LPG-Based Knowledge Graphs: A Survey, a Proposal and Current Trends
Abstract
:1. Introduction
2. Preliminaries
- The former model provides for graphs made up of “atomic” nodes and arcs only. Usually, their structure is represented as a set of triples (also called “statements”) of the form , where the subject is a node identifier, the predicate is an arc label and the object can be either another node identifier or a literal. In many cases, it may be necessary to express additional information on a triple as a whole. RDF provides a pre-defined vocabulary for describing RDF statements. A description of a statement using this vocabulary is called a “reification” of the statement. The RDF reification vocabulary consists of the type rdf:Statement, and the properties rdf:subject, rdf:predicate, and rdf:object [15].
- LPG graphs still comprise nodes and arcs, but both have their own identifiers and can be provided with labels expressing their type and with properties that describe their features in the form of , pairs.
2.1. Graphs and Databases
- a collection of data structure types (the building blocks of any DB that conforms to the model);
- a collection of operators or inference rules, which can be applied to any valid instance of the data types, to retrieve or derive data from any part of those structures in any combination desired;
- a collection of general integrity rules, which implicitly or explicitly define the set of consistent DB states, or changes of state, or both—these rules may sometimes be expressed as insert-update-delete rules [28].
2.2. Knowledge Graphs
2.3. Semantic Web
2.3.1. Ontologies
2.3.2. Web Ontology Language
2.3.3. Technologies for the Semantic Web
2.4. Comparison and Differences between LPG and RDF
3. Knowledge Graphs Applications
- A knowledge graph consisting of:
- –
- a network of ontologies modeling the Cultural Heritage domain;
- –
- a Linked Open Dataset of nearly 169 M triples.
- a software for automatically converting catalogue records;
- a detailed documentation reporting;
- a set of running examples that potential consumers can use as training material. They consist of natural language CQs and their corresponding SPARQL queries, which can be directly tested against ArCo’s SPARQL endpoint;
- a test suite, implemented as OWL files and SPARQL queries, used for validating ArCo knowledge graph. It provides a real-case implementation of an ontology testing methodology, useful to both students, teachers, researchers, and practitioners;
- a SPARQL endpoint to explore the resource, run tests, etc.
4. LPG Graph
5. Merging LPG and RDF
5.1. Merging Sources
5.2. Structure Mapping
5.3. Language Mappings
5.4. New Graph Models
- prefix directives: a part where prefixes are defined.
- vertex declarations: parts where vertices are created.
- relationship declarations: parts where edges and properties are created.
- Namedgraph based. This proposal involves the use of quads (as opposed to triples) to create a unique named graph IRI for each edge. Then the label and the key/value properties of the edge are associated with the graph IRI.
- Subproperty based. Id, label, and key/values for an edge can be modelled by creating a unique RDF property for each edge to represent the edge id, creating an RDF triple with that property as the predicate, associating the key/value pair with that property, and then making the property a subproperty of another property created based on the edge label.
- Reification based. In order to accommodate the id, label, and key/value pairs for an edge, reification in RDF can create a new resource to represent every reified RDF statement.
5.5. Interoperability
- Mapping any RDF triple as an edge in the resulting PG. Each node has the “kind” attribute to describe the type of a node (e.g., IRI).
- Distinguishing data and object properties. The former is transformed into node properties and the latter into edges of a PG.
5.6. Open Issues
- there is a loss of data at the end of the process, since, in a graph database, we do not have a link among other objects in the Web.
- for large KBs, there is a need for strong computational and memory power.
- after having translated RDF triples into the graph, we cannot perform any other operations but visualizing data.
- there is no way to capture potential inconsistencies after the data is inside the graph.
- transferring a huge amount of RDF triples into LPG graphs requires a lot of computational time. This is one of the most underrated problems.
- There is no single graph model. LPG is just one of the most used models.
- RDF is based on triples while PG contains attributes and there are different ways to move from one structure to another, none of them prevailed among the others.
- Refication cannot be fully automatized. The SW provides some mechanism to represent attributes on triples (e.g., reified statements) but different contexts can privilege other solutions.
- RDF reification leads to a considerable increase in the size of the resulting graph.
6. Proposal
6.1. General Concept and Applications
6.2. Schemes
6.3. Import/Export with Semantic Web
6.4. Mapping RDF and LPG
XML Scheme | Semantic Web |
---|---|
Entity | owl:Class |
Entity Attribute | owl:DatatypeProperty |
Relationship | owl:ObjectProperty |
Subject of Relationship | owl:ObjectPropertyDomain |
Object of Relationship | owl:ObjectPropertyRange |
{ { { "identity": 371278, "identity": 1070551, "identity": 371298, "labels": [ "start": 371278, "labels": [ "Student" "end": 371298, "Course" ], "type": "passed", ], "properties": { "properties": { "properties": { "name": "Davide", "date": "17/07/2020" "name": "AI", "idStudent": "661292" } "year": 2, } } } } } |
7. Multistrategy Reasoning
7.1. Abstraction
- The complexity of the problem is reduced.
- The problem becomes goal-dependent.
- Problems previously considered impossible become possible.
7.2. Deduction
7.3. Induction
7.4. Abduction
- It handles missing information.
- Different explanations are possible.
- Many constraints must be satisfied.
- a logical theory T representing the expert knowledge and
- a formula Q representing an observation on the problem domain,
- E is satisfiable with respect to T.
- Q
- If I say that my car will not start this morning, an abductive solution is the explanation that its battery is empty. An inductive inference can infer that if the battery is empty, then the car will not start.
7.5. Argumentation
- Bipolar: provides arcs also for supporting arguments, not only to attack.
- Weighted: provides weights for attacks, to distinguish them.
- Trusted: provides weight also for the arguments themselves.
- Mixed: uses a combination of the previous ones, for example, bipolar and weighted.
7.6. Analogy
- Relevance in the study of learning, for moving from one domain to another.
- Often used in problem-solving.
- Relevance when studying new domains.
- In the past, it inspired great scientists in new discoveries.
- Frequently used in communication.
- Frequently used for explanations.
- Retrieval: finding the better base domain that can be useful to solve the task in the target domain.
- Mapping: searching for a mapping between base and target domains.
- Evaluation: providing some criteria to evaluate the candidate mapping.
- Pattern: shifting the representation of both domains to their roles schema, converging to the same analogical pattern.
- Re-representation: adapting one or more pieces of the representation to improve the match.
