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Abstract: Although the Metaverse is becoming a popular technology in many aspects of our lives, there
are some drawbacks to its implementation on clouds, including long latency, security concerns, and
centralized infrastructures. Therefore, designing scalable Metaverse platforms on the edge layer can be a
practical solution. Nevertheless, the realization of these edge-powered Metaverse ecosystems without
high-performance intelligent edge devices is almost impossible. Neuromorphic engineering, which
employs brain-inspired cognitive architectures to implement neuromorphic chips and Tiny Machine
Learning (TinyML) technologies, can be an effective tool to enhance edge devices in such emerging
ecosystems. Thus, a super-efficient TinyML processor to use in the edge-enabled Metaverse platforms
has been designed and evaluated in this research. This processor includes a Winner-Take-All (WTA)
circuit that was implemented via a simplified Leaky Integrate and Fire (LIF) neuron on an FPGA.
The WTA architecture is a computational principle in a neuromorphic system inspired by the mini-
column structure in the human brain. The resource consumption of the WTA architecture is reduced by
employing our simplified LIF neuron, making it suitable for the proposed edge devices. The results have
indicated that the proposed neuron improves the response speed to almost 39% and reduces resource
consumption by 50% compared to recent works. Using our simplified neuron, up to 4200 neurons can
be deployed on VIRTEX 6 devices. The maximum operating frequency of the proposed neuron and our
spiking WTA is 576.319 MHz and 514.095 MHz, respectively.

Keywords: neuromorphic; edge computing; spiking neural network (SNN); leaky integrate-and-fire
(LIF) model; spiking winner-take-all (WTA); field-programmable gate array (FPGA); Metaverse; TinyML

1. Introduction

Tiny Machine Learning (TinyML), which is one of the most advanced technologies of
Artificial Intelligence (AI), Internet of Things (IoT), and edge computing, can be employed
in a wide range of embedded systems, microsystems, and intelligent communication sys-
tems [1–3]. This emerging technology can streamline the realization, implementation, and
utilization of machine learning (ML) approaches for smartphones, gadgets, and several
edge computing-based applications, whilst it seeks much less energy compared to con-
ventional processors, microcontrollers, and computers [3,4]. Therefore, it can be an ideal
candidate for applications that have limitations in consuming energy resources, such as
wireless sensor networks (WSNs). Overall, this technology includes a chip as hardware and
an algorithm as software, which is typically embedded in a small package. Moreover, con-
sidering their noticeable performance and extremely low power, the development of these
technologies can revolutionize the infrastructures of edge-enabled Metaverse applications.
Because energy considerations are one of the serious concerns against their development,
these nodes are increasingly demanded and noticed in the industry [3].

On the other hand, as edge computing is growing, moving learning from the cloud to
local devices has recently been followed by technology developers and active businesses in
this area [5–7]. Not only does such an inverse change accelerate the process of learning in
edge devices, but it al so enhances security and bandwidth. In other words, it improves the
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edge applications in the edge layer. One of the critical stages in state-of-the-art training
ML models on edge devices is their resource consumption, performance, and efficiency.
In this regard, this paper presents a super-efficient TinyML, which can be used for many
applications in the Metaverse, especially for edge-enabled Metaverse applications [8–10].
Accordingly, all processes of the design, simulation, and validation of the proposed TinyML
processor are taken into consideration in this paper.

FPGAs are highly flexible, reliable, and straightforward-to-design neural networks [11].
However, despite many advances in digital technology, digital platforms still deal with
some challenges. One of these main challenges is the number of resources that are available
on the FPGA devices. Therefore, the simplicity of a neuron model and its implementation
are considered significant factors in neuromorphic circuit design. In this respect, a large
number of studies have been published on the design of the spiking neuron models
and Spiking Neural Networks (SNNs) on FPGAs. Cassidy et al. [11] present an array of
32 dynamical digital silicon neurons and implement the Izhikevich neuron model. Both of
these implementations were limited by the number of available fast multipliers on the chip.
Karimi et al. and Nouri et al. [12,13] introduce digital methods for the implementation of
Wilson and FitzHugh–Nagumo neuron models, respectively. They analyze these neuron
models theoretically and confirm that their proposed hardware is an appropriate model
for large-scale digital implementation. Hayati et al. [14,15] implement Hindmarsh–Rose
and Morris-Lecar on FPGAs. The research showed that the Hindmarsh–Rose model can
mimic the desired behaviors of the neuron. Additionally, this model can be implemented
on digital platforms. Furthermore, a set of piecewise linear functions have been introduced
to implement the Morris-car neuron model. Zaman Farsa et al. [16] present a neuromorphic
system architecture based on a modified LIF neuron model. Their proposed model provides
a cost-effective model that is implemented on the VIRTEX6 device.

