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Abstract: The Timed Up and Go test (TUG) and L Test are functional mobility tests that allow
healthcare providers to assess a person’s balance and fall risk. Segmenting these mobility tests into
their respective subtasks, using sensors, can provide further and more precise information on mobility
status. To identify and compare current methods for subtask segmentation using inertial sensor
data, a scoping review of the literature was conducted using PubMed, Scopus, and Google Scholar.
Articles were identified that described subtask segmentation methods for the TUG and L Test using
only inertial sensor data. The filtering method, ground truth estimation device, demographic, and
algorithm type were compared. One article segmenting the L Test and 24 articles segmenting the
TUG met the criteria. The articles were published between 2008 and 2022. Five studies used a mobile
smart device’s inertial measurement system, while 20 studies used a varying number of external
inertial measurement units. Healthy adults, people with Parkinson’s Disease, and the elderly were
the most common demographics. A universally accepted method for segmenting the TUG test and
the L Test has yet to be published. Angular velocity in the vertical and mediolateral directions were
common signals for subtask differentiation. Increasing sample sizes and furthering the comparison
of segmentation methods with the same test sets will allow us to expand the knowledge generated
from these clinically accessible tests.

Keywords: timed up and go (TUG); L Test; wearable sensor; activity segmentation

1. Introduction

The Timed Up and Go test (TUG) and L Test are functional mobility tests that allow
healthcare providers to assess a person’s mobility during everyday life [1]. During the
TUG, the person stands up from a chair, walks 3 m to a marker, turns around, walks back
to the chair, and sits down. This test, therefore, consists of two 180◦ turns and 6 m of
walking [1]. The L Test is a modified version of the TUG where the person stands up, walks
3 m to the first maker, turns 90◦, walks 7 m towards a second marker, turns 180◦, walks
back towards the first marker, turns 90◦, walks back to the chair, and sits down [2]. This
incorporates 20 m of walking, with two 90◦ turns and two 180◦ turns. The L Test has been
recommended to deal with a TUG ceiling effect for people with better mobility status [2]
and further encompasses everyday movement since the two 90◦ turns force the person to
turn both left and right, instead of just their preferred way [2].

Currently, to report a person’s functional mobility, observations are made by a health-
care provider while the person completes the test, and the total test duration is measured
using a stopwatch [3]. Subtasks are a way to further classify each movement in the test,
in order to better understand the areas in which a patient may struggle [3]. The subtasks
involved in the TUG and L Test include stand up, walk, turn, and sit down. In recent years,
attempts have been made to automate data collection and identify subtask duration. This
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will allow for a more concise profile of fall risk, dynamic balance, and agility [3]. Automated
subtask segmentation often uses inertial measurement units (IMU), video recordings, or
pressure-sensor data [3–5]. This review will focus on methods that use inertial data from
devices such as IMU sensors or smartphones and perform subtask segmentation using only
this inertial data.

IMUs collect data using accelerometers, magnetometers, and gyroscopes; however,
not all parameters are used for segmenting each task. A physical representation of the
parameters discussed in this report can be viewed in Figure 1. They include anteroposterior
acceleration (APa), angular velocity (APω), and rotation (APR); mediolateral acceleration
(MLa), angular velocity (MLω), and rotation (MLR); and vertical acceleration (Va), angular
velocity (Vω), and rotation (VR). APR is sometimes referred to as roll, MLR as pitch, and
VR as yaw. AP, ML, and V are used to represent axes in this report (i.e., instead of z, y,
and x axes) to ensure consistent labeling between studies. While rotation in degrees is
not directly measured from an IMU, the integral of the gyroscope data can be used [6].
Similarly, displacement and velocity can be derived from acceleration parameters [7,8].
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In 2015, a methodological review discussed technologies available to assist in TUG
use [9]. The review covered a wide variety of sensor and video capture options available for
TUG; however, the details of how inertial parameters were used to construct an algorithm
for subtask segmentation was out of the review’s scope [9]. Another systematic review
examined stand up and sit down tasks, but was not associated with the TUG or L Tests [10].

In this paper, we present a scoping review that examines the range of segmentation
techniques using inertial parameters, identifies commonly used parameters, and summa-
rizes results between algorithms.