8. Validation
8.1. SHACL
8.2. ShEx
8.3. Our Validation
9. Possible Limitations
10. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
KRR | Knowledge Representation and Reasoning |
KB | Knowledge Base |
QA | Question Answering |
KG | Knowledge Graph |
SW | Semantic Web |
NLP | Natural Language Processing |
PG | Property Graph |
DBMS | DataBase Management System |
QL | Query Language |
SQL | Structured Query Language |
DSL | Domain Specific Language |
LPG | Labelled Property Graph |
RDF | Resource Description Framework |
OWL | Web Ontology Language |
XML | eXtensible Markup Language |
DTD | Document Type Definition |
URI | Uniform Resource Identifier |
PG | Property Graph |
RNN | Recurrent Neural Network |
YARS | Yet Another RDF Serialization |
SPG | Semantic Property Graph |
LP | Logic Programming |
ILP | Inductive Logic Programming |
SHACL | Shapes Constraint Language |
ShEx | Shape Expression Schema |
References
- Simmons, A.B.; Chappell, S.G. Artificial intelligence-definition and practice. IEEE J. Ocean. Eng. 1988, 13, 14–42. [Google Scholar] [CrossRef]
- Rich, E. Artificial Intelligence; McGraw-Hill, Inc.: New York, NY, USA, 1983. [Google Scholar]
- Dick, S. Artificial intelligence. Harv. Data Sci. Rev. 2019. [Google Scholar] [CrossRef]
- Holmes, J.; Sacchi, L.; Bellazzi, R. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004, 86, 334–338. [Google Scholar]
- Newell, A.; Shaw, J.; Simon, H. Report on a general problem solving program. In Proceedings of the IFIP Congress, Pittsburgh, PA, USA, 15–20 June 1959; Volume 256, p. 64. [Google Scholar]
- Shortliffe, E. Computer-Based Medical Consultations: MYCIN; Elsevier: Amsterdam, The Netherlands, 2012; Volume 2. [Google Scholar]
- Moussa, A.M.; Abdel-Kader, R.F. Qasyo: A question answering system for yago ontology. Int. J. Database Theory Appl. 2011, 4, 99–112. [Google Scholar]
- Fu, B.; Qiu, Y.; Tang, C.; Li, Y.; Yu, H.; Sun, J. A survey on complex question answering over knowledge base: Recent advances and challenges. arXiv 2020, arXiv:2007.13069. [Google Scholar]
- Stokman, F.; Vries, P. Structuring knowledge in a graph. In Human-Computer Interaction; Springer: Berlin, Germany, 1988; pp. 186–206. [Google Scholar]
- Bordes, A.; Weston, J.; Collobert, R.; Bengio, Y. Learning structured embeddings of knowledge bases. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011. [Google Scholar]
- Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Philip, S. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [Google Scholar] [CrossRef] [PubMed]
- Gruber, T. A translation approach to portable ontology specifications. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Angles, R.; Gutierrez, C. Survey of graph database models. ACM Comput. Surv. (CSUR) 2008, 40, 1–39. [Google Scholar] [CrossRef]
- Erdös, P. Some remarks on the theory of graphs. Bull. Am. Math. Soc. 1947, 53, 292–294. [Google Scholar] [CrossRef] [Green Version]
- W3C. RDF Primer. 2014. Available online: https://www.w3.org/TR/rdf-primer/ (accessed on 20 January 2023).
- Uifălean, S.; Ghiran, A.; Buchmann, R.A. From BPMN Models to Labelled Property Graphs. In Proceedings of the 30th International Conference on Information Systems Development (ISD2022), CLUJ-Napoca, Romania, 31 August–2 September 2022; pp. 697–706. [Google Scholar]
- Anikin, D.; Borisenko, O.; Nedumov, Y. Labeled property graphs: SQL or NoSQL? In Proceedings of the 2019 Ivannikov Memorial Workshop (IVMEM), Velikiy Novgorod, Russia, 13–14 September 2019; pp. 7–13. [Google Scholar]
- Raj, S. Neo4j High Performance; Packt Publishing Ltd.: Birmingham, UK, 2015. [Google Scholar]
- Wylot, M.; Hauswirth, M.; Cudré-Mauroux, P.; Sakr, S. RDF data storage and query processing schemes: A survey. ACM Comput. Surv. (CSUR) 2018, 51, 1–36. [Google Scholar] [CrossRef]
- Berge, C. The Theory of Graphs; Courier Corporation: Chelmsford, MA, USA, 2001. [Google Scholar]
- Han, J.; Haihong, E.; Le, G.; Du, J. Survey on NoSQL database. In Proceedings of the 2011 6th International Conference on Pervasive Computing and Applications, Port Elizabeth, South Africa, 25–29 October 2011; pp. 363–366. [Google Scholar]
- Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; de Melo, G.; Gutierrez, C.; Kirrane, S.; Gayo, J.; Navigli, R.; Neumaier, S.; et al. Knowledge graphs. ACM Comput. Surv. 2021, 54, 1–37. [Google Scholar]
- Pareja-Tobes, P.; Tobes, R.; Manrique, M.; Pareja, E.; Pareja-Tobes, E. Bio4j: A high-performance cloud-enabled graph-based data platform. bioRxiv 2015, 016758. [Google Scholar] [CrossRef]
- Miller, J. Graph database applications and concepts with Neo4j. In Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA, 24–25 March 2013; Volume 2324. [Google Scholar]
- Huang, Z.; Chung, W.; Ong, T.; Chen, H. A graph-based recommender system for digital library. In Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, Portland, OR, USA, 14–18 July 2002; pp. 65–73. [Google Scholar]
- Robinson, I.; Webber, J.; Webber, J.; Eifrem, E. Graph Databases; O’Reilly: Springfield, IL, USA, 2013. [Google Scholar]
- Silberschatz, A.; Korth, H.; Sudarshan, S. Data models. ACM Comput. Surv. (CSUR) 1996, 28, 105–108. [Google Scholar] [CrossRef]
- Codd, E. Data models in database management. In Proceedings of the 1980 Workshop on Data Abstraction, Databases and Conceptual Modeling, Colorado, CO, USA, 23 June 1980; pp. 112–114. [Google Scholar]
- Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques; Morgan Kaufmann: San Francisco, CA, USA, 2022. [Google Scholar]
- Paredaens, J.; Peelman, P.; Tanca, L. G-Log: A graph-based query language. IEEE Trans. Knowl. Data Eng. 1995, 7, 436–453. [Google Scholar] [CrossRef]
- Pokornỳ, J.; Valenta, M.; Kovačič, J. Integrity constraints in graph databases. Procedia Comput. Sci. 2017, 109, 975–981. [Google Scholar] [CrossRef]
- Buneman, P.; Davidson, S.; Hillebrand, G.; Suciu, D. A query language and optimization techniques for unstructured data. In Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, QC, Canada, 4–6 June 1996; pp. 505–516. [Google Scholar]
- Güting, R. GraphDB: Modeling and querying graphs in databases. In VLDB; Citeseer: Princeton, NJ, USA, 1994; Volume 94, pp. 12–15. [Google Scholar]
- Kaliyar, R.K. Graph databases: A survey. In Proceedings of the International Conference on Computing, Communication & Automation, Greater Noida, India, 15–16 May 2015; pp. 785–790. [Google Scholar]
