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Abstract: More than 1.3 million people are killed in traffic accidents annually. Road traffic accidents
are mostly caused by human error. Therefore, an accurate driving fatigue detection system is required
for drivers. Most driving fatigue detection studies concentrated on improving feature engineering
and classification methods. We propose a novel driving fatigue detection framework concentrating
on the development of the preprocessing, feature extraction, and classification stages to improve
the classification accuracy of fatigue states. The proposed driving fatigue detection framework
measures fatigue using a two-electrode ECG. The resampling method and heart rate variability
analysis were used to extract features from the ECG data, and an ensemble learning model was
utilized to classify fatigue states. To achieve the best model performance, 40 possible scenarios were
applied: a combination of 5 resampling scenarios, 2 feature extraction scenarios, and 4 classification
model scenarios. It was discovered that the combination of a resampling method with a window
duration of 300 s and an overlap of 270 s, 54 extracted features, and AdaBoost yielded an optimum
accuracy of 98.82% for the training dataset and 81.82% for the testing dataset. Furthermore, the
preprocessing resampling method had the greatest impact on the model’s performance; it is a new
approach presented in this study.

Keywords: fatigue detection; resampling; electrocardiogram; fatigue driving; heart rate variabil-
ity analysis

1. Introduction

Every year, over 1.3 million people are killed in road traffic accidents. Southeast
Asia has the highest road traffic accident death rate, with over 400,000 people killed
yearly [1]. Human error, traffic circumstances, road designs, vehicle conditions, and
weather conditions contribute to road traffic accidents [2]. Human error is the most
significant contributor to road traffic accidents [3,4]. According to [5], driving fatigue, an
example of human error, is the leading cause of road traffic accidents. To improve safety
while driving, the driver needs a warning system for driving fatigue detection.

In the past few years, research on driving fatigue detection has developed, as reviewed
in [6]. One example of driving fatigue detection studies that use eye, mouth, and/or face
features obtained through video, results in an accuracy of up to 99.59% [7]. However,
driving fatigue detection using physical features can only work well in specific conditions
because its accuracy depends on factors such as the lighting, the color of the driver’s
background, and the color of the driver’s skin [6]. This method also requires several things,
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such as a large amount of data storage, a large number of images for data training, and a
high level of processing to analyze the images.

Other studies on driving fatigue detection have used physiological signals such as
electroencephalogram (EEG) with an accuracy of 97.19% [8] and a combination of phys-
iological signals (ECG, EEG, EOG) with an accuracy of 97% [9], obtaining high accuracy
results, above 97%. However, driving fatigue detection using EEG or a combination of
physiological signal sensors requires many electrodes or sensors to be attached to the driver,
which could be intrusive. Furthermore, many movements in real driving can create artifacts
in the measured signals and affect the accuracy of driving fatigue detection.

Therefore, a driving fatigue detection measurement method that uses fewer sensors
or electrodes to determine the actual biological condition of the driver’s body and is not
affected by environmental factors, requiring less data storage and less computation than
image processing, is needed. We chose a heart rate-related sensor, specifically ECG, as
the physiological measurement method for driving fatigue detection. However, several
problems are encountered when using ECG for driving fatigue detection, as follows:

1. As shown in Table 1, a number of driving fatigue detection studies using ECG only
from 2017 to 2022 achieved a low accuracy, up to 92.5% [10]. Most driving fatigue de-
tection studies have combined a heart rate-related sensor with other physiological sen-
sors to obtain a more accurate classification model. For example, [11] combined ECG,
EEG, and driving behavior sensors, resulting in an accuracy of 95.4%. Using more
sensors attached to the driver’s body is impractical in real-world driving applications.

2. Most driving fatigue detection studies (Table 1) have concentrated on developing
feature engineering and classification techniques. Very few studies have focused
on developing preprocessing methods. In fact, the preprocessing stage plays the
most important part in the classification problem [12–14]. Therefore, with the right
preprocessing method, driving fatigue detection using ECG could likely increase the
model’s performance.

3. Most driving fatigue detection studies have focused on developing the classification
stage using neural networks and deep learning models to improve model performance.
Table 1 shows very good results for the method of [6], which uses this strategy. For
example, Huang and Deng proposed a novel classification model for detecting driver
fatigue in 2022. They used a combination of neural network models, resulting in a
97.9% accuracy [15]. However, these methods are not perfect. They require a large
amount of data and many computational resources, and if the model is overtrained to
minimize the error, it may become less generalized [16,17].

We propose a driving fatigue detection framework with several approaches to solving
these problems. The presented approaches were experimented with in several scenarios.
These scenarios were employed in three stages of the proposed driving fatigue detection
framework, as shown in Figure 1: the preprocessing, feature extraction, and classification
stages. Our main contributions are as follows:

1. We chose the single-lead ECG method for driving fatigue measurement due to its ease
of use. This method is sufficient for measuring heart rate, and heart rate variability
is correlated with driver fatigue [18,19]. The ECG recording configuration used for
driving fatigue detection in this study is a modified lead-I ECG with two electrodes
placed at the second intercostal space.

2. In the preprocessing stage, we applied three types of resampling methods—no re-
sampling, resampling only, and resampling with overlapping windows—to obtain
and gather more information from the ECG data. Five resampling scenarios were
employed in the driving fatigue detection framework (Figure 1) to determine which
resampling scenario had the greatest impact on the model’s performance.

3. In the feature extraction stage, we applied new feature extraction methods that had not
been used in previous driving fatigue detection studies (Table 1). These are Poincare
plot analysis and multifractal detrended fluctuation analysis to extract nonlinear
properties from ECG data. There are 2 scenarios for the feature extraction method
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employed in the driving fatigue detection framework: 29 and 54 features are used
to evaluate whether the nonlinear analysis method has an effect on the model’s
performance. A 29-feature scenario covers the properties of the time domain and
frequency domain analysis, while a 54-feature scenario covers the properties of the
time domain, frequency domain, and nonlinear analysis.

4. In the classification stage, we preferred to use an ensemble learning model to produce
a better classification performance than an individual model. We employed four
ensemble learning model scenarios (Figure 1), AdaBoost, bagging, gradient boosting,
and random forest, to assess which method gave the best model performance. In the
proposed driving fatigue detection framework, 40 possible scenarios were employed.
A combination of five resampling scenarios, two feature extraction method scenarios,
and four ensemble learning model scenarios were considered to determine which
scenario produced the best model performance on both the training and testing
datasets. In addition, we employed the cross-validation method to evaluate model
generalizability and the hyperparameter optimization method to optimize the trained
model in the proposed driving fatigue detection framework.
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Figure 1. The proposed fatigue driving detection framework.

This paper consists of five sections. In Section 2, we describe the work associated
with driving fatigue detection using ECG or other heart rate-related measurements. In
Section 3, we describe the proposed driving fatigue detection framework model with
several resampling, feature extraction, and ensemble learning methods. In Section 4, we
present, analyze, and discuss the results. In Section 5, the results are summarized.

2. Related Works

There are three types of driving fatigue based on causal factors: passive task-related
fatigue, active task-related fatigue, and sleep-related fatigue [19,20]. Passive task-related
fatigue occurs when a driver experiences cognitive deterioration in specific settings, such
as long-distance driving, tedious driving in low-traffic conditions, or continual noise.
Active task-related fatigue occurs when a driver exhausts his or her cognitive function
by performing a secondary task in the car, maneuvering during driving, or driving in
heavy traffic. The relationship between sleep-related fatigue and a driver’s sleep quality is
significant. Therefore, sleep loss and disorders can induce fatigue [19].