2. Materials and Methods

A scoping review of the literature was conducted using PubMed, Scopus, and Google
Scholar. This review follows the PRISMA guidelines for scoping reviews [11]. The searches
contained the following terms: “Timed Up and Go AND ‘Segment’ AND (‘turn’ OR ‘stand’
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OR ‘sit’) AND ‘IMU’”; “L Test AND ‘Segment’ AND (‘turn’ OR ‘stand’ OR ‘sit’) AND ‘IMU’
AND ‘Functional Mobility’”. Articles were identified that described subtask segmentation
methods for TUG and L Test using only inertial sensor data. Only articles in English were
considered. If more than one paper detailed the same segmentation method, then both
articles would be referenced for information regarding the segmentation method, and
whichever was published first would be included in the identified records list. The articles
included were published between the years 2008 and 2022. Separate searches were done
for the TUG and L Test. Review of the articles was completed by one reviewer. Titles,
abstracts, and then contents were scanned for inclusion criteria. Reference lists of chosen
articles were observed for further possible articles. To ensure relevance, a spreadsheet was
constructed to summarize the characteristics of each algorithm, including parameters used,
population, and subtasks identified. Articles were excluded due to supporting data not
from an inertial sensor, no description of the algorithm used, or not segmenting the TUG or
L Test. The study selection process is shown in Figure 2.
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3. Results

Table 1 provides a summary of the articles described in this review. Table 2 provides
a summary of results for each article.

Table 1. Summary of articles in this review, sorted by year published.

Source Test Sample # Sensors: Type Sensor
Location Type

Higashi Y, et al. [3] TUG 10 healthy,
20 hemiplegic 2: Gyrocube Waist, leg Rule-Based

Weiss A, et al. [12] TUG 15 healthy adults,
17 PD 1: Analog Devices ADXL330 Lower back Rule-Based

Salarian A, et al. [13] TUG 12 healthy, 12 PD 8: 3D acceletometer, three 2D Gyroscopes,
four single-axis gyroscopes

Sternum, forearms,
shanks, thighs,

Rule-Based,
Machine
Learning

Greene B, et al. [14] TUG 142 healthy adults;
207 fallers 2: SHIMMER kinematic sensors Shins Rule-Based

Jallon P, et al. [15] TUG 19 healthy adults 1: triaxial accelerometer & magnetometer Chest Machine
Learning

Adame M, et al. [16] TUG 10 healthy adults,
20 PD 1: DynaPort Hybrid, Lower back Rule-Based

Milosevic, et al. [17] TUG 4 healthy adults,
3 PD 1: smartphone Sternum Rule-Based

Zakaria N, et al. [18] TUG 38 elderly

1: Accelerometer—MMA7260Q Freescale
semiconductor inc + 1D

gyroscopes—Murata, Kyoto, Japan,
ENC-03R and XV-3500CB, Epson Toyocom,

Miyazaki Epson

Lower back Rule-Based

Nguyen H, et al. [8] TUG 16 elderly 17: Animazoo IGS-180 motion capture suit

Head, trunk, hip,
scapula, upper arm,

forearm, hand, thigh,
shin, ankle, foot

Rule-Based

Silva K et al. [6] TUG 18 elderly 1: smartphone Pocket or waist or leg Rule-Based

Vervoort D, et al. [19] TUG 59 healthy adults 1: DynaPort Hybrid Lower back Rule-Based

Beyea J, et al. [20] TUG 10–11 healthy
adults 1: 9-axis Microstrain 3DM-GX1 IMU Upper back Rule-Based

Negrini S, et al. [21] TUG 80 healthy adults
(some elderly) 1: G-Sensor device Lower back Rule-Based

Nguyen H, et al. [22] TUG 12 early stage PD 17: Animazoo IGS-180 motion capture suit Covering each body
segment Rule-Based

Hellmers S et al. [4] TUG
148 elderly, 39
healthy young

adults

1: Bosch BMA180 + STMicroelectronics
L3GD20H + magnetometer + barometer Lower back Machine

Learning

Yahalom G, et al. [23] TUG 25 healthy adults,
25 NPH, 15 PD 1: smartphone Sternum Rule-Based

Miller Koop M, et al. [24] TUG 30 PD 1: iPad Lower back Rule-Based

De Luca V, et al. [25] TUG 20 healthy adults 6: one actibelt + one
BioStampRC + four Shimmero