The advantages of digital circuits that can enhance edge devices in the edge layer
motivate us to introduce a simplified LIF neuron for implementation on FPGAs. This
model describes a relation between the membrane voltage of the neuron and its neuronal
membrane currents. The main goal is to reduce the consumption occupied by the neuron
to make it feasible for digital implementation. In addition, a floating-point-based model of
the LIF neuron is implemented to be compared with the proposed simplified neuron. The
results show that the resource consumption of the simplified neuron decreased dramatically,
including the number of LUTs and slice registers on FPGAs. Finally, a spiking WTA circuit
is implemented to evaluate the applicability of our proposed neuron in SNNs.

In summary, the most significant contributions of this research can be listed as follows:

i Designing, implementing, and evaluating a super-efficient neuromorphic processor,
including a Winner-Take-All (WTA) circuit and a simplified Leaky Integrate and Fire
(LIF) neuron on FPGAs.

ii Addressing the applicability and useability of the proposed processor as a practicable
and powerful TinyML chip.

iii Specifying the design process of the proposed TinyML chip for the edge-enabled Metaverse.

The rest of this paper is organized into the following sections. The structure of the LIF
model, WTA architecture, and spike-timing-dependent plasticity (STDP) rule are reviewed
in Section 2. Section 3 introduces the architecture of the proposed simplified neuron
hardware and the floating-point implementation of the LIF neuron model. The architecture
and design flow of a spiking WTA module are also described in Section 3. Section 4
provides the results of the evaluation of different SNN architectures using the proposed
neuron model. Finally, Section 5 concludes the paper.

2. Backgrounds

Neuromorphic engineering, which is an emerging field that aims to implement the
hardware of neural networks, is a reliable and applicable tool to design, evaluate, and
realize TinyML [17,18]. It utilizes brain-inspired architectures and VLSI technology to im-
plement high-performance and efficient chips for TinyML. A neuromorphic chip comprises
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distributed processing units (neurons) consisting of synapses that are implemented into
various architectures of artificial neural networks (ANNs) and TinyML. Spiking Winner-
Take-All (WTA) is a basic architecture of ANNs, which is inspired by cortical building
blocks [19]. A WTA module is used to implement complex architectures such as associative
memory [20,21]. The main processing element in a WTA block is a spiking neuron that
receives and elicits spikes through its synapses and axons, respectively. There is a remark-
able amount of literature that discusses the various spiking neuron models [22–25]. Each
neuron model includes attributes such as the refractory period, spike-frequency adaption,
and bursting, which are biological properties. These features allow the accurate emulation
of a biological neuron, but complex circuitry is required to implement accurate neuron
hardware. The Leaky Integrate and Fire (LIF) model is one of the most widely used models
in neuromorphic systems [26]. This model offers low computational complexity and also
mimics neurological neuron behavior. The aforementioned features make the LIF neuron
model an appropriate choice to implement on digital platforms such as FPGAs.

As some concepts of the presented research are new in academia, some important
definitions and technologies have been demonstrated in this section.

2.1. TinyML

TinyML is a new mode of computational intelligence, including several hardware
and software technologies in an embedded chip, which is extremely efficient in the case
of energy [3,4,27]. Hence, it is typically used in embedded edge platforms to improve
data processing and enhance the speed, accuracy, and performance of embedded data
analytics. Specifically, TinyML focuses on using deep neural network models and machine
learning to develop highly efficient and resource-constrained devices that are enabled by
microcontrollers [1]. Thus, it provides effective solutions for applications facing restrictions
such as communication bandwidth constraints, high energy consumption, and latency.