There are two ways to measure fatigue while driving: based on condition data and
based on performance data. Methods that measure fatigue based on condition data are
divided into two types: subjective and objective measurement. Methods that measure
fatigue based on performance data are also divided into two types: those that use vehicle
data indicating driving behavior and those that use secondary task data [20]. The objective
approach is a fatigue measurement method based on condition data using physiological
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and physical measurement methods on test subjects. In contrast, the subjective approach
is a fatigue measurement method based on condition data using observer evaluation
with a questionnaire, such as the Epworth Sleepiness Scale [21], Samn–Perelli Fatigue
Scale [22], Stanford Sleepiness Scale [23], Karolinska Sleepiness Scale [24], and Chalder
Fatigue Scale [25]. According to driving fatigue detection study reviews [6,26], most
driving fatigue detection research uses the objective method to measure or detect a driver’s
fatigue; some use the subjective method as a comparison measure to determine the fatigue
state’s ground truth. In this paper, we chose a fatigue measurement-based condition data
approach with an objective measurement method because it directly measures the actual
condition of a driver. In addition, the subjective method is unnecessary because the drivers
were accustomed to driving under two conditions, i.e., the well-rested condition and the
sleep-deprived condition, to classify the two states.

Table 1. The literature on fatigue or drowsiness driving detection using ECG and other heart rate-
related sensor measurements.

No. Source Number of
Participants Record. Time Measurement Features Classification Class Accuracy

1 [27] 22 80 min ECG and EEG 95 Support vector machine
(SVM) 2 80.9

2 [28]
1st: 18;
2nd: 24;
3rd: 44

90 min

EEG, ECG,
EOG, steering
behavior and

lane
positioning

54 Random forest 2 94.1

3 [29] Unknown 5 min ECG 4 SVM 2 83.9

4 [30] 6 67 min ECG 12 SVM 2 AUC: 0.95

5 [10] 25 80 min ECG 24 Ensemble logistic
regression 2 92.5

6 [31] 6 60–120 min ECG Convolutional neural network (CNN) and
recurrence plot 2

Accuracy: 70
Precision: 71

Recall: 85

7 [32] 25 Unknown ECG 32 SVM 2 87.5

8 [33] 47 30 min
ECG signals
and vehicle

data
49 Random forest 2 91.2

9 [34] 23 33 min

driving
behavior,

reaction time
and ECG

13
Eigenvalue of

generation process of
driving fatigue (GPDF)

3 72

10 [35] 45 45 min

BVP,
respiration,

skin
conductance

and skin
temperature

73 CNN-LSTM 2

Recall: 82
Specificity: 71
Sensitivity: 93

AUC: 0.88

11 [11] 16 30 min
EEG, ECG,

driving
behavior

80
Majority voting

classifier (kNN, LR,
SVM)

2 95.4

12 [36] 16 Unknown ECG

Multiple-objective genetic algorithm
(MOGA) optimized deep multiple kernel

learning support vector machine
(D-MKL-SVM) + cross-correlation

coefficient

2 AUC: 0.97

13 [37] 35 30 min ECG, EEG,
EOG 13 Artificial neural

networks (ANNs) 2 83.5

14 [15] 9 >10 min EDA, RESP,
and PPG 15

ANN, backpropagation
neural network, and

cascade forward neural
network

2 97.9

15 [38] 20 20 min EEG and ECG Product fuzzy convolutional network
(PFCN) 2 94.19

Driving fatigue detection research using physical measurements (such as eye features,
mouth features, face features, or combinations of physical features), as reviewed in [6],
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has produced very high accuracies, even up to 99.59% [7]. However, these measurement
methods are limited by environmental conditions and the driver’s appearance (such as
skin color and the presence of a beard, a mustache, glasses, a hat, or tattoos) [39]. Other
driving fatigue detection research using physiological or biological measurement methods,
reviewed in [6], seems promising because it also results in very high accuracies, 97.19%
with electroencephalogram (EEG) [8], 92.5% with electrocardiogram (ECG) [10], and 97.9%
with multiple physiological measurements [15]. Moreover, these noninvasive methods
address the physical measurement method’s limitations but are also impractical because
a few electrodes must be attached to the driver [39]. We chose ECG over EEG as a physi-
ological measurement method because it requires fewer electrodes to be attached to the
driver, making it easier to use. In addition, several driving fatigue detection studies have
been conducted [10,27–30,32–34,40–42] using heart rate-related sensors such as ECG, pho-
toplethysmography, blood volume pulse, and oximeters, which showed that heart rate
variability has a relationship with the driver’s fatigue status. Therefore, ECG is a suitable
choice for driving fatigue detection.

Among the driving fatigue detection studies using heart rate-related sensors from
2017–2022, as shown in Table 1, 7 [10,11,15,28,33,36,38] of the 15 studies that have accu-
racies above 90% or area under the curve values of 0.97 are interesting to discuss. First,
Babaeian et al. [10] proposed a driving fatigue detection framework using wavelet trans-
form and ensemble logistic regression, achieving an accuracy of 92.5%. They focused on
developing driving fatigue detection using a feature extraction method to extract more
information and an ensemble machine learning model to obtain a better classification
model. Second, Huang and Deng [15] proposed a driving fatigue detection framework
using principal component analysis and the cascade forward neural network, achieving an
accuracy of 97.9%. They made developments in the preprocessing stage by using principal
component analysis to remove redundant information from the original data, using multi-
ple biological sensors to obtain more information, and using an artificial neural network
model to achieve better fatigue classification. They obtained the highest accuracy, as shown
in Table 1. However, many sensors are attached to the driver, such as electrodermal activity,
respiration, and photoplethysmography sensors, which might interfere with driving. Third,
Mårtensson et al. [28] proposed a driving fatigue detection framework using many feature
extraction methods and a random forest and achieved an accuracy of 94.1%. They made
developments in feature engineering by using a combination of multiple biological sensors
(EEG, ECG, and EOG) and driving performance sensors. They also used the random forest
to obtain a better classification model. The weakness of this method is the same as that
of [15]; having many electrodes attached to the driver can be intrusive.

Fourth, Arefnezhad et al. [33] proposed a driving fatigue detection framework using
multiple sensors and a random forest and achieved an accuracy of 91.2%. Their accuracy
was the lowest among the top seven driving fatigue detection research accuracies, as shown
in Table 1. They developed this method by using the fusion of ECG and vehicle data and
extracted 49 features from it. Fifth, Du et al. [38] proposed a driving fatigue detection
framework using a product fuzzy convolutional network and achieved an accuracy of
94.19%. They developed a new model based on deep learning for feature extraction and
classification. Sixth, Gwak et al. [11] proposed a driving fatigue detection framework using
hybrid sensing (EEG, ECG, and driving behavior sensors), extracted 80 features with a
random forest, and achieved an accuracy of 95.4%. They had the same weakness as the
methods of [28,38], which used many electrodes attached to the driver because EEG was
used in the driving fatigue detection framework. Finally, Chui et al. [36] suggested a
driving fatigue detection framework employing a cross-correlation coefficient for feature
extraction and an MOGA-optimized D-MKL SVM for classification and achieved an area
under the curve of 0.97. They used the Cyclic Alternating Pattern Sleep Database, which
was implemented in neither real-world driving nor virtual driving. Their dataset did not
reflect the fatigue status of the driver because the participants did not drive, and a number
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of participants had already been diagnosed with pathologies [43,44]. This dataset should
only be used to investigate sleep-related pathologies.

It can be concluded generally from Table 1 that most driving fatigue detection studies
use more physiological sensors to extract more information about the actual status of
drivers. However, attaching more sensors to the driver might be more intrusive [6,45].
Therefore, it is important to use a few sensors that can reliably measure the driver’s
fatigue and, with the right signal processing methods, can enable high-accuracy driving
fatigue detection.