- Codd, E. A relational model of data for large shared data banks. In Software Pioneers; Springer: Berlin, Germany, 2002; pp. 263–294. [Google Scholar]
- Abiteboul, S. Querying semi-structured data. In Proceedings of the International Conference on Database Theory, Delphi, Greece, 8–10 January 1997; Springer: Berlin, Germany, 1997; pp. 1–18. [Google Scholar]
- Francis, N.; Green, A.; Guagliardo, P.; Libkin, L.; Lindaaker, T.; Marsault, V.; Plantikow, S.; Rydberg, M.; Selmer, P.; Taylor, A. Cypher: An evolving query language for property graphs. In Proceedings of the 2018 International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018; pp. 1433–1445. [Google Scholar]
- Dong, X.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao, N.; Murphy, K.; Strohmann, T.; Sun, S.; Zhang, W. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 601–610. [Google Scholar]
- Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A review of relational machine learning for knowledge graphs. Proc. IEEE 2015, 104, 11–33. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 2017, 29, 2724–2743. [Google Scholar] [CrossRef]
- Gutierrez, C.; Sequeda, J.F. Knowledge graphs. Commun. ACM 2021, 64, 96–104. [Google Scholar] [CrossRef]
- Abu-Salih, B. Domain-specific knowledge graphs: A survey. J. Netw. Comput. Appl. 2021, 185, 103076. [Google Scholar] [CrossRef]
- Yan, J.; Wang, C.; Cheng, W.; Gao, M.; Zhou, A. A retrospective of knowledge graphs. Front. Comput. Sci. 2018, 12, 55–74. [Google Scholar] [CrossRef]
- Noy, N.; Gao, Y.; Jain, A.; Narayanan, A.; Patterson, A.; Taylor, J. Industry-scale Knowledge Graphs: Lessons and Challenges: Five diverse technology companies show how it’s done. Queue 2019, 17, 48–75. [Google Scholar] [CrossRef]
- Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008; pp. 1247–1250. [Google Scholar]
- Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.; Hellmann, S.; Morsey, M.; Kleef, P.V.; Auer, S.; et al. Dbpedia—A large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 2015, 6, 167–195. [Google Scholar] [CrossRef] [Green Version]
- Suchanek, F.M.; Kasneci, G.; Weikum, G. Yago: A core of semantic knowledge. In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 697–706. [Google Scholar]
- Fensel, D.; Şimşek, U.; Angele, K.; Huaman, E.; Kärle, E.; Panasiuk, O.; Toma, I.; Umbrich, J.; Wahler, A. Introduction: What is a knowledge graph? In Knowledge Graphs; Springer: Berlin, Germany, 2020; pp. 1–10. [Google Scholar]
- Carlson, A.; Betteridge, J.; Kisiel, B.; Settles, B.; Hruschka, E.; Mitchell, T. Toward an architecture for never-ending language learning. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010. [Google Scholar]
- Heck, L.; Hakkani-Tür, D.; Tur, G. Leveraging knowledge graphs for web-scale unsupervised semantic parsing. In Proceedings of the INTERSPEECH, Lyon, France, 25–29 August 2013. [Google Scholar]
- Damljanovic, D.; Bontcheva, K. Named entity disambiguation using linked data. In Proceedings of the 9th Extended Semantic Web Conference, Heraklion, Greece, 27–31 May 2012; pp. 231–240. [Google Scholar]
- Zheng, Z.; Si, X.; Li, F.; Chang, E.Y.; Zhu, X. Entity disambiguation with freebase. In Proceedings of the 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Washington, DC, USA, 4–7 December 2012; Volume 1, pp. 82–89. [Google Scholar]
- Hoffmann, R.; Zhang, C.; Ling, X.; Zettlemoyer, L.; Weld, D. Knowledge-based weak supervision for information extraction of overlapping relations. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR, USA, 19–24 June 2011; pp. 541–550. [Google Scholar]
- Daiber, J.; Jakob, M.; Hokamp, C.; Mendes, P. Improving efficiency and accuracy in multilingual entity extraction. In Proceedings of the 9th International Conference on Semantic Systems, New York, NY, USA, 4 September 2013; pp. 121–124. [Google Scholar]
- Bordes, A.; Weston, J.; Usunier, N. Open question answering with weakly supervised embedding models. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Nancy, France, 15–19 September 2014; Springer: Berlin, Germany, 2014; pp. 165–180. [Google Scholar]
- Chen, X.; Jia, S.; Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 2020, 141, 112948. [Google Scholar] [CrossRef]
- Gaines, B.R. Foundations of fuzzy reasoning. Int. J. Man-Mach. Stud. 1976, 8, 623–668. [Google Scholar] [CrossRef]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- Hitzler, P. A review of the semantic web field. Commun. ACM 2021, 64, 76–83. [Google Scholar] [CrossRef]
- Rettinger, A.; Lösch, U.; Tresp, V.; d’Amato, C.; Fanizzi, N. Mining the semantic web. Data Min. Knowl. Discov. 2012, 24, 613–662. [Google Scholar] [CrossRef]
- Smith, B. Ontology. In The Furniture of the World; Brill: Leiden, The Netherlands, 2012; pp. 47–68. [Google Scholar]
- Guarino, N. Formal Ontology in Information Systems: Proceedings of the First International Conference (FOIS’98), 6–8 June 1998, Trento, Italy; IOS Press: Cambridge, UK, 1998; Volume 46. [Google Scholar]
- Iliadis, A. The Tower of Babel problem: Making data make sense with Basic Formal Ontology. Online Inf. Rev. 2019, 43, 1021–1045. [Google Scholar] [CrossRef]
- Hitzler, P.; Krötzsch, M.; Parsia, B.; Patel-Schneider, P.F.; Rudolph, S. OWL 2 web ontology language primer. W3C Recomm. 2009, 27, 123. [Google Scholar]
- Zou, Y.; Finin, T.; Chen, H. F-owl: An inference engine for semantic web. In International Workshop on Formal Approaches to Agent-Based Systems; Springer: Berlin, Germany, 2004; pp. 238–248. [Google Scholar]
- Baader, F.; Calvanese, D.; McGuinness, D.; Patel-Schneider, P.; Nardi, D. The Description Logic Handbook: Theory, Implementation and Applications; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Decker, S.; Melnik, S.; Harmelen, F.V.; Fensel, D.; Klein, M.; Broekstra, J.; Erdmann, M.; Horrocks, I. The semantic web: The roles of XML and RDF. IEEE Internet Comput. 2000, 4, 63–73. [Google Scholar] [CrossRef]
- Achard, F.; Vaysseix, G.; Barillot, E. XML, bioinformatics and data integration. Bioinformatics 2001, 17, 115–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papakonstantinou, Y.; Vianu, V. DTD inference for views of XML data. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Dallas, TX, USA, 15–18 May 2000; pp. 35–46. [Google Scholar]
- W3C. RDF 11 Primer. 2014. Available online: https://www.w3.org/TR/rdf11-primer/ (accessed on 20 January 2023).