Based on the lecture provided, there are several problems that are commonly associ-
ated with current Metaverse platforms. One potential solution to alleviate these problems is
to design and develop an efficient TinyML processor that can meet the edge device require-
ments needed for Metaverse applications. By implementing the TinyML processor in the
edge layer, it becomes possible to complete resource-intensive tasks such as rendering 3D
virtual worlds and computing avatars locally, which greatly reduces latency and enhances
overall performance. This would make the Metaverse more accessible to users and improve
the user experience. In conclusion, the TinyML processor is a well-suited candidate to serve
as an edge device for the next generation of Metaverse applications.

2.2. Edge-Based Metaverse

Edge computing and its effective services in the edge layer provide an enormous
opportunity for the industry to benefit from Internet of Everything [27,28]. It opens a
comprehensive approach for having reliable, low-latency, and fast services to connect
a wide range of devices and people anywhere and anytime. On the other hand, this
technology aims to transfer a main part of the computation from the cloud to a place near
the users. The objective of this technological revolution is to enhance facilities to improve
the quality of life. Furthermore, the Metaverse can be categorized as one of the most
influential technologies among the new generation of Internet services [5,29].

On the one hand, at present, Metaverse architectures employ cloud-based methods
for avatar physics emulation and graphics rendering computation, but this approach has
its downsides. While there are simpler versions of the Metaverse available, they do not
entirely capture the intended immersive and interconnected experience. For the Metaverse
to become the successor to the current Internet, it will need to address several obstacles
related to communication, networking, and computation. If these issues are not resolved,
the Metaverse will face difficulties in matching the current Internet’s accessibility to billions
of users [30]. The extended latency required for cloud access results in subpar visualization,
which is not desirable. To tackle this issue, fresh approaches have been suggested lately
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that rely on edge computing architecture utilizing edge-enabled distributed computing
techniques. This approach utilizes the computing power of edge devices to handle resource-
intensive operations. The proposed architecture handles the computational cost of a
Metaverse entity at the physical entity’s end-device, leading to a significant reduction in
latency. The initial attempts to create the Metaverse are mainly ambitious projects that will
need high-end devices to function properly. As a result, making the Metaverse accessible
to everyone is a major obstacle [31].

On the other hand, in mobile edge networks, there is a way to process certain types
of data where they are generated, rather than sending them to a centralized location.
This is called cloud-edge-end computing architecture, and it allows for tasks such as
handling high-dimensional data, rendering 3D virtual worlds, and computing avatars to
be completed locally. In this way, edge computing has allowed regular IoT deployments to
incorporate new services and opportunities. Essentially, edge computing involves using
the processing and storage capabilities of end-devices and edge-nodes. By doing so, it
reduces the dependency on the cloud by adding a new layer to the network architecture.
This layer is responsible for aggregating, filtering, processing, and storing data [32].

2.3. Leaky Integrated and Fire Model

As mentioned in the introduction, The LIF model is one of the simplest spiking neuron
models that is broadly used in neuromorphic systems and can be used in the edge devices
in the edge layers for Metaverse applications. Therefore, the LIF model is used in this
paper as the basic processing unit of the proposed TinyML chip. Although it is the simplest
model, it has the fundamental features of spiking neurons including integration and firing.
The following differential equation represents the LIF model:

τm
du
dt

= −
(
u− ueq

)
+ RI, (1)

i f u > uth u = 0

where u and ueq are the membrane potential and equilibrium potential, respectively. The
membrane time constant is denoted by τm = R.C, where R and C are membrane resistance
and capacitance, respectively. In this model, when the membrane potential u reaches the
threshold voltage uth, the neuron elicits a spike, and its membrane potential u resets to ueq.

The main and fundamental part of the spike neural network is a spiking neuron, which is
combined with synapses to implement various architectures of SNNs. In this paper, a spiking
WTA architecture is considered as a case study and is reviewed in the next subsection.