In addition, most of the driving fatigue detection research described in Table 1 focused
on improvements in preprocessing methods to remove artifacts from original data, feature
extraction methods and classification models that had never been used in previous research,
and the development of new deep learning model architectures. By evaluating several
related works, it is clear that driving fatigue detection techniques can still be improved,
such as the measurement method, the preprocessing method, the feature extraction method,
the classification model, or a combination of these.

3. Materials and Methods
3.1. Dataset

As noted in the section on related work, we used an objective measurement method
that has been widely used and validated in earlier driving fatigue detection research.
We chose ECG due to its ease of use and proven relationship with heart rate variability
and fatigue. The dataset used for the driving fatigue detection experiment was obtained
from [18]. In the dataset, there were 11 healthy participants (10 men and a woman) aged
24–28 years. Each of them had a driving license and performed a simulated drive for at
least 30 min in 2 driving conditions (alert and fatigued). Each of the conditions was tested
on a particular day. For the alert driving condition, the drivers were instructed to have
slept well for at least seven hours. To induce fatigue conditions, the drivers were instructed
to ensure sleep deprivation by going to sleep late at night.

Several physiological signals were recorded during simulated driving: 64 channels
for EEG, 2 for EOG, and 2 for ECG. The configuration used for ECG signal recording
was a modified lead-I with two electrodes placed at the second intercostal space. The
driver’s physiological signals were recorded using a Biosemi Active Two System with a
sampling rate of 512 Hz [18]. The sampling rate used in the experiments met the minimum
requirement for heart rate variability analysis, which is 250 Hz [46]. All of them were
collected into 68 channels of recorded data series. In this paper, we only used ECG signals
for driving fatigue detection, with 2 of the 68 recorded signal channels labeled Sleep-Good
and Sleep-Bad. The Sleep-Good labeled data indicate alert driving conditions, whereas
the Sleep-Bad labeled data indicate fatigued driving conditions. Table 2 shows each
participant’s ECG data sample duration under the two conditions, measured in minutes
and milliseconds.

3.2. Driving Fatigue Detection Framework

The initial stage of ECG data processing shown in Figure 1 is data acquisition, which
is explained in the dataset section. The dataset used in this study was obtained from [18].

Heart rate variability is a measure of fluctuations in the interbeat interval calculated
by extracting the beat-to-beat or RR interval from an ECG signal [47]. A robust and
accurate QRS detection algorithm is needed to obtain valid heart rate variability data [48].
The Pan–Tompkins algorithm, which performs well in ECG beat segmentation [49], was
employed in the second stage, the detection of QRS within the driving fatigue detection
framework (Figure 1). The Pan–Tompkins approach consists of several steps, starting
with the elimination of the DC offset, signal filtering with a digital bandpass filter and
derivative filter, signal squaring, moving window integration, and identification of the QRS
complex. The minimum sampling rate required to perform the Pan–Tompkins algorithm is
200 Hz [50], and the dataset used in this study meets its qualifications.
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Table 2. The ECG data sample duration and total interval of each participant.

Participant

Sleep-Good (SG)/Alert Sleep-Bad (SB)/Fatigue

ECG Data Total NN Interval
(Tto) in Msec

ECG Data Total NN Interval
(Tto) in Msecin Mins in Msec in Mins in Msec

1 30.05 1,803,000 1,800,267 30.05 1,803,000 1,800,945
2 30.05 1,803,000 1,800,827 30.05 1,803,000 1,801,166
3 30.05 1,803,000 1,801,157 30.05 1,803,000 1,800,932
4 53.88 3,232,750 3,229,156 30.05 1,803,000 1,801,279
5 51.53 3,091,500 3,088,254 31.45 1,887,250 1,884,670
6 30.86 1,851,500 1,849,644 30.05 1,803,000 1,800,605
7 40.13 2,407,750 2,404,552 30.05 1,803,000 1,800,367
8 44.52 2,671,250 2,668,485 33.74 2,024,250 2,022,111
9 35.1 2,106,250 2,103,198 30.05 1,803,000 1,800,723

10 36.1 2,166,250 2,163,819 30.05 1,803,000 1,800,733
11 23.59 1,415,482 1,413,316 30.05 1,803,000 1,800,578

Min 23.59 1,415,482 1,413,316 30.05 1,803,000 1,800,367
Max 53.88 3,232,750 3,229,156 33.74 2,024,250 2,022,111

St. Dev. 9.64 578,288 577,807 1.15 68,967 68,949
Average 36.90 2,213,794 2,211,152 30.51 1,830,773 1,828,555

After detecting the R waves in the ECG data, the RR interval between two adjacent
QRSs could be measured. In this study, we prefer the term “NN interval” over “RR interval”
because the NN interval is measured between two adjacent detected QRS complexes and
excludes unreliable RR intervals [51]; it is measured in milliseconds. All the total NN
intervals of each participant under the two different conditions are shown in Table 2.
However, the duration of ECG recordings for each participant was not uniform. As shown
in Table 2, the ECG data sample with the shortest duration was recorded for the 11th
participant in the Sleep-Good condition, 23.59 min or 1,415,482 ms, and the total duration
of the NN interval for the 11th participant in the Sleep-Good condition was 1,413,316 ms.
To obtain a balanced set of data, we used the shortest duration of the NN interval as the
duration reference for all participants in both the Sleep-Good and Sleep-Bad conditions. As
illustrated in Figure 1, the following subsections further explain the third to sixth stages.

All of the stages illustrated in Figure 1 were programmed in Python 3 [52] with
the packages, pandas [53], NumPy [54], and Scikit-learn [55], using a Spyder integrated
development environment [56]. All experiments were performed on an AMD Ryzen 5 at
3.6 GHz with 16 GB of RAM and the Windows 10 operating system.

3.3. Data Splitting and Labelling

In most real-world machine learning applications where only a small amount of data
are available, splitting the data is useful for evaluating the algorithm’s performance. The
most common method for splitting data is to divide them into two portions. The first
portion of the data is used to train the algorithm and is referred to as the training dataset.
The remaining data, referred to as the testing dataset, which could be considered “new
data,” are used to validate the algorithm and evaluate the model’s ability to predict the
future. The testing dataset must be independently and identically distributed [57]. There
are no standards for data splitting ratios, as ratios may vary between studies. Most studies
favor a ratio of 80% to 20%, respectively, for the training and testing datasets [58]. Two
conditions must be met when splitting the dataset: the training set must be large enough to
represent meaningful data, and the testing set must be sufficient to evaluate the model’s
performance [59].

We used heart rate variability analysis in the feature extraction stage of the proposed
driving fatigue detection framework (Figure 1). The heart rate variability guidelines suggest
that 5 min is the typical duration window for heart rate variability analysis [60]. For a
proper data split, we separated 5 min of NN interval data from each participant’s total NN
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interval duration for the testing dataset. The remainder of the NN interval was utilized for
the training dataset. The ratio of the testing dataset is defined as:

Rte =
Twte

Tto
× 100% (1)

where Tto is the total NN interval duration for each participant for all training and testing
datasets, measured in milliseconds, and Twte is the NN interval duration for each participant
used for the testing dataset, measured in milliseconds. As explained in the driving fatigue
detection framework section, the total NN interval duration of the eleventh participant
was used as the duration reference dataset for all participants. The total NN interval
duration for all participants was extracted up to approximately 1,413,316 ms. Referring
to Equation (1), the testing dataset’s ratio was 22%, and the ratio of the training dataset
was 78%.