- Decker, S.; Mitra, P.; Melnik, S. Framework for the semantic Web: An RDF tutorial. IEEE Internet Comput. 2000, 4, 68–73. [Google Scholar]
- Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 2009, 34, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Grobe, M. Rdf, jena, sparql and the ‘semantic web’. In Proceedings of the 37th Annual ACM SIGUCCS Fall Conference: Communication and Collaboration, St. Louis, MO, USA, 11–14 October 2009; pp. 131–138. [Google Scholar]
- Erling, O.; Mikhailov, I. RDF Support in the Virtuoso DBMS. In Networked Knowledge-Networked Media; Springer: Berlin, Germany, 2009; pp. 7–24. [Google Scholar]
- Bellini, P.; Nesi, P. Performance assessment of RDF graph databases for smart city services. J. Vis. Lang. Comput. 2018, 45, 24–38. [Google Scholar] [CrossRef]
- Baken, N. Linked data for smart homes: Comparing RDF and labeled property graphs. In Proceedings of the LDAC2020—8th Linked Data in Architecture and Construction Workshop, Online, 17–19 June 2020; pp. 23–36. [Google Scholar]
- Holten, D.; Wijk, J.J.V. A user study on visualizing directed edges in graphs. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009; pp. 2299–2308. [Google Scholar]
- Technologies, O.S. What Is a Labeled Property Graph? Available online: https://www.oxfordsemantic.tech/fundamentals/what-is-a-labeled-property-graph#:~:text=A%20labeled%20property%20graph%20(LPG,corresponding%20key%20to%20allow%20referencing (accessed on 20 January 2023).
- Li, G.; Semerci, M.; Yener, B.; Zaki, M.J. Effective graph classification based on topological and label attributes. Stat. Anal. Data Mining Asa Data Sci. J. 2012, 5, 265–283. [Google Scholar] [CrossRef]
- Jaffri, A.; Glaser, H.; Millard, I. Uri identity management for semantic web data integration and linkage. In OTM Confederated International Conferences “On the Move to Meaningful Internet Systems"; Springer: Berlin, Germany, 2007; pp. 1125–1134. [Google Scholar]
- Xing, W.; Ghorbani, A. Weighted pagerank algorithm. In Proceedings of the Second Annual Conference on Communication Networks and Services Research, Fredericton, NB, Canada, 21 May 2004; pp. 305–314. [Google Scholar]
- Deng, H.; Lyu, M.; King, I. A generalized co-hits algorithm and its application to bipartite graphs. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 239–248. [Google Scholar]
- He, Z.; Ma, Z.; Li, Z.; Giua, A. Parametric transformation of timed weighted marked graphs: Applications in optimal resource allocation. IEEE/CAA J. Autom. Sin. 2020, 8, 179–188. [Google Scholar] [CrossRef]
- Elmoataz, A.; Desquesnes, X.; Toutain, M. On the game p-Laplacian on weighted graphs with applications in image processing and data clustering. Eur. J. Appl. Math. 2017, 28, 922–948. [Google Scholar] [CrossRef] [Green Version]
- Pavlopoulos, G.A.; Kontou, P.I.; Pavlopoulou, A.; Bouyioukos, C.; Markou, E.; Bagos, P.G. Bipartite graphs in systems biology and medicine: A survey of methods and applications. GigaScience 2018, 7, giy014. [Google Scholar] [CrossRef]
- Chan, T.M. More algorithms for all-pairs shortest paths in weighted graphs. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, San Diego, CA, USA, 11–13 June 2007; pp. 590–598. [Google Scholar]
- Althöfer, I.; Das, G.; Dobkin, D.; Joseph, D.; Soares, J. On sparse spanners of weighted graphs. Discret. Comput. Geom. 1993, 9, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Asamoah, C.; Tao, L.; Gai, K.; Jiang, N. Powering filtration process of cyber security ecosystem using knowledge graph. In Proceedings of the 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud), Beijing, China, 25–27 June 2016; pp. 240–246. [Google Scholar]
- Troussas, C.; Krouska, A. Path-Based Recommender System for Learning Activities Using Knowledge Graphs. Information 2023, 14, 9. [Google Scholar] [CrossRef]
- Anita, V.C.; Gangemi, A.; Mancinelli, M.; Marinucci, L.; Nuzzolese, A.G.; Presutti, V.; Veninata, C. ArCo: The Italian cultural heritage knowledge graph. In Proceedings of the International Semantic Web Conference, Auckland, New Zealand, 26–30 October 2019; Springer: Berlin, Germany, 2019; pp. 36–52. [Google Scholar]
- Farazi, F.; Salamanca, M.; Mosbach, S.; Akroyd, J.; Eibeck, A.; Aditya, L.K.; Chadzynski, A.; Pan, K.; Zhou, X.; Zhang, S.; et al. Knowledge graph approach to combustion chemistry and interoperability. ACS Omega 2020, 5, 18342–18348. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Li, S.; Yang, X.; Qi, J.; Pan, G.; Zhou, B. Semantic health knowledge graph: Semantic integration of heterogeneous medical knowledge and services. BioMed Res. Int. 2017, 2017, 2858423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathalla, S.; Vahdati, S.; Auer, S.; Lange, C. Towards a knowledge graph representing research findings by semantifying survey articles. In Proceedings of the International Conference on Theory and Practice of Digital Libraries, Thessaloniki, Greece, 18–21 September 2017; Springer: Berlin, Germany, 2017; pp. 315–327. [Google Scholar]
- Tomic, D.; Drenjanac, D.; Hoermann, S.; Auer, W. Experiences with creating a precision dairy farming ontology (DFO) and a knowledge graph for the data integration platform in agriOpenLink. J. Agric. Inform. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Rossetto, L.; Baumgartner, M.; Ashena, N.; Ruosch, F.; Pernischová, R.; Bernstein, A. LifeGraph: A knowledge graph for lifelogs. In Proceedings of the Third Annual Workshop on Lifelog Search Challenge, New York, NY, USA, 9 June 2020; pp. 13–17. [Google Scholar]
