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Abstract: Android operating system (OS) has been recently featured as the most commonly used
and ingratiated OS for smartphone ecosystems. This is due to its high interoperability as an open-
source platform and its compatibility with all the major browsers within the mobile ecosystem.
However, android is susceptible to a wide range of Spyware traffic that can endanger a mobile
user in many ways, like password stealing and recording patterns of a user. This paper presents a
spyware identification schemes for android systems making use of three different machine learning
schemes, including fine decision trees (FDT), support vector machines (SVM), and the naïve Bayes
classifier (NBC). The constructed models have been evaluated on a novel dataset (Spyware-Android
2022) using several performance measurement units such as accuracy, precision, and sensitivity.
Our experimental simulation tests revealed the notability of the model-based FDT, making the peak
accuracy 98.2%. The comparison with the state-of-art spyware identification models for android
systems showed that our proposed model had improved the model’s accuracy by more than 18%.
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1. Introduction

Spyware is malicious software that gathers information about individuals or orga-
nizations without their knowledge. It can be installed on a device through malware or
downloaded from the internet [1]. Besides, spyware can target various internet of things
(IoT) [2] and cyber-physical systems (CPS) [3] to steal information from victims and de-
vices. Spyware can track a user’s online activity, record keystrokes, capture passwords and
personal information, and even take control of the device’s camera and microphone [4]. On
the other hand, android is an operating system designed for smartphones and developed
by Google and the Open Handset Alliance. Android is known for its versatility and cus-
tomization; it allows users to customize their home screens, widgets, and app icons. It also
offers a wide range of features, including access to the Google Play Store, Google Maps,
and Google Assistant [5]. One of the main advantages of android is its open-source nature,
which allows developers to create and distribute their apps without the need for approval
from a central authority [6].

This has contributed to the success and popularity of the android operating system [5].
According to Statista, as of November 2022, android devices make up most of the global
smartphone market [7]. This increasing use of android doesn’t come without a cost. Its
expanding services have exposed people to threats like spyware more than ever.

Like any malware, spyware can intrude in many forms, causing much harm to the
user [8]. Since most information is stored on a mobile phone, it is a favorite spyware target.
Spyware can endanger a mobile user in many ways, like password stealing and recording
patterns of a user, as shown in Figure 1.

There are two prevalent methods to counter the surging spyware issues for android
systems: the static and dynamic methods. The statistical method has proven to perform very
well for already-known spyware, but for new variants, performance could be better [9]. The
dynamic method includes data mining (D.M.) and ML techniques.
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Figure 1. Major harms that spyware can cause to a mobile phone. 
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Studies suggest that machine learning (ML) can be an effective tool for identifying 
and detecting spyware [10]. A machine learning algorithm can be trained on a dataset of 
known spyware samples and benign software. The algorithm will learn to distinguish be-
tween them based on their characteristics and behavior [11]. Once trained, the algorithm 
can quickly and accurately analyze new software, detecting unknown types of spyware 
that may not be included in traditional malware databases [12]. However, it is also im-
portant to note that ML-based spyware detection can sometimes be erroneous and pro-
duce false positives or negatives [13]. 

Decision trees (D.T.), a type of ML algorithm, are a widely used technique for classi-
fying malware in general and spyware in particular. D.T. uses a set of rules to classify 
data. They can handle large amounts of data and make decisions based on multiple factors 
[14]. This makes them particularly useful for android systems, which often have many 
apps and data points that need to be analyzed. In addition, decision trees can classify spy-
ware variants with much higher accuracy and the least error [15]. However, it is important 
to note that decision trees can be prone to overfitting, in which the model gets trained for 
the current dataset only and incorrectly classifies future data [16]. This issue can be ad-
dressed through pruning, a technique that removes unnecessary tree branches and im-
proves accuracy [17].  

To overcome this shortcoming, this research has turned to fine decision trees (FDTs) 
for spyware identification. This research has proven that the use of fine decision trees for 
spyware identification on android systems has the potential to protect users from the neg-
ative consequences of this malware, including the theft of sensitive information and the 
disruption of normal device function. The main objective of this study is to provide a rev-
olutionary methodology that, even in the face of tricky and evasive attacks, can success-
fully detect android spyware. The main advantage was the utilization of recently special-
ized datasets from the real-world environment to create more reliable and adaptive train-
ing and testing materials, which were then combined with different algorithms to create 
the most accurate and time-efficient model possible. The primary contribution of this pa-
per is the proposal of a machine learning-based detection method for android spyware 
attacks using a specialized novel dataset. The following is a list of the specific contribu-
tions: (a) comparing a vast quantity of research to choose the most viable dataset and ef-
fective method; (b) rendering the qualified dataset for ease of use; and (c) achieving a bi-
nary classification with high accuracy. 