As illustrated in Figure 1, the output of the second stage is a collection of NN interval
data for all participants under the two conditions. In the third stage, the NN interval data
were split into training and testing datasets at a ratio of 78% to 22%. Both datasets were
labeled based on the dataset’s parts and the participants’ conditions. Sleep-Good (SG) was
classified as an alert condition, while Sleep-Bad (SB) was classified as a fatigue condition.

3.4. Resampling Methods

In statistics, the resampling method repeatedly draws samples from the original data
to obtain more information from a sample [61]. Several driving fatigue detection studies
(Table 1) have employed the resampling method with the following window or epoch sizes:
5-minute window [27], 5-second sample [29], 2-minute epoch [31], 120-second window [30],
40-second window [33], 5-minute window [35], and unknown epoch size [28,37]. Most
of these studies used resampling without an overlapping window method and did not
investigate the effect of the resampling methods on their model performance. These
findings motivated us to investigate more closely how the resampling method works and
its effects on detecting driver fatigue.

References [62,63] stated that an optimal ensemble learning method depends on the
diversity of each learner. Diversity can be enhanced by dividing the original dataset into
smaller subsets of data. We hypothesized that the resampling method could be used to
enhance diversity by dividing the dataset into smaller subsets of data. Moreover, resam-
pling with an overlapping window method yields more subsets of data than resampling
without an overlapping window method. As a result, resampling with an overlapping
window method would enhance diversity more than resampling without an overlapping
window method and would impact the driving fatigue detection accuracy. We applied three
resampling methods in the proposed driving fatigue detection framework: no resampling,
resampling only, and resampling with an overlapping window. No resampling (NoR) is
a method of putting all NN interval data in a dataset into a single window. Resampling
only (RO), which is another name for “resampling without an overlapping window,” is
a method of dividing all NN interval data in a dataset into multiple windows. Resam-
pling with overlapping windows (ROW) divides all NN interval data in a dataset into
multiple windows with an overlap between two neighboring windows. These methods are
illustrated in Figure 2, Figure 3 and Figure 4, respectively.
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In resampling methods, two parameters are described: Tw and To. The parameter
Tw is the duration of a window, whereas the parameter To is the duration of the overlap
between two neighboring windows. According to heart rate variability guidelines [60],
the typical duration of a window for heart rate variability analysis is 5 min, so we set
the Tw duration to 5 min or 300 s. However, there was no reference or standard for the
duration of the overlapping window. We used 3 settings for the duration of the overlap (To),
210 s, 240 s, and 270 s, to assess whether there were significant differences in the model’s
performance. These values were suggested because we hypothesized that a longer duration
of the overlap (To) would improve the model’s performance, but the overlap duration
(To) must not be longer than the window duration (Tw). Table 3 summarizes the various
resampling methods discussed in this section into five possible resampling scenarios within
the proposed driving fatigue detection framework.
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Table 3. List of resampling scenarios used in the proposed driving fatigue detection framework.

Resampling Method
Training Dataset (78%) Testing Dataset (22%)

Term
Duration Number of

Windows (Ntr)
Duration Number of

Windows (Nte)

No resampling Twtr ≈ 18 min or 1080 s 1

Twte ≈ 300 s 1

NoR
Resampling only Twtr ≈ 300 s To ≈ 0 s 3 RO
Resampling with

overlapping
windows

Twtr ≈ 300 s To ≈ 210 s 9 ROW210
Twtr ≈ 300 s To ≈ 240 s 14 ROW240
Twtr ≈ 300 s To ≈ 270 s 27 ROW270

Due to the various window durations and overlapping window durations shown in
Table 3, each resampling scenario produces a distinct number of windows. The total NN
interval duration of each participant for the testing dataset was set to approximately 5 min,
and the total NN interval duration of each participant for all training and testing datasets
was set to approximately 1,413,316 ms or 23.5 min. The number of windows in the training
dataset can be calculated as follows:

Ntr =

⌊
(Tto − Twte)− Twtr

Twtr − To

⌋
+ 1 , Twtr > To, To ≥ 0 (2)

where Tto is the total NN interval duration of each participant for all training and testing
datasets, measured in milliseconds, Twte is the total NN interval duration of each participant
for the testing dataset, measured in milliseconds, Twtr is the window duration for the
training dataset used for heart rate variability analysis, measured in milliseconds, and
To is the overlap duration between two consecutive windows, measured in milliseconds.
Using (2), the number of windows in the training dataset can be calculated and is shown in
Table 3.

3.5. Feature Extraction

After dividing the NN interval data into multiple windows using the resampling
method, we extracted the information from each window. The feature extraction method
was used to interpret the physiological condition of the driver so we could distinguish the
driver’s condition between one event and another. The most well-known method used for
extracting features from NN interval data is heart rate variability analysis, which was first
introduced in the guidelines of [60], which analyzed the variations between consecutive
heartbeats and RR intervals. This method has been commonly used and tested in previous
driving fatigue detection research [15,27–30,32,33,35,37].

In [60], two measures are used to analyze heart rate variability: the time domain and
frequency domain. For the time domain measurements, we used statistical and geometrical
analysis methods. Both methods were used to analyze the oscillation of NN interval data.
Table 4 shows 20 features from the time domain applied in the driving fatigue detection
framework shown in Figure 1. In the frequency domain, the power spectral density (PSD)
feature was extracted from NN interval data to estimate the power distribution; this is
also called spectral analysis. There are two approaches to calculating PSD: parametric
and nonparametric. We chose the nonparametric approach because it features a simpler
algorithm and less computation than parametric [64]. The PSD estimator method used in
the driving fatigue detection experiment was Welch’s method. The estimation of PSD was
analyzed into five frequency bands: ultralow frequency (ULF)—under 0.003 Hz, very low
frequency (VLF)—between 0.003 Hz and 0.04 Hz, low frequency (LF)—between 0.04 Hz
and 0.15 Hz, high frequency (HF)—between 0.15 Hz and 0.4 Hz, and very high frequency
(VHF) [60]. Table 4 shows nine features extracted from the frequency domain and applied
in the driving fatigue detection framework shown in Figure 1. The total number of features
extracted from the time domain and frequency domain analysis is 29.

Reference [65] proved that feature extraction methods using the frequency domain
and nonlinear approach could distinguish different psychological states better than the
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frequency domain approach alone. We used two nonlinear measurement methods to
extract nonlinear features from NN intervals: Poincare plot analysis (PPA) and multifractal
detrended fluctuation analysis (MF-DFA). These methods were not used in the driving
fatigue detection research presented in Table 1.

Table 4. List of extracted features of NN interval data in time and frequency domain analysis.

No. Type of Analysis Feature Name Feature Description

1

Ti
m

e
D

om
ai

n

Statistical analysis [47,66]

MeanNN Mean of the NN intervals of time series data
2 SDNN Standard deviation of the NN intervals of time series data

3 SDANN Standard deviation of the average NN intervals of each
5-minute segment of time series data

4 SDNNI Mean of the standard deviations of NN intervals of each
5-minute segment of time series data

5 RMSSD Square root of the mean of the sum of successive differences
between adjacent NN intervals

6 SDSD Standard deviation of the successive differences between
NN intervals of time series data

7 CVNN Ratio of SDNN to MeanNN
8 CVSD Ratio of RMSSD and MeanNN

9 MedianNN Median of the absolute values of the successive differences
between NN intervals of time series data

10 MadNN Median absolute deviation of the NN intervals of time
series data

11 HCVNN Ratio of MadNN to Median
12 IQRNN Interquartile range (IQR) of the NN intervals
13 Prc20NN The 20th percentile of the NN intervals
14 Prc80NN The 80th percentile of the NN intervals

15 pNN50 The proportion of NN intervals greater than 50 ms out of
the total number of NN intervals of time series data

16 pNN20 The proportion of NN intervals greater than 20 ms out of
the total number of NN intervals of time series data

17 MinNN Minimum of the NN intervals of time series data
18 MaxNN Maximum of the NN intervals of time series data

19 Geometrical analysis [47,66] TINN Width of the baseline of the distribution of the NN interval
obtained by triangular interpolation

20 HTI HRV triangular index

21

Fr
eq

ue
nc

y
D

om
ai

n

Spectral analysis
[47,66]

ULF Power in the ultralow frequency range
22 VLF Power in the very low-frequency range
23 LF Power in the low-frequency range
24 HF Power in the high-frequency range
25 VHF Power in the very high-frequency range
26 LFHF Ratio of LF to HF
27 LFn Normalized power in the low-frequency range
28 HFn Normalized power in the high-frequency range
29 LnHF Natural logarithm of power in the high frequency range

Several studies have used PPA to analyze athlete fatigue [67], analyze driver fa-
tigue [68], and evaluate driver fatigue [69]. In a scatter diagram, PPA shows each RR
interval data point qualitatively as a function of the previous RR interval data [70]. As
in [71], PPA can be calculated quantitatively with the parameters shown in Table 5.