- Bader, S.R.; Grangel-Gonzalez, I.; Nanjappa, P.; Vidal, M.; Maleshkova, M. A knowledge graph for industry 4.0. In Proceedings of the European Semantic Web Conference, Online, 2–4 June 2020; Springer: Berlin, Germany, 2020; pp. 465–480. [Google Scholar]
- Szekely, P.; Knoblock, C.A.; Slepicka, J.; Philpot, A.; Singh, A.; Yin, C.; Kapoor, D.; Natarajan, P.; Marcu, D.; Knight, K.; et al. Building and using a knowledge graph to combat human trafficking. In Proceedings of the International Semantic Web Conference, Bethlehem, PA, USA, 11–15 October 2015; Springer: Berlin, Germany, 2015; pp. 205–221. [Google Scholar]
- Liao, Z.; Wu, J.T.; Jiang, B.B.; Wang, J.D.; Yang, Y.R. Design methodology for flexible multiple plant water networks. Ind. Eng. Chem. Res. 2007, 46, 4954–4963. [Google Scholar] [CrossRef]
- Leong, Y.T.; Lee, J.; Tan, R.R.; Foo, J.J.; Mei, I.C.L. Multi-objective optimization for resource network synthesis in eco-industrial parks using an integrated analytic hierarchy process. J. Clean. Prod. 2017, 143, 1268–1283. [Google Scholar] [CrossRef]
- Tiu, B.T.C.; Cruz, D.E. An MILP model for optimizing water exchanges in eco-industrial parks considering water quality. Resour. Conserv. Recycl. 2017, 119, 89–96. [Google Scholar] [CrossRef]
- Nair, S.K.; Guo, Y.; Mukherjee, U.; Karimi, I.A.; Elkamel, A. Shared and practical approach to conserve utilities in eco-industrial parks. Comput. Chem. Eng. 2016, 93, 221–233. [Google Scholar] [CrossRef]
- Afshari, H.; Farel, R.; Peng, Q. Improving the resilience of energy flow exchanges in eco-industrial parks: Optimization under uncertainty. ASCE-ASME J. Risk Uncert. Engrg. Sys. Part B Mech. Engrg. 2017, 3. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Chhabra, P.; Garud, S.S.; Aditya, K.; Romagnoli, A.; Comodi, G.; Magro, F.D.; Meneghetti, A.; Kraft, M. A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization. Appl. Energy 2016, 184, 88–102. [Google Scholar] [CrossRef]
- Tan, R.R.; Aviso, K.B. An inverse optimization approach to inducing resource conservation in eco-industrial parks. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2012; Volume 31, pp. 775–779. [Google Scholar]
- Haslenda, H.; Jamaludin, M.Z. Industry to industry by-products exchange network towards zero waste in palm oil refining processes. Resour. Conserv. Recycl. 2011, 55, 713–718. [Google Scholar] [CrossRef]
- Cimren, E.; Fiksel, J.; Posner, M.E.; Sikdar, K. Material flow optimization in by-product synergy networks. J. Ind. Ecol. 2011, 15, 315–332. [Google Scholar] [CrossRef]
- Zhou, X.; Eibeck, A.; Lim, M.Q.; Krdzavac, N.B.; Kraft, M. An agent composition framework for the J-Park Simulator-A knowledge graph for the process industry. Comput. Chem. Eng. 2019, 130, 106577. [Google Scholar] [CrossRef]
- Kaiser, F.K.; Dardik, U.; Elitzur, A.; Zilberman, P.; Daniel, N.; Wiens, M.; Schultmann, F.; Elovici, Y.; Puzis, R. Attack Hypotheses Generation Based on Threat Intelligence Knowledge Graph. IEEE Trans. Dependable Secur. Comput. 2023, 1–17. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Liu, Y.; Liu, C.; Zhou, N. K-CTIAA: Automatic Analysis of Cyber Threat Intelligence Based on a Knowledge Graph. Symmetry 2023, 15, 337. [Google Scholar] [CrossRef]
- Kaloroumakis, P.E.; Smith, M.J. Toward a Knowledge Graph of Cybersecurity Countermeasures; MITRE Corporation: Bedford, MA, USA, 2021; p. 11. [Google Scholar]
- Sharma, C.; Sinha, R. A schema-first formalism for labeled property graph databases: Enabling structured data loading and analytics. In Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, Auckland, New Zealand, 2–5 December 2019; pp. 71–80. [Google Scholar]
- Rodriguez, M.A.; Neubauer, P. Constructions from dots and lines. Bull. Am. Soc. Inf. Sci. Technol. 2010, 36, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.A.; Neubauer, P. The graph traversal pattern. In Graph Data Management: Techniques and Applications; IGI Global: Hershey, PA, USA, 2012; pp. 29–46. [Google Scholar]
- Cudré-Mauroux, P.; Elnikety, S. Graph data management systems for new application domains. Proc. Vldb Endow. 2011, 4, 1510–1511. [Google Scholar] [CrossRef]
- Dominguez-Sal, D.; Martinez-Bazan, N.; Muntes-Mulero, V.; Baleta, P.; Larriba-Pey, J.L. A discussion on the design of graph database benchmarks. In Proceedings of the Technology Conference on Performance Evaluation and Benchmarking, Singapore, 13–17 September 2010; Springer: Berlin, Germany, 2010; pp. 25–40. [Google Scholar]
- Wang, D.; Cui, W.; Qin, B. CK-modes clustering algorithm based on node cohesion in labeled property graph. J. Comput. Sci. Technol. 2019, 34, 1152–1166. [Google Scholar] [CrossRef]
- Kalva, C.T.; Abhishek, K.; Vutnoori, A.; Maloth, V.K. Semantic Filtering of Twitter Data Using Labeled Property Graph (LPG). J. Comput. Theor. Nanosci. 2020, 17, 195–200. [Google Scholar] [CrossRef]
- Bryant, C.H.; Muggleton, S.H.; Kell, D.B.; Reiser, P.; King, R.D.; Oliver, S.G. Combining inductive logic programming, active learning and robotics to discover the function of genes. Electron. Trans. Artif. Intell. 2001, 5, 1–36. [Google Scholar]