2.4. Winner-Take-All Neural Network

It is hypothesized that a Winner-Take-All (WTA) operation plays a key role in cognitive
processing, which is achieved by a mini-column in the neocortex. This is a basic architecture
where neurons compete with each other to become activated. Figure 1 illustrates the
architecture of a spiking WTA, which consists of two layers. The input layer encodes the
input patterns into spike trains, where it receives a pattern and generates a corresponding
spike train for each element of the pattern [33]. The rate of each spike train is proportional
to the element’s value. Following that, the spike trains are applied to the output neurons
through the synaptic connections. One particular output neuron, which is called the
winner neuron, is stimulated more than other neurons. Consequently, the winner elicits
spikes that reset the membrane potential of the other neurons through the lateral inhibitory
connection [34]. Afterward, new competition starts, and this procedure remains until the
removal of the input pattern. The final winner neuron generates the spike train with the
highest firing rate compared to other neurons in the WTA neural network Each output
neuron is assigned to a pattern (class), and when the corresponding pattern is applied to
the WTA, this output is activated [35]. The assignment of a pattern to an output neuron
requires synaptic weight modification through a learning rule, which is the subject of the
next subsection [36].
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Figure 1. A WTA architecture that can be used in the proposed TinyML chip. The black lines indicate
the synaptic connections between the input and output layers. The gray lines show the inhibitory
connections of the output neurons.

2.5. STDP Rule

Spike timing-dependent plasticity (STDP) is a phenomenon in which the time of spike
occurrence affects the magnitude of synaptic strength. The STDP rule is used in the training
phase of spiking neural networks and spiking WTA [37–39]. The STDP rule is the temporal
form of the Hebbian rule, where ∆w shows the differences in spike time between pre-
and postsynaptic spikes in the neurons [40]. In a given synapse, if a presynaptic spike
occurs before the postsynaptic spike, the synaptic weight will be increased. Vice versa, if
the presynaptic spike appears after the postsynaptic spike, this leads to a decrease in the
synaptic weight. The principal model of the STDP rule is determined by:

∆w =

{
A+e−∆t/τ+ , i f ∆t > 0
−A−e∆t/τ− , i f ∆t < 0,

(2)

The ∆t in (2) equation is the time differences between presynaptic and postsynaptic
spikes (∆t = tpost − tpre). The A+ and A− parameters are the maximum and minimum values
of ∆w respectively, and τ+, τ− are constant values.

In this section, three basic concepts were reviewed that are used in the following
sections. The LIF model is simplified to be implemented on FPGAs and is used to implement
a WTA architecture. The STDP rule is utilized to train the WTA, as well.

3. Implementation Method

In this section, a simplified neuron is introduced and utilized to implement a WTA
architecture on the proposed TinyML chip for the edge-empowered Metaverse platforms.
First, the equation of the LIF neuron model is described in a discrete form. Then, the
required bits for the variable of the membrane potential u are calculated. The maximum
required bit length allows us to avoid using extra hardware resources. Afterward, the
implementation method of the simplified LIF neuron on FPGAs is presented, which utilizes
some techniques to reduce resource consumption. Finally, the procedure of implementing
a WTA SNN architecture using the simplified neuron is discussed.
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3.1. Discrete Model of an LIF Neuron

The first step of implementation of the LIF neuron on FPGAs is to discretize the analog
model. The analog model described by (1) is written in a discrete form using the Euler
method [12]:

u[n] = (
τm

τm + 1
)u[n− 1] +

R
τm + 1

× I[n], (3)

The I[n] represents the input signal of the neuron. Let us assume
(

τm
τm+1

)
= α, and

R
τm+1 = β. Equation (3) can be written as a difference equation:

u[n] = αu[n− 1] + βI[n], (4)

where |α| ≤ 1.
In (4), α depends on τm. Moreover, the term β represents the amplitude of the input,

which is connected to the neuron through presynaptic connections. The frequency-domain
representation of (4) is obtained by using the z-transform technique:

If I[n] = δ[n] (5)

then
H[z] =

β

1− αz−1 (6)

Figure 2 shows the equivalent block diagram of (4). The impulse response function of
the LIF neuron system is H[z]. Now let us obtain h[n]:

H[z] =
β

1− αz−1
z↔ h[n] = βαnu[n] (7)
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system, respectively.

Let us assume that the impulse train is the input of the system, which is shown by x[n]:

x[n] =
+∞

∑
k=0

δ[n− kN] (8)
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The output of an LTI system is the convolution of the input signal and impulse response
of the system. The result is shown in (9). By applying the geometric series formula:

y[n] = βαnu[n] ∗
+∞

∑
k=0

δ[n− KN] = β
(αn − α−N)

1− α−N (9)

y(+∞) =
β

1− αN (10)

where the β

1−αN ratio determines the maximum value of u[n] regarding the impulse train.
The parameter of N shows the period between two individual discrete pulses in the impulse
train. By selecting the optimal numbers for α and β variables, the maximum output has
been determined. Therefore, this equation can be used to specify the optimal number of
bits that are needed for the potential register u[n].