The autonomic nervous system is divided into two systems: the sympathetic nervous
system and the parasympathetic nervous system. Driver fatigue is closely related to the
sympathetic and parasympathetic systems [72,73]. In PPA, parameter SD1 reflects parasym-
pathetic activity, whereas parameter SD2 reflects both sympathetic and parasympathetic
activity [71]. Accordingly, the PPA method can be used to extract nonlinear features and
analyze driving fatigue.

MF-DFA has been used in a number of studies, such as to assess fatigue using EMG [74],
to evaluate the fractal features of each individual using EEG [75], to study the fatigue of a
runner using ECG [76], and to analyze driving fatigue stages using EEG [77]. In this study,
we extracted the fractal characteristics of each participant’s ECG under the two conditions
using MF-DFA. Table 5 shows the features extracted using MF-DFA, and further details
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about MF-DFA can be found in [78]. As shown in Tables 4 and 5, the total number of
features extracted from the time domain, frequency domain, and nonlinear analysis is 54.

In the proposed driving fatigue detection framework (Figure 1), 2 scenarios of feature
extraction methods were employed, with 29 and 54 features, to evaluate the performance
of feature extraction methods in detecting the fatigue state.

Table 5. List of extracted features of NN interval data in nonlinear analysis.

No Type of Analysis Feature Name Feature Description

1

Poincare analysis
[66,71,79]

SD1 Standard deviation perpendicular to the line of
identity

2 SD2 Standard deviation along the identity line
3 SD1/SD2 Ratio of SD1 to SD2
4 S Area of the ellipse described by SD1 and SD2
5 CSI Cardiac Sympathetic Index
6 CVI Cardiac Vagal Index
7 CSI modified Modified CSI

8

Detrended fluctuation
analysis (DFA)

[66,78,80]

DFA α1 Detrended fluctuation analysis
9 MFDFA α1—Width Multifractal DFA α1—width parameter
10 MFDFA α1—Peak Multifractal DFA α1—peak parameter
11 MFDFA α1—Mean Multifractal DFA α1—mean parameter
12 MFDFA α1—Max Multifractal DFA α1—maximum parameter
13 MFDFA α1—Delta Multifractal DFA α1—delta parameter
14 MFDFA α1—Asymmetry Multifractal DFA α1—asymmetry parameter
15 MMFDFA α1—Fluctuation Multifractal DFA α1—fluctuation parameter
16 MFDFA α1—Increment Multifractal DFA—increment parameter
17 DFA α2 Detrended fluctuation analysis
18 MFDFA α2—Width Multifractal DFA α2—width parameter
19 MFDFA α2—Peak Multifractal DFA α2—peak parameter
20 MFDFA α2—Mean Multifractal DFA α2—mean parameter
21 MFDFA α2—Max Multifractal DFA α2—maximum parameter
22 MFDFA α2—Delta Multifractal DFA α2—delta parameter
23 MFDFA α2—Asymmetry Multifractal DFA α2—asymmetry parameter
24 MFDFA α2—Fluctuation Multifractal DFA α2—fluctuation parameter
25 MFDFA α2—Increment Multifractal DFA α2—increment parameter

3.6. Classification Model

References [6,26] are detailed surveys of classification algorithms used for fatigue or
drowsiness detection. Support vector machine (SVM), neural network, and convolutional
neural network classifiers are the most implemented methods in driving fatigue detection
because they have better accuracy than other classifiers, such as K-nearest neighbors, naive
Bayes, and decision trees. Nonetheless, the SVM classifier has weaknesses in parameter
selection when determining the optimum values and an excessive processing time when
using massive datasets to solve optimization problems [81]. In Table 1, the best driving
fatigue detection performance using SVM had an area under the curve of 0.97 [36], while the
highest driving fatigue detection performance utilizing a combination of neural network
approaches had an accuracy of 97.9% [15]. Although neural network classifiers appear to
be highly accurate at detecting fatigue, it takes a long time for them to process large and
complex models. It is rather difficult to evaluate the trained model if it is not tested on new
data [82].

We chose an ensemble learning approach for classification in the proposed driving
fatigue detection framework (Figure 1). Ensemble learning is a decision-making technique
that involves mixing more than one learner. By mixing numerous models, the faults of a
single learner model are likely to be compensated for by other learners. As a result, using
ensemble methods could improve classification performance. Moreover, these methods
have other advantages over single learners: they avoid the possibility of overfitting and
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have lower computational cost and representation [63]. To obtain the optimal model with
the highest-accuracy fatigue state classification, the four most commonly used ensemble
learning models in biomedical and healthcare studies [83] are deployed and evaluated in
the proposed driving fatigue detection framework (Figure 1): AdaBoost, bagging, gradient
boosting, and random forest. Further details of these four ensemble learning models can be
found in [84].

3.7. Cross-Validation and Hyperparameter Optimization

The fundamental issue with the data splitting method is how to split the data appro-
priately; improper data splitting can result in an excessively high variance or bias in model
performance [85]. However, the ratio of data between the training and testing datasets
was already set at 78% to 22%. Therefore, cross-validation, a common technique for bal-
ancing the bias and variance of a model, was employed to reduce the possibility of high
variance or bias in the model’s performance [86]. In Figure 5, after extracting features from
every 5 min window, we applied a k-fold cross-validation method to the training dataset.
There is no standard rule for selecting the value of k. However, increasing the value of
k reduces the size of the test set, resulting in less precise and more coarse performance
metric measurements. Because of this, the data mining community appears to agree that
k = 10 is an acceptable compromise. This value of k is particularly favorable because it
makes predictions using 90% of the data, making it more likely to generalize to the full
dataset [87]. In this study, we chose the 10-fold cross-validation method, which splits the
dataset into 10 groups, or folds, of approximately equal size. One fold served as a holdout
or validation set for each iteration, while the remaining nine folds served as the training
set. Furthermore, the ten iterations utilized all folds for training the model. The model,
which was trained using the training set, was validated using the validation set, resulting
in an accuracy score for each iteration. The average of all the accuracy scores was the
cross-validation accuracy score, or the accuracy score of the training dataset. We use the
term “accuracy of the training dataset” in the performance metrics report.
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In a machine learning model, there are two types of parameters: model parameters,
which can be estimated by fitting training data to the model and then updated as the model
learns, and hyperparameters, which define the model architecture and must be specified
before training. Hyperparameter optimization is a method of constructing the best model
architecture with the optimal hyperparameter configuration. Optimized hyperparameters
can significantly increase the model’s performance [88]. In [89], various hyperparameter
optimization algorithms were given. As shown in Figure 5, we selected the grid search
strategy for hyperparameter optimization because it is simple to implement and can be
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executed in parallel. Grid search is one of the most popular techniques for hyperparameter
optimization. It is a brute-force approach that evaluates each hyperparameter combination
in the grid of hyperparameters, whose values are specified manually by the user [88].
Table 6 shows the grid search hyperparameters used for hyperparameter optimization.
Hyperparameter optimization combined with the cross-validation method was used to
optimize the trained model and yield the final model with the optimal hyperparameters.
Later, the final model was evaluated using the testing dataset. Several performance metrics
were used to evaluate the model’s performance, such as accuracy, area under the curve, F1
score, precision, sensitivity, and specificity.