- Goto, S.; Okuno, Y.; Hattori, M.; Nishioka, T.; Kanehisa, M. LIGAND: Database of chemical compounds and reactions in biological pathways. Nucleic Acids Res. 2002, 30, 402–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, T.R.; Marton, M.J.; Jones, A.R.; Roberts, C.J.; Stoughton, R.; Armour, C.D.; Bennett, H.A.; Coffey, E.; Dai, H.; D, Y.H.; et al. Functional discovery via a compendium of expression profiles. Cell 2000, 102, 109–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, R.D.; Muggleton, S.H.; Srinivasan, A.; Sternberg, M.J. Structure-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc. Natl. Acad. Sci. USA 1996, 93, 438–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, R.D.; Whelan, K.E.; Jones, F.M.; Reiser, P.G.K.; Bryant, H.C.; Muggleton, S.H.; Kell, D.B.; Oliver, S.G. Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 2004, 427, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Kitano, H. Computational systems biology. Nature 2002, 420, 206–210. [Google Scholar] [CrossRef]
- Kitano, H. Systems biology: A brief overview. Science 2002, 295, 1662–1664. [Google Scholar] [CrossRef] [Green Version]
- Muggleton, S.H.; Bryant, C.H. Theory completion using inverse entailment. In Proceedings of the International Conference on Inductive Logic Programming, London, UK, 24–27 July 2000; Springer: Berlin, Germany, 2000; pp. 130–146. [Google Scholar]
- Muggleton, S.H.; Lodhi, H.; Amini, A.; Sternberg, M.J.E. Support vector inductive logic programming. In Proceedings of the International Conference on Discovery Science, Singapore, 8–11 October 2005; Springer: Berlin, Germany, 2005; pp. 163–175. [Google Scholar]
- Kuznetsov, S.O.; Samokhin, M.V. Learning closed sets of labeled graphs for chemical applications. In Proceedings of the International Conference on Inductive Logic Programming, Bonn, Germany, 10–13 August 2005; Springer: Berlin, Germany, 2005; pp. 190–208. [Google Scholar]
- Formanowicz, P.; Kasprzak, M.; Wawrzyniak, P. Labeled Graphs in Life Sciences—Two Important Applications. In Graph-Based Modelling in Science, Technology and Art; Springer: Berlin, Germany, 2022; pp. 201–217. [Google Scholar]
- Zaki, N.; Chandana, T.; Hany, A.A. Knowledge graph construction and search for biological databases. In Proceedings of the 2017 International Conference on Research and Innovation in Information Systems (ICRIIS), Langkawi, Malaysia, 16–17 July 2017; pp. 1–6. [Google Scholar]
- Silva, V.; Freitas, A.; Handschuh, S. Building a Knowledge Graph from Natural Language Definitions for Interpretable Text Entailment Recognition. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018. [Google Scholar]
- Fellbaum, C. WordNet. In Theory and Applications of Ontology: Computer Applications; Springer: Berlin, Germany, 2010; pp. 231–243. [Google Scholar]
- Penev, L.; Dimitrova, M.; Senderov, V.; Zhelezov, G.; Georgiev, T.; Stoev, P.; Simov, K. OpenBiodiv: A Knowledge Graph for Literature-Extracted Linked Open Data in Biodiversity Science. Pensoft Publ. 2019, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Purohit, S.; Van, N.; Chin, G. Semantic Property Graph for Scalable Knowledge Graph Analytics. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021. [Google Scholar]
- Spanos, D.E.; Stavrou, P.; Mitrou, N. Bringing relational databases into the semantic web: A survey. Semant. Web 2012, 3, 169–209. [Google Scholar] [CrossRef]
- Vavliakis, K.N.; Grollios, T.; Mitkas, P. RDOTE–Publishing Relational Databases into the Semantic Web. J. Syst. Softw. 2013, 86, 89–99. [Google Scholar] [CrossRef]
- Angles, R.; Gutierrez, C. Querying RDF Data from a Graph Database Perspective. In The Semantic Web: Research and Applications; Springer International Publishing: New York, NY, USA, 2005; pp. 346–360. [Google Scholar]
- Sakr, S.; Elnikety, S.; He, Y. G-SPARQL: A Hybrid Engine for Querying Large Attributed Graphs. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, New York, NY, USA, 29 October–2 November 2012; CIKM’12. pp. 335–344. [Google Scholar]
- Libkin, L.; Reutter, J.; Vrgoč, D. Trial for RDF: Adapting graph query languages for RDF data. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, New York, NY, USA, 22 June 2013; pp. 201–212. [Google Scholar]
- Thakkar, H.; Punkani, D.; Keswani, Y.; Lehmann, J.; Auer, S. A Stitch in Time Saves Nine—SPARQL querying of Property Graphs using Gremlin Traversals. arXiv 2018, arXiv:1801.02911. [Google Scholar]
- Rodriguez, M. The gremlin graph traversal machine and language (invited talk). In Proceedings of the 15th Symposium on Database Programming Languages, Pittsburgh, PA, USA, 27 October 2015; pp. 1–10. [Google Scholar]
- Virgilio, R.D. Smart RDF data storage in graph databases. In Proceedings of the 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17 May 2017; pp. 872–881. [Google Scholar]
- Tomaszuk, D. RDF data in property graph model. In Proceedings of the Research Conference on Metadata and Semantics Research, Göttingen, Germany, 22–25 November 2016; Springer: Berlin, Germany, 2016; pp. 104–115. [Google Scholar]
- Iordanov, B. Hypergraphdb: A generalized graph database. In Proceedings of the International Conference on Web-Age Information Management, Jiuzhaigou, China, 15–17 July 2010; Springer: Berlin, Germany, 2010; pp. 25–36. [Google Scholar]
- Das, S.; Perry, M.; Srinivasan, J.; Chong, E. A Tale of Two Graphs: Property Graphs as RDF in Oracle; EDBT: Konstanz, Germany, 2010; pp. 762–773. [Google Scholar]