The rest of the paper is organized as follows: Section 2 provides a comprehensive 
review and summary of the existing state-of-the-art models for Android spyware 
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Studies suggest that machine learning (ML) can be an effective tool for identifying and
detecting spyware [10]. A machine learning algorithm can be trained on a dataset of known
spyware samples and benign software. The algorithm will learn to distinguish between
them based on their characteristics and behavior [11]. Once trained, the algorithm can
quickly and accurately analyze new software, detecting unknown types of spyware that
may not be included in traditional malware databases [12]. However, it is also important
to note that ML-based spyware detection can sometimes be erroneous and produce false
positives or negatives [13].

Decision trees (D.T.), a type of ML algorithm, are a widely used technique for classify-
ing malware in general and spyware in particular. D.T. uses a set of rules to classify data.
They can handle large amounts of data and make decisions based on multiple factors [14].
This makes them particularly useful for android systems, which often have many apps
and data points that need to be analyzed. In addition, decision trees can classify spyware
variants with much higher accuracy and the least error [15]. However, it is important
to note that decision trees can be prone to overfitting, in which the model gets trained
for the current dataset only and incorrectly classifies future data [16]. This issue can be
addressed through pruning, a technique that removes unnecessary tree branches and
improves accuracy [17].

To overcome this shortcoming, this research has turned to fine decision trees (FDTs)
for spyware identification. This research has proven that the use of fine decision trees
for spyware identification on android systems has the potential to protect users from the
negative consequences of this malware, including the theft of sensitive information and
the disruption of normal device function. The main objective of this study is to provide
a revolutionary methodology that, even in the face of tricky and evasive attacks, can
successfully detect android spyware. The main advantage was the utilization of recently
specialized datasets from the real-world environment to create more reliable and adaptive
training and testing materials, which were then combined with different algorithms to
create the most accurate and time-efficient model possible. The primary contribution of this
paper is the proposal of a machine learning-based detection method for android spyware
attacks using a specialized novel dataset. The following is a list of the specific contributions:
(a) comparing a vast quantity of research to choose the most viable dataset and effective
method; (b) rendering the qualified dataset for ease of use; and (c) achieving a binary
classification with high accuracy.

The rest of the paper is organized as follows: Section 2 provides a comprehensive
review and summary of the existing state-of-the-art models for Android spyware detection.
Section 3, the core section, presents the system model and the simulation results of the
proposed spyware identification for android systems using fine trees. Finally, the last section,
conclusions, provides a closing summary and remarks on the research article’s contributions.
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2. Related Work

Spyware identification for android systems is an important research topic, as spyware
can pose a mounting threat to individuals and organizations by collecting sensitive infor-
mation and disrupting normal device functioning. In recent years, there has been a growing
body of research on using ML algorithms for spyware identification on Android systems.

F. Pierazzi et al. [18] experimented with combining deep learning (DL) with static
methods. The authors have proposed the ensemble late fusion (ELF) technique, which
generates a final result based on predictions made by initial classifiers. They have also
highlighted the distinguishing features of different spyware families and the features
differentiating spyware from goodware and other malware. The model has achieved an
accuracy of 98.2% for predicting whether the instance is goodware or spyware.

Another promising study by N.N. Gana et al. [19] uses an enhanced support vector
machine (SVM). This research has overcome the poor performance problem of past SVMs
by selecting optimal features. SVM has been re-calibrated by using symbiotic organisms
search (SOS) to select features. As a result, the model classified spyware with an accuracy
of 97.40%, while the false positive rate was just 2.3%.

M.K. Qablain et al. [20] have achieved astounding results using the random forest
(R.F.) algorithm. They labeled their dataset in three ways: normal traffic, spyware traffic for
installation, and spyware operation traffic. Their average accuracy was 79% for binary-class
classification and 77% for multi-class classification. Still, the accuracy achieved has much
room for improvement.

Since integrating various ML models is always a commendable way of doing research,
the same has been done by M.N. AlJarrah et al. [21]. Six supervised ML algorithms have
been used to classify the traffic as malware or normal. The algorithms employed are R.F.,
SVM, logistic regression (L.R.), naive Bayesian (N.B.), K-nearest neighbour (KNN), and
D.T. Among these, D.T. and R.F. have the highest accuracy, at 87% each. Together, these
models reached an accuracy of 99.4% with context-aware features and 97.2% without. This
research needs feature selection, where only 50 features were selected among 527 features.