Table 6. Grid search hyperparameters and their range for all models.

Model Hyperparameter Description Range

AdaBoost
n_estimators The maximum number of estimators [10, 20, 50, 100, 500]

learning_rate The weight that is assigned to each weak
learner in the model [0.0001, 0.001, 0.01, 0.1, 1.0]

Bagging n_estimators The number of base estimators in the ensemble [10, 20, 50, 100]

Gradient boosting

n_estimators The number of boosting stages to perform [10, 100, 500, 1000]

learning_rate The step size that controls the model weight
update at each iteration [0.001, 0.01, 0.1]

Subsample A random subset used for fitting the
individual base learners [0.5, 0.7, 1.0]

max_depth The maximum number of levels in a
decision tree [3, 7, 9]

Random forest
n_estimators The number of trees in the forest [10, 20, 50, 100]

max_features The number of features to consider when
looking for the best split [‘sqrt’, ‘log2’]

4. Results and Discussion

This section presents the results of 40 possible scenarios employed in the proposed
driving fatigue detection framework. These scenarios, described in Table 7, combine five
resampling scenarios, two feature extraction method scenarios, and four ensemble learning
model scenarios.

Table 7. Summary of all scenarios in the data resampling, feature extraction, and classification stages.

Data Resampling Scenarios Feature Extraction
Scenarios

Classification
ScenariosTerm Description

NoR No Resampling • 29 features (total features extracted by
time and frequency domain analysis,
shown in Table 4)

• 54 features (total features extracted by
time domain, frequency domain, and
nonlinear analysis, shown in
Tables 4 and 5)

• AdaBoost
• Bagging
• Gradient boosting
• Random forest

RO Resampling only (To = 0 s)

ROW210
Resampling with overlapping
window To = 210 s

ROW240
Resampling with overlapping
window To = 240 s

ROW270 Resampling with overlapping
window To = 270 s

This section is split into four subsections that present and discuss the results. Sec-
tions 4.1 and 4.2 analyze the effects of different resampling methods and the number of
features used in the driving fatigue detection framework on the model’s performance.
Section 4.3 discusses the considerations in selecting the models that were applied in the
proposed driving fatigue detection framework and compares the proposed driving fatigue
detection framework to other driving fatigue detection studies. Section 4.4 discusses future
work directions.

4.1. The Effect of Various Resampling Methods on the Model’s Performance

As shown in Tables 3 and 7, there are five resampling scenarios: NoR, RO, ROW210,
ROW240, and ROW270, which are analyzed and discussed. In this subsection, we focus
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on analyzing the other four resampling scenarios: RO, ROW210, ROW240, and ROW270,
which resampled the training dataset. To describe the effect of the four resampling methods
on the model’s performance, we present Table 8, showing comprehensive accuracy results
for the four resampling scenarios, and Figures 6 and 7, showing the accuracy performance of
the four classification models with twenty-nine features and fifty-four features, respectively.

Table 8. The accuracy of the classification models that used 1 window or all windows in the training
dataset and testing dataset for 4 resampling scenarios (RO, ROW210, ROW240, and ROW270) with
29 and 54 features. In each classifier with different features and resampling scenarios, the best result
in terms of accuracy of the training dataset is shown in bold.

Classifier Features Resampling
Scenario

Accuracy on the Training Dataset (%) Accuracy on the Testing Dataset (%)

1 Window All
Windows Increase 1 Window All

Windows Increase

AdaBoost

29 RO 73.33 77.86 4.53 63.64 72.73 9.09
ROW210 73.33 93.89 20.56 63.64 72.73 9.09
ROW240 73.33 95.13 21.8 63.64 77.27 13.63
ROW270 73.33 97.98 24.65 63.64 72.73 9.09

54 RO 75 76.43 1.43 54.55 72.73 18.18
ROW210 75 94.45 19.45 54.55 86.36 31.81
ROW240 75 96.12 21.12 54.55 86.36 31.81
ROW270 75 98.82 23.82 54.55 81.82 27.27

Bagging

29 RO 68.33 66.67 - 59.09 77.27 18.18
ROW210 68.33 92.42 24.09 59.09 68.18 9.09
ROW240 68.33 94.16 25.83 59.09 72.73 13.64
ROW270 68.33 97.31 28.98 59.09 72.73 13.64

54 RO 60 72.86 12.86 45.45 77.27 31.82
ROW210 60 90.89 30.89 45.45 68.18 22.73
ROW240 60 93.53 33.53 45.45 63.64 18.19
ROW270 60 97.31 37.31 45.45 63.64 18.19

Gradient
boosting

29 RO 68.33 74.29 5.96 63.64 86.36 22.72
ROW210 68.33 93.42 25.09 63.64 72.73 9.09
ROW240 68.33 96.42 28.09 63.64 77.27 13.63
ROW270 68.33 98.99 30.66 63.64 77.27 13.63

54 RO 66.67 74.52 7.85 50 72.73 22.73
ROW210 66.67 94.42 27.75 50 72.73 22.73
ROW240 66.67 95.78 29.11 50 72.73 22.73
ROW270 66.67 98.66 31.99 50 72.73 22.73

Random
forest

29 RO 50 71.67 21.67 63.64 77.27 13.63
ROW210 50 92.45 42.45 63.64 77.27 13.63
ROW240 50 96.11 46.11 63.64 81.82 18.18
ROW270 50 97.65 47.65 63.64 77.27 13.63

54 RO 51.67 67.14 15.47 50 77.27 27.27
ROW210 51.67 90.95 39.28 50 68.18 18.18
ROW240 51.67 94.82 43.15 50 68.18 18.18
ROW270 51.67 97.98 46.31 50 86.36 36.36

The NoR scenario was not further investigated because it was the only one that did not
resample the training dataset. Besides that, the driving fatigue detection framework using
the NoR scenario had the lowest model performance, resulting in an accuracy ranging from
55% with random forest and 54 features to 71.67% with AdaBoost and 29 features on the
training dataset, as shown in Table 9.
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Table 9. Summary of performance metrics using all windows in the training dataset and testing
dataset for all 5 resampling scenarios with 29 and 54 features applied to the 4 classification models.
In each classifier with different features and resampling scenarios, the best result in terms of accuracy
of the training dataset is shown in bold.