- Chiba, H.; Yamanaka, R.; Keswani, Y.; Matsumoto, S. G2GML: Graph to Graph Mapping Language for Bridging RDF and Property Graphs. In Proceedings of the International Semantic Web Conference, Online, 1–6 November 2020; Springer: Berlin, Germany, 2020; pp. 160–175. [Google Scholar]
- Matsumoto, S.; Yamanaka, R.; Chiba, H. Mapping RDF graphs to property graphs. arXiv 2018, arXiv:1812.01801. [Google Scholar]
- Angles, R.; Thakkar, H.; Tomaszuk, D. Mapping rdf databases to property graph databases. IEEE Access 2020, 8, 86091–86110. [Google Scholar] [CrossRef]
- Tomaszuk, D.; Angles, R.; Thakkar, H. PGO: Describing Property Graphs in RDF. IEEE Access 2020, 8, 118355–118369. [Google Scholar] [CrossRef]
- Schätzle, A.; Przyjaciel-Zablocki, M.; Berberich, T.; Lausen, G. S2X: Graph-parallel querying of RDF with GraphX. In Biomedical Data Management and Graph Online Querying; Springer: Berlin, Germany, 2015; pp. 155–168. [Google Scholar]
- Haihong, E.; Han, P.; Song, M. Transforming RDF to Property Graph in Hugegraph. In Proceedings of the 6th International Conference on Engineering and MIS 2020, Almaty, Kazakhstan, 14–16 September 2020. ICEMIS’20. [Google Scholar]
- Zhang, R.; Liu, P.; Guo, X.; Li, S.; Wang, X. A unified relational storage scheme for RDF and property graphs. In Proceedings of the International Conference on Web Information Systems and Applications; Springer: Berlin, Germany, 2019; pp. 418–429. [Google Scholar]
- Angles, R.; Thakkar, H.; Tomaszuk, D. RDF and Property Graphs Interoperability: Status and Issues; AMW: Cartagena de Indias, Colombia, 2019. [Google Scholar]
- Khayatbashi, S.; Ferrada, S.; Hartig, O. Converting Property Graphs to RDF: A Preliminary Study of the Practical Impact of Different Mappings; GRADES-NDA@ SIGMOD: New York, NY, USA, 2022; pp. 10–11. [Google Scholar]
- Hartig, O. Reconciliation of RDF* and property graphs. arXiv 2014, arXiv:1409.3288. [Google Scholar]
- Nguyen, V.; Yip, H.Y.; Thakkar, H.; Li, Q.; Bolton, E.; Bodenreider, O. Singleton Property Graph: Adding A Semantic Web Abstraction Layer to Graph Databases. BlockSW/CKG@ ISWC 2019, 2599, 1–13. [Google Scholar]
- Modoni, G.; Sacco, M.; Terkaj, W. A survey of RDF store solutions. In Proceedings of the 2014 International Conference on Engineering, Technology and Innovation (ICE), Bergamo, Italy, 23–25 June 2014; pp. 1–7. [Google Scholar]
- Muhamad, W.; Suhardi; Bandung, Y. Transforming OpenAPI Specification 3.0 documents into RDF-based semantic web services. J. Big Data 2022, 9, 55. [Google Scholar] [CrossRef]
- Ferilli, S.; Redavid, D. The GraphBRAIN System for Knowledge Graph Management and Advanced Fruition. In International Symposium on Methodologies for Intelligent Systems; Springer: Berlin, Germany, 2020; pp. 308–317. [Google Scholar]
- Nguyen, V.; Bodenreider, O.; Sheth, A. Don’t like RDF reification? Making statements about statements using singleton property. In Proceedings of the 23rd International Conference on World WIDE Web, Seoul, Korea, 7–11 April 2014; pp. 759–770. [Google Scholar]
- Motik, B. On the properties of metamodeling in OWL. J. Log. Comput. 2007, 17, 617–637. [Google Scholar] [CrossRef]
- Horrocks, I. Owl: A description logic based ontology language. In Proceedings of the International Conference on Principles and Practice of Constraint Programming, Sitges, Spain, 1–5 October 2005; Springer: Berlin, Germany, 2005; pp. 5–8. [Google Scholar]
- Rodriguez-Muro, M.; Rezk, M. Efficient SPARQL-to-SQL with R2RML mappings. J. Web Semant. 2015, 33, 141–169. [Google Scholar] [CrossRef]
- Khamparia, A.; Pandey, B. Comprehensive analysis of semantic web reasoners and tools: A survey. Educ. Inf. Technol. 2017, 22, 3121–3145. [Google Scholar] [CrossRef]
- Di Pierro, D.; Redavid, D.; Ferilli, S. Linking Graph Databases and Semantic Web for Reasoning in Library Domains. In Proceedings of the IRCDL 2022: Italian Research Conference on Digital Libraries, Padova, Italy, 24–25 February 2022. [Google Scholar]
- Ferilli, S. GEAR: A General Inference Engine for Automated MultiStrategy Reasoning. Electronics 2023, 12, 256. [Google Scholar] [CrossRef]
- Minker, J. On indefinite databases and the closed world assumption. In Proceedings of the International Conference on Automated Deduction, New York, NY, USA, 7–9 June 1982; Springer: Berlin, Germany, 1982; pp. 292–308. [Google Scholar]
- Moore, P.; Van Pham, H.H. On context and the open world assumption. In Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, Gwangju, Korea, 24–27 March 2015; pp. 387–392. [Google Scholar]
- Mitchell, M. Abstraction and analogy-making in artificial intelligence. Ann. N. Y. Acad. Sci. 2021, 1505, 79–101. [Google Scholar] [CrossRef] [PubMed]
- Evans, J. Logic and human reasoning: An assessment of the deduction paradigm. Psychol. Bull. 2002, 128, 978. [Google Scholar] [CrossRef] [PubMed]
- Carnap, R.; Jeffrey, R.C. Studies in Inductive Logic and Probability; University of California Press: Oakland, CA, USA, 1980; Volume 2. [Google Scholar]
- Hawthorne, J. Inductive Logic. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; The Metaphysics Research Lab: Stanford, CA, USA, 2011. [Google Scholar]
- Svennevig, J. Abduction as a Methodological Approach to the Study of Spoken Interaction. 2001. Available online: https://www.researchgate.net/publication/251398301_Abduction_as_a_methodological_approach_to_the_study_of_spoken_interaction (accessed on 21 January 2023).