Waist, chest, lower back,
ankles

Machine
Learning

Witchel H, et al. [26] TUG 23 healthy, 17 MS 3: x-IMU by x-io
Lateral lower left thigh,
lower right thigh, lower

back
Rule-Based

Pew C, et al. [27] L Test 5 amputees 1: iPecs 6-axis load cell Shank Machine
Learning

Ortega-Bastidas et al. [28] TUG 25 healthy adults,
12 elderly

1: three-axis accelerometer + three-axis
gyroscope + three-axis magnetometer Lower back Rule-Based

Hsieh CY, et al. [29] TUG 5 healthy, 5 OA 3: OPAL sensor Waist, Thighs, Wrist Rule-Based

Hsieh CY, et al. [30] TUG 26 severe knee OA 6: OPAL sensor Chest, lower back,
thighs, shanks

Machine
Learning

Abdollah V, et al. [7] TUG 12 healthy adults 1: Phybrata sensor Head Rule-Based

Matey-Sanz M,
et al. [31] TUG

5 healthy adults
(testing), 1 healthy

adult (training)
1: Smartwatch Wrist Machine

Learning

PD = Parkinson’s Disease; NPH = normal pressure hydrocephalus; MS = multiple sclerosis; OA = osteoarthritis;
Rule-Based = a classification model designed and changed by human intervention; Machine Learning = a class-
ification model produced by a machine using a pre-determined algorithm.
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Table 2. Results and ground truth comparison methods for each article.

Source Ground Truth Stand Up Sit Down Turn Walk Overall
Result

Higashi Y,
et al. [3] Video r = 0.96 r = 0.74 r = 0.81–0.90 r = 0.81–0.87

Weiss A, et al. [12] Stopwatch

Salarian A,
et al. [13] Video

Greene B,
et al. [14] Stopwatch ρ = 0.83 ρ = 0.89–0.90

Jallon P, et al. [15] 85% detection rate

Adame M,
et al. [16] Observational Labeling

Max Abs Err Dev = 0.22–0.90 s
(healthy)

Max Abs Err Dev = 0.19–0.81 s
(early PD)

Max Abs Err Dev = 0.52–0.74 s
(long time PD)

Max Abs Err Dev = 0.70–0.95 s
(healthy)

Max Abs Err Dev = 0.49–0.81 s
(early PD)

Max Abs Err Dev = 0.73–0.85 s
(long time PD)

Max Abs Err Dev = 0.49–1.43 s
(healthy)

Max Abs Err Dev = 0.41–0.94 s
(early PD)

Max Abs Err Dev = 0.44–0.71 s
(long time PD)

Milosevic,
et al. [17]

Zakaria N,
et al. [18]

Nguyen H,
et al. [8] Motion Capture

Sn = 100%
Sp = 100%

Time Diff = 0.03 s ± 0.03 s

Sn = 100%
Sp = 100%

Time Diff =
0.06 s ± 0.07 s

Sn = 100%
Sp = 100%

Time Diff =
0.08 ± 0.10 s to

0.18 ± 0.17 s

Sn = 100%
Sp = 100%

Time Diff =
0.06 ± 0.07 s to 0.18 ± 0.17 s

Sn = 100%
Sp = 100%

Silva K et al. [6] Video

Vervoort D, et al. [19]

Beyea J, et al. [20] Motion Capture RES = −0.01 ± 0.23 to
0.28 ± 0.33 s

RES = 0.09 ± 0.24 to
0.38 ± 0.30 s RES = 0 ± 0.30 to 0.27 ± 0.14 s RES = 0.00 ± 0.23 to

−0.30 ± 0.21 s
Abs Err < ±0.25 s, Max
Expected Err = 0.34 s

Negrini S,
et al. [21] Motion Capture

RMS dev = 0.35 ± 0.20 s
Avg Bias = 0.18 ± 0.21 s

[−0.37 ± 0.25 s; 0.74 ± 0.38 s]
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Table 2. Cont.