Classifier Features Resampling
Scenario

Performance Metrics (%)

Training
Dataset Testing Dataset

Acc Acc F1 Score Precision Sensitivity Specificity AUC

AdaBoost

29 NoR 71.67 59.09 64 57.14 72.73 45.45 0.71
RO 77.86 72.73 76.92 66.67 90.91 54.55 0.77

ROW210 93.89 72.73 75 69.23 81.82 63.64 0.88
ROW240 95.13 77.27 78.26 75 81.82 72.73 0.9
ROW270 97.98 72.73 75 69.23 81.82 63.64 0.88

54 NoR 56.67 68.18 63.16 75 54.55 81.82 0.68
RO 76.43 72.73 76.92 66.67 90.91 54.55 0.81

ROW210 94.45 86.36 86.96 83.33 90.91 81.82 0.9
ROW240 96.12 86.36 85.71 90 81.82 90.91 0.89
ROW270 98.82 81.82 81.82 81.82 81.82 81.82 0.9

Bagging

29 NoR 56.67 72.73 75 69.23 81.82 63.64 0.83
RO 66.67 77.27 80 71.43 90.91 63.64 0.86

ROW210 92.42 68.18 69.57 66.67 72.73 63.64 0.85
ROW240 94.16 72.73 72.73 72.73 72.73 72.73 0.86
ROW270 97.31 72.73 72.73 72.73 72.73 72.73 0.86

54 NoR 61.67 68.18 69.57 66.67 72.73 63.64 0.76
RO 72.86 77.27 80 71.43 90.91 63.64 0.76

ROW210 90.89 68.18 69.57 66.67 72.73 63.64 0.81
ROW240 93.53 63.64 63.64 63.64 63.64 63.64 0.84
ROW270 97.31 63.64 63.64 63.64 63.64 63.64 0.84

Gradient
boosting

29 NoR 66.67 63.64 66.67 61.54 72.73 54.55 0.64
RO 74.29 86.36 86.96 83.33 90.91 81.82 0.91

ROW210 93.42 72.73 75 69.23 81.82 63.64 0.9
ROW240 96.42 77.27 78.26 75 81.82 72.73 0.83
ROW270 98.99 77.27 78.26 75 81.82 72.73 0.85

54 NoR 61.67 68.18 66.67 70 63.64 72.73 0.84
RO 74.52 72.73 76.92 66.67 90.91 54.55 0.72

ROW210 94.42 72.73 75 69.23 81.82 63.64 0.86
ROW240 95.78 72.73 75 69.23 81.82 63.64 0.88
ROW270 98.66 72.73 75 69.23 81.82 63.64 0.87

Random
forest

29 NoR 55 72.73 72.73 72.73 72.73 72.73 0.78
RO 71.67 77.27 80 71.43 90.91 63.64 0.84

ROW210 92.45 77.27 80 71.43 90.91 63.64 0.87
ROW240 96.11 81.82 83.33 76.92 90.91 72.73 0.9
ROW270 97.65 77.27 78.26 75 81.82 72.73 0.9

54 NoR 55 68.18 66.67 70 63.64 72.73 0.81
RO 67.14 77.27 78.26 75 81.82 72.73 0.88

ROW210 90.95 68.18 72 64.29 81.82 54.55 0.86
ROW240 94.82 68.18 66.67 70 63.64 72.73 0.82
ROW270 97.98 86.36 86.96 83.33 90.91 81.82 0.96

According to the accuracy results illustrated in Figures 6 and 7, it is clear that the
number of windows in the training dataset affected the accuracy of each model in both the
training and testing datasets. More windows in the training dataset used in the driving
fatigue detection framework tend to increase the accuracy of the classification model on
both the training and testing datasets. For example, as shown in Figure 6b, the driving
fatigue detection framework using the AdaBoost classifier, twenty-nine features, and the
ROW210 scenario results in an accuracy of 73.33% with one window, which then increases
to 93.89% with nine windows on the training dataset. As another example, as shown
in Figure 7d, using a random forest classifier and fifty-four features, ROW270, results in
an accuracy of 51.57% with one window, then increasing to 98.66% with twenty-seven
windows on the training dataset. As shown in Figures 6 and 7, and Table 8, almost all of
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the 4 resampling scenarios with 29 and 54 features show an increase in accuracy on both
the training and testing datasets, except the driving fatigue detection framework using the
bagging classifier, 29 features, and RO scenario, which show a decrease in accuracy from
68.3% to 66.67% on the training dataset.

In Table 8, the driving fatigue detection framework, using the ROW270 scenario (all
windows) and random forest classifier, produced the largest increase in accuracy: 47.65%
for 29 features and 46.31% for 54 features on the training dataset. It also affected the increase
in accuracy: 13.63% for 29 features and 36.36% for 54 features on the testing dataset. In
contrast, the driving fatigue detection framework using the RO scenario (all windows) and
AdaBoost classifier produced the smallest increase in accuracy: 4.53% for 29 features and
1.43% for 54 features on the training dataset. This shows that the use of all the windows in
the training dataset for model training likely produced the highest accuracy for each model
on both the training and testing datasets.

Moreover, if we examine and compare the accuracy results of all four resampling
scenarios in Table 8, we find that the ROW270 scenario (all windows) has the largest impact
on the increase in accuracy of the training dataset, starting from 23.82% using AdaBoost
and 54 features to 47.65% using random forest and 29 features. The resampling method
works very well on the random forest classifier.

Last, it can be observed that a resampling method with a longer overlapping window
significantly affects the accuracy of the trained model because the resampling method can
improve diversity. This is confirmed by the studies [62,63], which show that an optimal
ensemble learning method depends on the diversity of each learner. Diversity can be en-
hanced by dividing the original dataset into smaller subsets of data. This can be performed
with the resampling method applied in the proposed driving fatigue detection framework.

4.2. The Effect of 29 and 54 Features on the Model’s Performance

In this subsection, we discuss the results shown in Table 8 and determine whether
feature extraction or resampling methods had a larger impact on the model’s performance.
There are 2 scenarios of feature usage in the proposed driving fatigue detection framework
to be assessed: 29 and 54 features. The twenty-nine features are the total combination of the
features extracted from the time and frequency domain analysis, as shown in Table 4. These
features are the most commonly used in biomedical applications for heart rate variability
analysis. In contrast, the fifty-four features are the total combined features extracted from
time domain analysis, frequency domain analysis, and nonlinear analysis, as shown in
Tables 4 and 5. We focused on the accuracy of the results using the ROW270 scenario and
all windows in the training dataset.

The driving fatigue detection framework using the random forest classifier and
ROW270 (all windows) resulted in an accuracy of 97.65% with 29 features and 97.98%
with 54 features on the training dataset. There was a small increase of 0.33% in accuracy.
Compared to the driving fatigue detection framework using the bagging classifier and
ROW270 (all windows), there was no change in accuracy between 29 and 54 features on
the training dataset. This occurred because the random forest employs a “randomized”
decision tree approach to assess subsets of features for splitting, while bagging assesses
all features for splitting using a “deterministic” decision tree approach [62]. It is clear that
using nonlinear analysis features improved the performance of the random forest model.

Furthermore, the usage of feature extraction methods with a nonlinear analysis ap-
proach improved the model’s performance of AdaBoost more than that of the random forest
in the proposed driving fatigue detection framework. AdaBoost achieved an accuracy of
97.98% with 29 features and 98.82% with 54 features on the training dataset. This was an
increase of 0.84% in accuracy, larger than that of random forest.

Testing the trained model on unseen data or the testing dataset is another way to
evaluate the benefit of nonlinear analysis. Some classifiers showed a greater effect of
nonlinear analysis on the accuracy of the testing dataset than on that of the training
dataset. For example, the driving fatigue detection framework using a random forest and
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ROW270 (all windows) resulted in an accuracy of 77.27% with 29 features and 86.36% with
54 features on the testing dataset. This was an increase of 9.09% in accuracy on the testing
dataset. Another example is the driving fatigue detection framework using AdaBoost and
ROW270 (all windows), which resulted in an accuracy of 72.73% with 29 features and
81.82% with 54 features on the testing dataset. It had an increase of 9.09% in accuracy on
the testing dataset.