- Dung, P.M. An argumentation-theoretic foundation for logic programming. J. Log. Program. 1995, 22, 151–177. [Google Scholar] [CrossRef] [Green Version]
- Michalski, R.S. Inferential theory of learning as a conceptual basis for multistrategy learning. Mach. Learn. 1993, 11, 111–151. [Google Scholar] [CrossRef] [Green Version]
- Figuera, M.; Rohde, P.D.; Vidal, M. Trav-SHACL: Efficiently validating networks of SHACL constraints. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 3337–3348. [Google Scholar]
- Pareti, P.; Konstantinidis, G. A Review of SHACL: From Data Validation to Schema Reasoning for RDF Graphs. arXiv 2021, arXiv:2112.01441. [Google Scholar]
- Pareti, P.; Konstantinidis, G.; Mogavero, F.; Norman, T.J. SHACL satisfiability and containment. In Proceedings of the International Semantic Web Conference, Online, 1–6 November 2020; Springer: Berlin, Germany, 2020; pp. 474–493. [Google Scholar]
- Staworko, S.; Boneva, I.; Gayo, J.L.E.; Hym, S.; Prud’Hommeaux, E.G.; Solbrig, H. Complexity and Expressiveness of ShEx for RDF. In Proceedings of the 18th International Conference on Database Theory (ICDT 2015), Brussels, Belgium, 23–27 March 2015. [Google Scholar]
- Boneva, I.; Dusart, J.; Alvarez, D.F.; Gayo, J.E.L. Shape designer for ShEx and SHACL constraints. In Proceedings of the ISWC 2019-18th International Semantic Web Conference, Auckland, New Zealand, 26–30 October 2019. [Google Scholar]
- Wright, J.; Méndez, S.J.R.; Haller, A.; Taylor, K.; Omran, P.G. Schímatos: A SHACL-based web-form generator for knowledge graph editing. In Proceedings of the International Semantic Web Conference, Online, 1–6 November 2020; Springer: Berlin, Germany, 2020; pp. 65–80. [Google Scholar]
- Arndt, N.; Valdestilhas, A.; Publio, G.; Arriaga, A.C.; Höffner, K.; Riechert, T. A Visual SHACL Shapes Editor Based on OntoPad; SEMANTiCS Posters&Demos, CEUR-WS: Aachen, Germany, 2021. [Google Scholar]
- Ekaputra, F.J.; Lin, X. SHACL4P: SHACL constraints validation within Protégé ontology editor. In Proceedings of the 2016 International Conference on Data and Software Engineering (ICoDSE), Denpasar, Indonesia, 26–27 October 2016; pp. 1–6. [Google Scholar]
- Senthilvel, M.; Beetz, J.; Computation, D. A Visual Programming Approach for Validating Linked Building Data; Universitätsbibliothek der RWTH Aachen: Aachen, Germany, 2020. [Google Scholar]
- Alom, H. A Library for Visualizing SHACL over Knowledge Graphs. Master’s Thesis, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany, 2022. [Google Scholar]
- Echegaray, D. Making a Common Graphical Language for the Validation of Linked Data. 2017. Available online: https://kth.diva-portal.org/smash/get/diva2:1127525/FULLTEXT01.pdf (accessed on 21 January 2023).
Graph Model | Directed Edges (i) | Labels (ii) | Attributes (iii) | URI (iv) | Reasoning (v) |
---|---|---|---|---|---|
LPG | 🗸 | 🗸 | 🗸 | ||
RDF | 🗸 | 🗸 | 🗸 | 🗸 |
Domain | Number of Papers (2019–2022) | Number of Papers (2015–2018) |
---|---|---|
Cybersecurity | ~4400 | ~900 |
Culture Heritage | ~3600 | ~2000 |
Biology | ~17,600 | ~15,300 |
Healthcare | ~17,500 | ~17,400 |
Industry | ~17,500 | ~18,000 |
Smart City | ~9000 | ~3000 |
Medicine | ~18,000 | ~16,800 |
<!-- <!DOCTYPE domain SYSTEM "graphbrain.dtd"> --> <domain name="retrocomputing" author="stefano" version="1"> <entities> <entity name="Component"> <attributes> <attribute name="name" mandatory="true" datatype="string"/> <attribute name="description" mandatory="false" datatype="text"/> <attribute name="originalPrice" mandatory="false" datatype="real"/> <attribute name="announcementDate" mandatory="false" datatype="date"/> </attributes> <taxonomy> <value name="Chip"> <values> <value name="Logic"> <taxonomy> <value name="FlipFlop"> <attributes> <attribute name="type" mandatory="false" datatype="select"> <values> <value name="D"/> <value name="FK"/> <value name="JK"/> <value name="T"/> </values> </attribute> </attributes> </value> <value name="Memory"> <attributes> <attribute name="capacity" mandatory="false" datatype="string"/> <attribute name="speed" mandatory="false" datatype="string"/> </attributes> <taxonomy> <value name="EPROM"/> <value name="PROM"/> <value name="RAM"/> <value name="ROM"> <attributes> <attribute name="content" mandatory="false" datatype="string"/> </attributes> </value> </taxonomy> </value> </taxonomy> </value> <value name="MicroProcessor"> <attributes> <attribute name="speed" mandatory="false" datatype="string"/> <attribute name="bits" mandatory="false" datatype="integer"/> </attributes> </value> <value name="PLA"/> <value name="RRIOT"/> </taxonomy> </taxonomy> [...] </taxonomy> </entity> [...] </entities> |
<relationships> <relationship name="wasIn" inverse="hosted"> <references> <reference subject="Company" object="Event"/> [...] </references> <attributes> <attribute name="reason" mandatory="false" datatype="string"/> <attribute name="position" mandatory="false" datatype="string"/> </attributes> <taxonomy> <value name="workedIn"/> </taxonomy> </relationship> [...] </relationships> </domain> |
LPG | RDF |
---|---|
Node | rdf:subject |
Arc | rdf:predicate |
Attribute on node | rdf:predicate between the rdf:subject (node) and the literal (Attribute value) |
Attribute on relationship | rdf:predicate between the rdf:statement representing the triple (relationship) and the literal (Attribute value) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pierro, D.; Ferilli, S.; Redavid, D. LPG-Based Knowledge Graphs: A Survey, a Proposal and Current Trends. Information 2023, 14, 154. https://doi.org/10.3390/info14030154
Di Pierro D, Ferilli S, Redavid D. LPG-Based Knowledge Graphs: A Survey, a Proposal and Current Trends. Information. 2023; 14(3):154. https://doi.org/10.3390/info14030154
Chicago/Turabian StyleDi Pierro, Davide, Stefano Ferilli, and Domenico Redavid. 2023. "LPG-Based Knowledge Graphs: A Survey, a Proposal and Current Trends" Information 14, no. 3: 154. https://doi.org/10.3390/info14030154
APA StyleDi Pierro, D., Ferilli, S., & Redavid, D. (2023). LPG-Based Knowledge Graphs: A Survey, a Proposal and Current Trends. Information, 14(3), 154. https://doi.org/10.3390/info14030154