Source Ground Truth Stand Up Sit Down Turn Walk Overall
Result

Nguyen H,
et al. [22] Motion Capture

Sn = 100%
Sp = 100%

Time Diff =
0.26 ± 0.29 s

Sn = 100%
Sp = 100%

Time Diff =
0.19 ± 0.13 s

Sn = 100%
Sp = 100%

Time Diff =
0.26 ± 0.18 to
0.61 ± 0.18 s

Sn = 100%
Sp = 100%

Time Diff =
0.26 ± 0.18 to 0.46 ± 0.16 s

Sn = 100%
Sp = 100%

Time Diff = 0.35 ± 0.16 s

Hellmers S
et al. [4] Stopwatch, Instrumented Chair

Re = 0.84
Pr = 0.66

Acc = 0.99
F1-score = 0.74

Re = 0.94
Pr = 0.56

Acc = 0.99
F1-score = 0.7

Re = 0.78
Pr = 0.83

Acc = 0.99
F1-score = 0.81

Re = 0.98
Pr = 0.98

Acc = 0.98
F1-score = 0.97

Yahalom G,
et al. [23] Stopwatch

Miller Koop M, et al. [24] Observational Labeling r2 = 0.99

De Luca V,
et al. [25] Stopwatch Acc = 87% Acc = 67% Acc = 72% ΩshA = 76%

Witchel H,
et al. [26]

Pew C, et al. [27] Motion Capture

Acc = 96% (SVM)
Acc = 93% (kNN)

Acc = 91%
(ensemble)

Acc = 85% (SVM)
Acc = 82% (kNN)

Acc = 97%
(ensemble)

Ortega-Bastidas et al. [28] Video

Avg Err = −0.08 ± 0.15 s
(healthy)

Avg Err = 0.05 ± 0.30 s (older)
r = 0.81

Avg Err = −0.01 ± 0.19 s
(healthy)

Avg Err = 0.01 ± 0.29 s (older)
r = 0.97–0.98

Avg Err = −0.08 ± 0.11 to
−0.19 ± 0.21 s (healthy)

Avg Err = −0.01 ± 0.27 to
0.14 ± 0.62 s (older)

r = 0.95

Avg Err = 0.17 ± 0.11 to
0.42 ± 0.2 s (healthy)

Avg Err = 0.19 ± 0.78 to
0.23 ± 0.61 s (older)

r = 0.89–0.99

Hsieh CY,
et al. [29] Video

Re = 98–100% (healthy)
Re = 99% (OA)

Pr = 82–86% (healthy)
Pr = 81–83% (OA)

Re = 94–98% (healthy)
Re = 82–86% (OA)

Pr = 82–88% (healthy)
Pr = 94–95% (OA)

Re = 79–97% (healthy)
Re = 92–99% (OA)

Pr = 96–99% (healthy)
Pr = 94–97% (OA)

Re = 96–99% (healthy)
Re = 94–99% (OA)

Pr = 97–99% (healthy)
Pr = 98–100% (OA)

Re = 94–95% (healthy)
Re = 95% (OA)

Pr = 94–95% (healthy)
Pr = 94–94% (OA)

Acc = 95% (healthy)
Acc = 95% (OA)
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Table 2. Cont.

Source Ground Truth Stand Up Sit Down Turn Walk Overall
Result

Hsieh CY,
et al. [30] Video Sn = 85%

Pr = 91%
Sn = 91%
Pr = 92%

Sn = 92–89%
Pr = 86–94%

Sn = 98%
Pr = 94–96%

AdaBoost with 96 sample
window size: Sn = 91%

Pr = 93%
Acc = 94%

Abdollah V, et al. [7] Motion Capture

Acc = 95%
(mastoid)
Acc = 93%
(sternum)
Sn = 90%
(mastoid)
Sn = 90%
(sternum)
Sp = 100%
(mastoid)
Sp = 90%
(sternum)

Acc = 98%
(mastoid)
Acc = 99%
(sternum)
Sn = 96%
(mastoid)
Sn = 98%
(sternum)
Sp = 100%
(mastoid)
Sp = 100%
(sternum)

Matey-Sanz M, et al. [31] Video
Mean of Diffs = 0.11 s

[−0.56, 0.78]
RMSE18 = 0.38 s

Mean of Diffs = 0.0094 s
[−0.62, 0.64]

RMSE = 0.32 s

Mean of Diffs = 0.54 s
[−0.37, 1.4]

RMSE = 0.71 s

Mean of Diffs = −0.25 s
[−1.2, 0.74]