However, using nonlinear analysis did not work well with bagging and gradient
boosting classifiers in ROW270 because the classifiers showed decreases in the accuracy
of 72.73% to 63.64% and 77.27% to 72.73%, respectively, on the testing dataset. This result
possibly occurred because one or more features of nonlinear analysis were irrelevant to
the model’s performance of the bagging and gradient classifiers. This type of feature
is called a redundant feature, which may represent more noisy information than useful
information [90].

By comparing the effects of using 29 or 54 features in the same resampling scenario to
the effects of using the same number of features (29 or 54) in different resampling scenarios,
it can be seen that the resampling method has a greater impact on the model’s performance
than the feature extraction method.

4.3. Model Selection Considerations

According to the analysis of resampling methods on the model’s performance, the
ROW270 (all windows) scenario generally had the greatest impact on the accuracy of
the training datasets. Therefore, we focused on analyzing the accuracy results using the
ROW270 (all windows) scenario to select the model. Table 9 shows the overall performance
metrics using all the windows in the training dataset for training the model. The gradient
boosting classifier seemed to be the best model because its classifier resulted in the highest
accuracy: 98.99% for 29 features and 98.66% for 54 features on the training dataset. However,
the actual performance of gradient boosting on the testing dataset resulted in an accuracy
of 77.27% for 29 features and 72.73% for 54 features. Therefore, there was a difference
of 21.72% in accuracy for 29 features and 25.93% in accuracy for 54 features. It can be
concluded that gradient boosting has low generalizability over unseen data.

Furthermore, we searched for a model that produced the second-highest accuracy
on the training dataset in Table 9 and found AdaBoost, which resulted in an accuracy of
97.98% for 29 features and 98.82% for 54 features. The actual performance of AdaBoost
resulted in an accuracy of 72.73% for 29 features and 81.82% for 54 features. Therefore,
there was a difference of 25.25% in accuracy for 29 features and 17% in accuracy for 54
features. AdaBoost, with 54 features, seems to have better generalization than gradient
boosting over unseen data.

The third-highest accuracy on the training dataset in Table 9 is that of the random
forest classifier, which resulted in an accuracy of 97.65% for 29 features and 97.98% for
54 features. The actual performance of the random forest resulted in an accuracy of 77.27%
for 29 features and 86.36% for 54 features. Therefore, it has a difference of 20.38% in accuracy
for 29 features and 11.62% in accuracy for 54 features. Random forest, an extension of the
bagging technique, focuses on variance reduction, whereas AdaBoost, a boosting technique,
focuses on bias reduction [62]. This explains why the random forest has a smaller accuracy
difference between the training and testing datasets than AdaBoost. In contrast, AdaBoost
outperformed random forest on the training dataset.

The remaining model is the bagging classifier. We did not evaluate this model because
it was the least accurate. In addition, random forest, a bagging algorithm extension,
outperformed the bagging classifier.

Other performance metrics need to be considered when choosing the optimal model:
the area under the curve (AUC), F1 score, precision, sensitivity, and specificity, as shown in
Table 9. Random forest with 54 features showed a better accuracy on the testing dataset
than AdaBoost, and its accuracy also affected the other performance metrics, AUC, F1 score,
precision, sensitivity, and specificity: 0.96, 86.36%, 83,33%, 90.91%, and 81.82%, respectively.
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Random forest had better generalization than AdaBoost when tested on unseen or future
data, but it was only tested on 1 window or 300 s of NN interval data for each participant.
It needs to be tested on unseen data with more participants.

Finally, we chose 2 optimal classification models that worked well in the proposed
driving fatigue detection framework: random forest and AdaBoost with ROW270 (all
windows) and 54 feature scenarios because both classifiers showed very good results on
both the training and testing datasets. Our proposed driving fatigue detection framework is
compared with driving fatigue detection studies, as shown in Table 1. We selected driving
fatigue detection studies whose datasets included real or virtual driving and produced an
accuracy of more than 90%, or 0.9, in the AUC metric. The comparison results are shown in
Table 10.

Table 10. Comparison of the proposed driving fatigue detection framework with previous driving
fatigue detection studies.

Source Number of
Participants Record. Time Measurement Features Classification Accuracy 1

[28]
1st:18;
2nd:24;
3rd:44

90 min EEG, ECG, EOG,
and vehicle data 54 Random forest 94.1

[30] 6 67 min ECG 12 SVM 0.95 (AUC)

[32] 25 80 min ECG 24 Ensemble logistic
regression 92.5

[33] 47 30 min ECG and vehicle
data 49 Random forest 91.2

[11] 16 30 min EEG, ECG, and
vehicle data 80 Random forest 95.4

[15] 9 >10 min EDA, RESP, and
PPG 15

ANN, backpropagation
neural network (BPNN),
cascade forward neural

network (CFNN)

97.9

[38] 20 20 min EEG and ECG Product fuzzy convolutional network (PFCN) 94.19

Ours 11 30 min ECG
54 features, resampling with

overlapping windows
(Tw = 300 s, To = 270 s)

Random forest 97.98 1

86.36 2

AdaBoost 98.82 1

81.82 2

1 The accuracy of training data; 2 The accuracy of testing data

It can be concluded that the proposed driving fatigue detection framework using ECG
alone can yield a higher-accuracy model in fatigue detection than driving fatigue detection
studies using more than one physiological sensor.

4.4. Future Work Developments

The proposed driving fatigue detection framework demonstrated the highest accuracy
level among previous driving fatigue detection studies. However, attaching the two
required ECG Biosemi Active electrodes [18] to the participant’s chest for detection of the
fatigue state is impractical in real applications because it could interfere with driving, and
the driver’s movement could create artifacts in the ECG-recorded signals, consequently
reducing the accuracy of driving fatigue detection. Future real-world driving fatigue
detection applications will need a heart rate measuring device that is easy to use, does not
disturb the driver, and has a high level of accuracy in detecting R waves.

Most driving fatigue detection studies used a heart rate variability analysis approach
to extract features from NN interval data, such as Huang et al. [15], Awais et al. [27],
Mårtensson et al. [28], Lei et al. [29], Kim and Shin [30], Babaeian and Mozumdar [32],
Arefnezhad et al. [33], Papakostas et al. [35], Hasan et al. [37]. Our proposed method
also used the same approach. There are still possible areas for improvement in feature
engineering for future work on driving fatigue detection. In the future, we are considering
using another approach to extract features from raw ECG signals, for example, statistical
features: feature-based information retrieval with a self-similarity matrix [91], morphologi-
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cal features: Gaussian with a synthesized mathematical model [92], and wavelet features:
wavelet transform [93].

In this study, the ECG signal of the 11th participant in the SG condition was recorded
up to 23.5 min, so to have a balanced dataset, 23 min out of 30 min of ECG recordings were
extracted from the dataset of all participants. As a result, only one window (≈300 s) of NN
interval data was used for the testing dataset, calculating 22% of the total NN interval data.
Therefore, we cannot further evaluate the performance of each classification model based
on unseen or future data. The proposed driving fatigue detection framework needs to be
evaluated with more participants and a longer-duration driving fatigue dataset for future
improvements in driving fatigue detection.

5. Conclusions

Our proposed driving fatigue detection framework utilizing ECG alone demonstrated
a higher accuracy than previous driving fatigue detection studies utilizing multiple physio-
logical sensors. Moreover, the resampling method in the preprocessing step had the greatest
impact on the model’s performance, especially with the random forest classifier. Adding
nonlinear analysis features also improved the model’s performance on the random forest
and AdaBoost classifiers. Most driving fatigue detection studies evaluated the model’s
performance using the training dataset only or performed cross-validation. This paper
shows that testing the trained model on unseen data can be an effective tool for further
investigating the model’s generalizability. Moreover, it can be used to analyze the effect
on the model’s performance of utilizing nonlinear analysis features in the driving fatigue
detection framework.
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