R. Kumar et al. [22] have improved D.T. Their experiment entails classifying traffic
as malware or normal using XGboost gradient-boosted D.T. This model has performed
outstandingly, requiring the least resources. The model was trained in just 1315 s. The
accuracy it achieved was 98.5%. One thing still missing from this research is that it works
for generalized malware and not specifically spyware detection.

Recent research has incorporated many ML models in its course. M.S. Akhtar et al. [11]
have conducted their malware classification research. Their research has used many ML
models and selected the best-performing ones. The models used in this research are NB,
SVM, J48, R.F., D.T., and convolutional neural network (CNN). Regarding accuracy, D.T.
achieved the highest result with a value of 99%; CNN could reach an accuracy of 98.76%,
while SVM stood at 96.41%. As per the confusion matrix, D.T. only has a false-positive rate
of 2.01%.

Another approach that has been explored is the use of ML algorithms for the classifica-
tion of malware transmitted through Portable Document Format (PDF) [22]. The approach
combines both static and dynamic methods of malware classification. In the aspect of ML,
different algorithms have been used, such as R.F., SVM, and D.T. Among these, R.F. has the
best performance, with an accuracy of 97.8%. Nevertheless, the research needs to be more
proficient at classifying spyware specifically.

Furthermore, A.S. Shatnawi et al. [12] have devised yet another method of classifying
malware on android systems. During the experiment, they investigated all the possible
methods of malware classification, i.e., static, dynamic, and hybrid (a combination of static
and hybrid). The authors have concluded that a static method is the best choice due to the
cost-accuracy trade-off. But due to ever-increasing malware variants, the static method
might not have adaptability.

Mahesh V. et al. [23] have contributed to this field’s research. They have investigated
the issue of spyware detection using the DL model. They achieved an accuracy of 99.7%.
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This research is not aimed holistically at spyware detection on android systems but at
classifying spyware if it is intended to harm a personal computer (P.C.) or a smartphone.

Using ML algorithms for spyware identification on android systems has several
advantages. One advantage is that ML algorithms work with a plethora of data, making
them the best choice for Android systems with numerous apps and data points [24]. This
allows the models to effectively classify various types of spyware, including those that may
have been modified or disguised to evade detection.

Another advantage of using ML for spyware identification on Android systems is that
it can be automated and scalable, making it easier to protect against spyware on many
devices. This is particularly important in organizations with many employees using mobile
devices, as it can be time-consuming and resource-intensive to manually identify and
remove spyware from each device. An overview of ML techniques used in literature has
been given in Tables 1 and 2.

Table 1. Summary of the various approaches for spyware and malware detection.

Approach Advantages Limitations

DL Can handle large amounts of data and make
decisions based on multiple features Prone to overfitting

SVM
RF

Can handle high-dimensional data and have good
generalization ability.

Can detect novel variants of spyware

It can be sensitive to the choice of kernel and may
require a careful selection of parameters.

Accuracy needs to be improved in most cases.

XGboost D.T. Can train very fast, saving a lot of time and
resources

It does not address the issue of spyware detection
specifically

Static analysis Can achieve cost accuracy trade-off? It may not be effective against obfuscated or
modified spyware.

KNN
CNN

Can analyze the behavior of an app to identify
suspicious activity.

Can achieve a very high accuracy

It may not be effective against new or unknown
types of spyware.

The problem of false positives can raise

Table 2. Summarizing some of the research surveyed in this paper.

Study Approach Dataset Results

[18] DL 5000 spyware, 5000 goodware, and 5000
other malware (non-spyware) samples

Achieved an accuracy of 98.2% in
identifying spyware

[19] SVM 1000 Android apps (500 spyware, 500 benign) Achieved an accuracy of 97.40% in
identifying spyware

[20] R.F. Prepared through packet sniffer, having
386,963 packets captured in 24 files

Achieved an accuracy of 79% and 77% on
binary classification and

multi-classification, respectively, in
identifying spyware

[21] D.T. and R.F. Used CICMalDroid2020 having 16,900
Android samples

Achieved an accuracy of 99.4% on
context-aware identification spyware

[15] XGboost Gradient
Boosted DT

900 K entries in total (300 K malware, 300 K
benign, and 300 K unlabeled)

Achieved an accuracy of 98.5% in
identifying spyware

[11] incorporated many
ML models

17,394 data points with 279 columns divided
into 51 malware families

D.T. achieved an accuracy of 99% in
identifying spyware

[22] R.F., SVM, and DT
1200 PDF samples, including malicious and
secure files, were divided into 800 and 400

for training and testing.