RMSE = 0.56 s

ρ = correlation between manual TUG time; Max Abs Err Dev = maximum absolute error deviation; PD = Parkinson’s Disease; Sn = sensitivity; Sp = specificity; Time Diff = difference in
time; RES = relative error; Abs Err = Absolute Error; Max Expected Err = maximum expected error; RMS dev = root mean squared deviation; Avg Bias = average bias; 1Re = recall;
Pr = precision; Acc = accuracy; ΩshA = percentage of correctly classified participants using the waist accelerometer; Avg Err = average error; Mean of Diffs = mean of differences;
RMSE = root mean squared error.
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Abdollah et al. [7] had conflicting values in their report for the sensitivity and speci-
ficity of stand up in the mastoid sensor. The values from the table in their report were
used [7]. The algorithm published by Beyea et al. [20] was also published in a thesis [32].

Seventy-two percent of studies used data from healthy adult participants. The next
most common samples were Parkinson’s Disease (present in 32% of studies), and elderly
(present in 24% of studies). To obtain a higher sensitivity in their machine learning al-
gorithm for stand up, turn, and sit down subtasks, one study with elderly participants
recruited an additional 39 healthy adults [4].

Half of the studies used a single IMU placed on the participant’s lower
back [4,12,16,18,19,21,24,28], three chest/sternum [15,17,23], and four at other loca-
tions [6,7,20,31]. Lower back placement approximates whole body center of mass [24].
Beyea [32] originally attempted accelerometer placement on the chest and right shoulder,
as well as a goniometer on the knee; however, they later used only IMU signals due to the
accelerometers being deemed inadequate and the goniometer not providing clearer data
than the IMU. Negrini et al. [21] used three sensors, and analyzed each individually.

Pre-processing calibration was mentioned in multiple studies, with a directional cosine
matrix used to calibrate iPad inertial measurements to ensure that gravity was acting in
only the vertical direction [24], or, static data from each participant used to orient the
sensor [2,16]. Wiess et al. [12] also mentioned a calibration algorithm; however, filtering
methods were not provided.

Zero-lag low-pass Butterworth filters were sometimes used for pre-processing, with
varying orders and cut-off frequency levels [3,14,20,24,26]. One study used a cut-off
frequency equal to the walking cadence [3]. Some studies used low-pass filters with
a variety of frequencies [4,13,18,23,31]. A moving average filter was also used [16,27,29,30].
Multi sensor studies sometimes used a variety of cut-off frequencies for filtering [26,30].
Nguyen et al. [8,22] used bandpass filtering. Some studies also chose to normalize data
before identifying tasks [20–22,22,28,31].

Algorithm types were divided into rule-based and machine learning, with 76% of stud-
ies using rule-based algorithms and 28% using machine learning algorithms. One study
used a combination of rule-based and machine learning techniques [13] and another study
used a dynamic time warping technique [16]. Both rule-based and machine learning
approaches implemented normalization, filtering, and feature calculations during pre-
processing; however, no preprocessing trends were apparent. Some studies included
a subtask-based temporal order in their algorithm to ensure that any artifact or short
discrepancy in the signal would not lead to misclassification [4,30]. Calculation of other
features from inertial parameters, such as mean, standard deviation, and skewness were
sometimes reported [30].

3.1. Stand Up and Sit Down

Using a rule-based algorithm, the stand up subtask was often identified at the time
that the participant began to lean forward (i.e., beginning of the first peak caused by
a change in mediolateral angular velocity (MLω)) [16,17,20,28]. A similar processes could be
used with mediolateral rotation (MLR) peak [7,13,18], and/or anteroposterior acceleration
(APa) [12,19,21]. Beyea et al. [20] used MLω, APa, and vertical acceleration (Va) and
Silva et al. [6] used MLR and identified consecutive 3◦ changes to be part of the stand
up task. Another method for labeling stand up movements identified a threshold value
for MLR,sternum, then a logistic regression model was used to give a probability for each
candidate [13].

For multi sensor analysis, one study [8] used 17 sensors but only used data from
the hip, knee, head, and trunk, with the stand up subtask using APa,trunk and MLω,hip.
An updated study [22] took measurements from the hip, thigh, and trunk, and used Va,trunk,
APa,thigh, and MLr,hip for sit-to-stand. In other multi sensor studies, MLω,trunk [29] and
MLω,waist [3] were used. Some multi sensor studies averaged all MLω sensors [14,26].
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Most studies identified stand up and sit down tasks using similar methods, and
labeled respective tasks based on temporal order [3,7,8,12,13,18–21,26,28]. Hsieh et al. [29]
identified the sit down task as when Va,thigh reached a minimum acceleration.

