’s own
powers, those of others, and mutual dependencies.

Understanding mutual dependencies allows agents to collaborate more effectively [59].
When agents comprehend how their actions influence others and vice versa, they can
understand better where to direct their efforts, maximizing efficiency and achieving better
outcomes [16].

Moreover, recognizing dependencies enables agents to identify potential weak points
or risks within the chains of actions required to achieve a goal. This awareness assists
in devising risk mitigation strategies and contingency plans in the event of issues or
failures. As an example of this, we may consider the case of supply chain management
in disaster scenarios. This knowledge is of fundamental importance for implementing
resilience capabilities, allowing for better planning of the collaboration, communication,
coordination, and cooperation processes [60].

Awareness of our dependencies on other agents, and conversely, the dependencies
other agents have on us, empowers cognitive agents to anticipate possible reactions or
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responses from others. This can aid in making more informed decisions and managing
potential conflicts or issues.

Thus, in this study, we focused on investigating the role of dependence within a
simulated hybrid society, populated by both human and artificial agents. In this regard,
the scenario of the block world has been particularly interesting for our analysis. Indeed,
the block world is a common context used in research on artificial intelligence and cogni-
tive science. Understanding how dependence networks operate in this context can have
important repercussions on sectors such as robotics [61], resource management [62], and
collaboration [63,64] between artificial agents.

The results of the experiments conducted provide valuable theoretical and practical
insights into the utilization of dependence networks. Remarkably, the importance of
dependence networks finds practical confirmation in the simulation investigated in this
study. Most notably, it is stimulating to note that the effect of dependence is very significant.

From the results of the first experiment, it becomes evident that agents making greater
use of dependence, even at the expense of the trustworthiness of their partners, manage
to achieve better performances than those who prefer a more restrictive partner selection
based on their estimated trustworthiness. This experiment allows us to verify that, in the
specific situation at hand—a closely interconnected world with limited resources—in the
presence of dependence on one or more agents, it is preferable to rely on one of them, rather
than give up due to their lack of trustworthiness. This phenomenon happens because of
the potential unavailability of an alternative way to carry out the task.

In the subsequent two experiments, we attempted to limit agents’ use of dependence.
Although this does indeed bring forth the effect of trust, wherein in both experiments,
agents with a higher trust threshold manage to achieve better performance, this difference
does not, however, prove to be of significant impact.

8. Conclusions and Future Directions

This work aims to contribute to the state of the art in the study of dependence net-
works. In fact, the study’s results have provided an initial response to the key questions of
our study:

1. Dependence networks have a clear impact on agents’ performance.
2. A complex relationship with the concept of trust is established, where it is not always

better to preclude interaction with less reliable partners.

In summary, we would have expected the results to show a strong effect of dependence
networks. However, we had assumed that this effect would complement the efficacy of
trust. Instead, it seems that implementing trust as a filter, and then limiting interactions,
blocks the effectiveness of dependence networks. This leads us to a further conclusion:
In a world characterized by such dynamics, it is more convenient for agents to possess
skills, abilities, and resources needed by other agents, rather than being or being perceived
as trustworthy, especially when, as in our case, the risk of failure does not permanently
compromise the achievement of one’s goals. In fact, this specific context is not designed
to penalize agents’ erroneous choices. Certainly, opting for less reliable partners results
in a higher percentage of failed tasks, and wasting time can be precious in a resource-
constrained environment. Moreover, the limited number of agents undoubtedly impacts
the obtained results: Since agents can choose from a restricted pool of partners, filtering
these partners based on their trustworthiness can prove counterproductive.

Thus, we consider it relevant to conduct further research to delve into the effectiveness
of dependence networks in simulated worlds consisting of more extensive networks of
agents. Indeed, another relevant aspect that we have not explored in this work is the
presence and the effect of incorrect beliefs. This is, in fact, a particularly interesting point, as
the entire process of reasoning and decision making by agents is based on their perception
of the world. As an additional point, it is necessary to highlight that we have taken for
granted the good willingness of the agents. In reality, this may not be the case. There
may be malicious agents or colluding agents who exploit the properties of dependence to
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the detriment of other agents. These three aspects will serve as a starting point for more
detailed investigation in future studies.
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