Achieved an accuracy of 97.8% in
identifying malware

[12] Static Analysis
The dataset was acquired using Palo Alto
networks with malware, benign, and grey

ware traffic.

Achieved very high accuracy in
identifying spyware

[23] DL The dataset was obtained from Zeltser, and
the spyware was in nine families.

Achieved an accuracy of 99.7% in
identifying spyware

In addition to these advantages, ML offers the benefit of adaptability. ML algorithms
can learn and adapt to changing patterns in the data, which can be important in the
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dynamism of the spyware threat [8]. By continually updating the model and incorporating
new data, it becomes possible to ensure that the model remains effective at identifying new
types of spyware as they emerge.

It is good to note that there is no one-size-fits-all approach for spyware identification on
android systems, and the best approach will depend on the specific needs and constraints
of the situation. Machine learning algorithms may perform differently depending on the
quality and diversity of the training data and the specific parameters and settings used [24].
Further research is needed to improve these approaches’ effectiveness and identify the best
methods for protecting against spyware on android systems.

The results of these studies may vary depending on the specific approach, dataset, and
evaluation methods used. Additionally, the performance of these approaches may change
over time as the threat landscape of mobile spyware evolves. Further research is needed
to continue improving the effectiveness of mobile spyware identification techniques and
to identify the best approaches for protecting against this threat. It can be summarized by
saying that using different ML algorithms for spyware identification on android systems
is a promising area of research. While various approaches have been explored, each has
its strengths and limitations. Further research is needed to improve these approaches’
effectiveness and identify the best methods for protecting against spyware on android
systems. Indeed, several other interesting studies have been conducted for non-android
and can be found in [25–29].

3. Identification, Modeling, and Evaluation

In this section, we discuss the system development methodology and the performance
evaluation of the proposed model in terms of several factors.

3.1. The Identification Model

The proposed system model to identify the Android spyware is illustrated in Figure 2 be-
low. The system comprises four main components: the dataset component, the preprocessing
component, the training module, and the testing and evaluation module.

• The Dataset: The used dataset (Spyware-Android 2022) [20] includes network traffic
data for the most advanced spyware tools used for android, including MobileSPY
and FlexSPY, in addition to the normal traffic samples. The dataset comprises seven
features (sequence number, duration time, source address, destination address, target
protocol type, traffic length, and additional information about the traffic behavior) and
one target class (normal, MobileSPY, and FlexSPY). This dataset focuses on spyware
systems that share a similar installation process, which was followed according to the
instructions provided by the manufacturers. The data collection process involves both
the spyware package information and transaction data. A crucial aspect of preparing
the dataset for this research was creating a high-quality benchmark, which was accom-
plished by evaluating the dataset based on established criteria. The benchmark must
be objectively interpreted, comparable, and repeatable to ensure validity. The useful-
ness of benchmarks is maximized when they accurately reflect real-world scenarios.
Then the machine learning model was trained using this dataset. So, its accuracy is,
in fact, its real-world performance matrix. Furthermore, this research is very novel
and focused on detecting spyware for android. The existing security systems are very
concerned about spyware, specifically its detection, let alone android spyware; this
model would feature detecting android spyware using the random forest machine
learning model with very reasonable accuracy. Such a model has never been proposed
in the literature. This reach adds a commendable dataset and a model for accurately
classifying android spyware to the existing security systems. The dataset used for
this experiment was acquired from the most common spyware applications that are
available commercially. All the spyware’s features were activated. The dataset was
recorded using a packet sniffer tool that operated on android. The tool used was
PCAPDroid. The dataset contains data in CSV as well as PCAP format. The data has
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three classes: class A has the normal traffic data; class B has the instances of spyware
installation traffic; and class C has the typical spyware traffic.

• The preprocessing stage: In this stage, we have checked the validity of all data samples,
fixed all errors in the data records, encoded all categorical data, compensated all null
values with zeros, and removed all duplications. We have also integrated all samples
from the dataset for each class into one common file in a randomized manner in order
to be trained at the next stages of the model.

• The training module: In this module, in order to build up a comparative study, we
have constructed the training model using three different machine learning methods,
including fine decision trees (FDT), support vector machines (SVM) [30], and the naïve
Bayes classifier (NBC). The three models have been established and trained using
75% of the samples in the overall dataset. The remaining 25% of the samples have
been used to test (validate) the model’s predictability for unseen data samples. Also,
5-fold cross-validation has been used at the validation stage to ensure an efficient
validation procedure [31].