3.2. Walking

The beginning of walking could be identified when the participant stopped standing
up and began to walk forward, indicated by the end of the first peak in Va [32]. APa
was also used to identify the beginning of walking, with either a threshold [24] or peak
identification method [19,21]. Alternatively, walking was considered a “null signal”, where
only stand up, sit down, and turn tasks were identified and a temporal order identified
movement between these tasks as walking [7,16,18,20,26,28]. Nguyen et al. [22] identified
walking using APa,shin and MLr,hip, and achieved a sensitivity and specificity of 100% and
a maximum difference in time compared to their ground truth values of 612 ± 175 ms.

3.3. Turns

Turns were sometimes identified using vertical angular velocity, Vω, with the start of
a turn at the beginning of a big peak in Vω and the end of the turn at the corresponding peak
end [20–22,32] One study that used this method attained a relative error of 0.00 ± 0.30 s
to 0.27 ± 0.14 s [20]. Vω was also used with trunk and head sensors [8] or the waist
sensor [3,29].

Another turn identification method used a threshold value (or observed for increase/
decrease [18]) for vertical rotation (VR) [6,18,19,24,28,31]. Additionally, using VR, a sliding
window technique was attempted to identify the end of the turn, and had a maximum
average error of −0.19 ± −0.21 s [28].

A more complex method used VR with a least squares optimization algorithm to
identify turns and reported r2 = 0.99 [24]. Greene et al., identified that MLω,shin was lower
during turning than walking, and used this relationship to identify turns (ρ = 0.83) [14].

3.4. Machine Learning

In a study using machine learning techniques, five-fold cross-validation was used,
with one fifth of data kept for testing, then repeated five times so that each fold was used
for validation once [4]. As the only hierarchical approach to machine learning subtask
segmentation identified in this review, the data were classified into “Static”, “Dynamic”,
and “Transition” categories using Boosted Decision trees. Then, the data were further
classified into subtasks using Multilayer Perceptions [4]. Jallon et al. [15] proposed a graph-
based approach where Bayesian, Linear Discriminant Analysis (LDA), and Support Vector
Machine (SVM) techniques were analyzed. The graph enforced Bayesian classifier was the
most successful, accomplishing subtask detection at a rate of approximately 85%.

Matey-Sanz et al. [31] proposed a training algorithm using a Multilayer Perceptron
model created using TensorFlow Lite, and De Luca et al. [25] proposed an algorithm using
k-means clustering. Hsieh et al. [30] compared SVM, K-Nearest Neighbor (kNN), Naïve
Bayesian (NB), Decision Tree (DT), and Adaptive Boosting (AdaBoost) machine learning
algorithms, and ultimately found that AdaBoost achieved the best results with 90.62%
sensitivity, 93.03% precision, and 94.29% accuracy.

The one study segmenting L Test data compared SVM, kNN, and Ensemble tech-
niques [27]. SVM had the highest accuracy for turns at 96%, while Ensemble had the
highest accuracy for walking straight at 97% [27].

Seven studies did not compare their algorithm, or individual subtasks, to a ground truth
measurement [6,12,17–19,24,26]. The results of these studies, therefore, cannot be analyzed.

4. Discussion

In this paper, 25 studies were identified that presented IMU-based methods of subtask
segmentation for the TUG and L Test. The methods outlined in the literature used mainly
threshold or maximum identification techniques; however, seven used machine learning
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techniques. For rule-based algorithms, MLω (or its derivative, MLR) was more often used
for stand up and sit down tasks (which most commonly were classified using the same
algorithm and individually identified using temporal labeling). Similarly, Vω and its
derivative VR was used for turning classification in all but one of the rule-based algorithms
that considered turning in their segmentation. In eight studies, the gait subtask was
identified as a null parameter, therefore being classified as the time between appropriate
tasks, such as stand up and turn. While this may often be acceptable for able-bodied
individuals, other populations may pause, for example, between the stand up and walk
tasks, which would be a moment in which gait should not be analyzed as the person would
not yet be walking.

Machine Learning algorithms often had lower accuracies than rule-based met-
hods [4,7,25,27,29,30]. Boosted Decision Trees achieved the highest overall accuracy by
a machine learning approach (96.55% in elderly individuals), which was similar or above
some rule-based methods [4,7,29]. To assess the viability of these models, statistical results
from Table 2 can be compared to literature on the reliability of TUG measures. In a study
by Botolfsen et al. [33], it was shown that for patients with fibromyalgia, the standard error
of measurement for the TUG timed with a stop watch was 0.231 s.

In three studies, a stopwatch was used as the ground truth measurement for task
segmentation [4,12,23]. This is not recommended, since a stopwatch introduces variability
and decreases precision in comparison to other methods [32]. If stopwatch data are used to
train a model, then the resulting model cannot provide outcomes better than the stopwatch
approach, which relies on a person properly marking transitions in real time during the
test. While Hellmers et al. [4] wanted to work toward an unsupervised approach (where
a stopwatch would not be feasible), different ground truth comparison methods could
provide machine learning training data that are not influenced by human reaction time.
Video-recorded or motion-captured data are often used as ground truth records in TUG
segmentation, providing higher accuracy of measurement than the stopwatch [7,21,32].
Beyea [32] used Vicon rather than video recordings due to the ease of processing large
quantities of data.

Beyea et al. [20] noted that the calibration and alignment could affect threshold seg-
mentation methods if the data were not first normalized. Salarian et al. [13,34] also noted
that gait and transitions could cause noise, to which a threshold-based algorithm may
be sensitive.

Limitations and Criticisms

Numerous studies collected data from fewer than 15 participants, which is insufficient
to avoid type II error [7,17,20,29,31,32]. The machine learning algorithm described by
Matey-Sanz et al. [31] used training data from a single participant, and consequently had
the highest recorded root mean squared error (in seconds). A larger sample size would
allow machine learning algorithms to train to adjust to different walking patterns and
speeds, and also help identify general issues with rule-based systems.

There were several studies in which the proposed algorithm was not clearly ex-
plained. An assumed algorithm was attained from a figure in the study conducted by
Yahalom et al. [23], and there were no further connecting papers related to their process of
automatic segmentation. In a study by Koop et al. [24], part of the algorithm was described
as “using the linear acceleration and angular velocity in the (AP, ML, and V) direction in
conjunction with previously reported methods adjusted with data specific parameters”.
However, no previously reported methods were cited. If a study did not clearly describe
their subtask segmentation but discussed increase/decrease in parameters throughout their
methodology, then threshold values were assumed to be used [18,21]. In [32], it is not clear
which axes are used for vertical and anteroposterior directions.

Instead of a fixed walking distance, Silva et al. [6] used a timed approach, where the
participant was given 15 seconds to stand up and walk forward, and then 15 seconds to
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turn, walk back, and sit down. This resulted in lost data, and therefore only the first stand
up, walk, and turn tasks were identified.

5. Conclusions

A variety of reporting methods for TUG subtask segmentation were found in the
literature, often with a paucity of implementation details given. Future investigations
should consider individual algorithms for standing, sitting, walking, and turning. This
could allow for each subtask identification to be improved. Other research that augments
clinical mobility tests using inertial sensors has found that applying AI models can provide
additional information not typically related to the clinical test, such as fall risk from
six-minute walk test data [35]. A segmented L Test could provide similar AI enhanced
knowledge; for example, balance confidence, task specific performance, or improved fall
risk classification. The L Test also requires full analysis and automated segmentation, to
ensure that left and right turns are appropriately classified.

Furthermore, using larger data sets for comparing different algorithms is necessary for
in-depth comparisons. In cases where data collection may be difficult, data augmentation
should be researched, depending on the number of samples collected. A study conducted
on biomechanics, “CNN-Based Estimation of Sagittal Plane Walking and Running Biome-
chanics From Measured and Simulated Inertial Sensor Data” [36] stated that although
data augmentation could be used to improve robustness, it cannot account for variation in
movement patterns. Therefore, the recommended number of participants for biomechanics
studies (up to 25 in some cases [37]) would still be required. Further research on data
augmentation is needed to explore the limits and benefits for this application.

To further understand the performance between rule-based and machine learning
algorithms, an investigation should also be performed in the improvements that machine
learning has been shown to have compared to rule-based algorithms, where data have
artifacts or noise.
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