• The evaluation process is conducted to measure the model’s performance in spyware
identification for android systems using the different training models (FDT, SVM,
and NBC) in terms of accuracy, precision, and sensitivity. This will end up with
comparative results between the three machine learning models, of which one is
selected as the best-performing model.
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3.2. The System Evaluation

Figure 3 visualizes the three subfigures for the confusion matrix analysis for each
established model: (a) analyzing the ternary classifier of spyware identification for android
systems using the FDT model; (b) analyzing the ternary classifier of spyware identification
for android systems using the SVM model; and (c) analyzing the ternary classifier of
spyware identification for android systems using the NBC model. According to the figure,
all models have effectively identified the android spyware, with misclassification rates of
3054 samples out of 168,501 (1.812%), 3054 samples out of 168,501 (1.812%), 3862 samples
out of 168,501 (2.292%), 3054 samples out of 168,501 (1.812%), and 10,380 samples out of
168,501 (6.161%). Thus, one can observe that the FDT model has better outcomes than the
other models in correctly classified samples (T.P. + T.N.).

Table 3, along with Figure 4, presents the results obtained from testing and evaluating
the three stated models using three typical measurements: identification accuracy, precision,
and sensitivity. Accordingly, FDT has registered the highest accuracy measurements, with
an accuracy of 0.5% and 4.3% higher than that for SVM and NBC-based models. Also,
FDT has registered the highest precision measurements, with a precision of 0.8% and 4.2%
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higher than that for SVM and NBC-based models. Moreover, FDT has registered the highest
sensitivity measurements, with a sensitivity of 0.8% and 7.0% higher than that for SVM and
NBC-based models. Besides, to provide a better idea of the performance of FDT, we have
applied two tree-based algorithms, including Adaboost and random forest, where both of
them scored a performance lower than FDT, with 97.3% and 96.7% of accuracy recorded
for Adaboost and random forest, respectively. Finally, it can be clearly noted that the FDT
model has better outcomes than the other models in terms of performance measurements.
This supremacy of FDT over other classifiers can be justified as they adapt quickly to the
dataset due to the large number of splits using Gini’s diversity index (this is why they are
called fine trees). The final model can be viewed and interpreted in an orderly manner
using a “tree” diagram.
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Table 3. System evaluation using three machine learning techniques: FDT, SVM, and NBC, in terms
of classification accuracy, precision, and sensitivity. Classifier.

Model Accuracy Precision Sensitivity

FDT 98.2% 98.3% 98.1%
SVM 97.7% 97.5% 97.3%
NBC 93.9% 94.1% 91.1%
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Table 4, along with Figure 5, presents the comparison results obtained from comparing
our best performance results (i.e., obtained by the FDT model) with the other existing state-
of-the art models for spyware identification for android systems using different machine
learning methods. The comparison takes into consideration the machine learning scheme
utilized to develop each spyware identification system, the number of classes, considering
one class for normal traffic and the other classes for the various spyware traffic, and finally,
the vital factor to judge between the systems, namely, the model accuracy. Our model seems
eminent by achieving elevated accuracy over existing spyware identification systems.

Table 4. Comparing classification accuracy with other existing models for spyware detection.

Model ML Scheme #Classes Accuracy

Conti et al. [32] RFC 4-Classes 85.0%
Malik et al. [33] RFC 3-Classes 63.0%

Gablain et al. [20] Hybrid 6-Classes 79.0%
This work FDT 3-Classes 98.2%
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Even though the proposed study identified well-performing models, the main research
limitations of this study are: (a) additional validation is required for the proposed model,
(b) the robustness of this model’s immunity against spyware obfuscation techniques is not
fully elucidated, and (c) the hardware impediments impacted the training time results.

4. Conclusions and Future Work

An independent new scheme for spyware identification in android-based systems
using machine learning is proposed and discussed in this paper. The model contrasts
the performance of three different machine learning schemes, including fine decision
trees (FDT), support vector machines (SVM), and the naïve Bayes classifier (NBC). The
constructed models have been evaluated on a novel dataset (Spyware-Android 2022) using
several performance measurement units such as accuracy, precision, and sensitivity. The
simulation assessments showed the notability of the model-based FDT, making the peak
accuracy 98.2%. The comparison with the state-of-the-art spyware identification models
for android systems showed that our proposed model had improved the model’s accuracy
by more than 18%. In the future, we will examine more malware types, such as botnet
attacks [34]. Also, we will investigate more android spyware types by incorporating more
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datasets into the study [35]. Moreover, we will seek to apply the knowledge of deep
and hybrid learning techniques to improve the predictability of zero-day attacks [36].
Furthermore, we will study how the proposed model would perform with different types
of spyware beyond MobileSPY and FlexSPY to avoid several other Android problems [37].
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