3.2. Simplified LIF Neuron

To reduce resource consumption on the FPGA, a simplified implementation of LIF
neurons is presented here. Figure 3 shows the data flow graph for the simplified LIF
neuron model. The first block is a combinational circuit to multiply the neuron’s inputs
with binary synaptic weights. This block consists of parallel AND logic gates to implement
binary multiplication (Figure 4). The length of the input patterns determines the size of the
combinational circuits, i.e., the number of the AND gates.
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Figure 4. The combinational circuit for synaptic weight multiplication. The input RAM maintains
synaptic weights that are multiplied by the input signal through the parallel AND gates.

The outputs of the AND gates are received by the neuron to compute the membrane
potential of the neuron. When there is a spike at the input, the right multiplexer and shifter
increase the membrane potential value. On the other hand, the left multiplexer and shifter
are used to decrease the membrane potential in the absence of input spikes. The following
blocks perform multiplication and division using summation and arithmetic shifts. For
binary numbers, arithmetic right shifts are equivalent to division by a positive power of
two. Similarly, arithmetic left shifts are equivalent to multiplication by a positive power of
two. From the hardware implementation aspect, a shifter is more efficient than a divider or
multiplier circuit. Therefore, division and multiplication operations can be optimized by
using arithmetic shifts. For these calculations, 32-bit fixed-point numbers are used. Finally,
the value of the membrane potential is produced and compared with the threshold value.
In case the value of membrane potential is higher than the threshold, a spike is generated at
the output. It is worth mentioning that the length of the membrane potential is calculated
using (9).

To clarify the operation of the simplified LIF neuron, the finite state machine (FSM)
is depicted as a graph in Figure 5. In this diagram, nodes represent system states, and
the arrows denote possible transitions between states. There are four main states that are
utilized to calculate the membrane potential of the neuron. The idle state is the initial state
of the system.
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In the idle state, the neuron is checked for the presence of the input. Two possible
scenarios happen in this state. One scenario leads to the Synaptic_in state, which is used
when an input is applied. The second scenario is the U_Refractory state, which operates
in the absence of the input. The neuron discharge mechanism takes place through the
U_Refractory state. Finally, the last state is U_compute, and it is responsible for calculating
the neuron membrane potential value.

3.3. Floating-Point LIF Neuron

The second implementation, which is represented here, is the floating-point implemen-
tation of the LIF neuron. This model is used to compare with the simplified LIF neuron in
terms of its performance and functionality. Figure 6 shows the architecture of the floating-
point neuron. In the first stage, the combinational circuit (a set of parallel AND gates)
is similar to the circuit of the simplified LIF. The second module converts the weighted
inputs to floating-point numbers. The output of this unit is utilized to calculate the neuron
membrane potential.
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A potential register is used to sustain the current value of the membrane potential. The
next module is a multiplier-accumulator unit (MAC). Another set of registers is responsible for
maintaining the output of the MAC module. As shown in Figure 6, the MAC unit includes two
submodules, which are adder and multiplier modules, respectively. The implementation of
this unit is based on IEEE 754 floating-point algorithms [31]. Therefore, the IEEE 754 standard
is used to perform this model’s floating-point operations [31]. Finally, the spike controller is
used to generate spikes and reset the membrane potential to its initial value.

3.4. Implemented WTA Architecture

In this section, a WTA neural network is implemented using both simplified and
floating-point neurons. Figure 7 shows the structure of the WTA. This architecture consists
of two layers. The first layer is used to encode the black and white pixels of the input
patterns to spike trains. The second layer consists of the output neurons, and each output
neuron is corresponding to a class. The neurons of the second layer are internally connected
through an inhibitory connection. The winner neuron inhibits the increase in the membrane
potential of other neurons at the same layer by using these lateral inhibitory connections.
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generates spikes. An output neuron corresponding to the input pattern is activated accordingly.

The input layer of the WTA module consists of N neurons and M neurons in the second
layer, where N and M are equal to the pattern length and number of classes, respectively.
Each pixel of the input pattern is connected to an individual neuron at the input layer. The
neurons of the second layer generate spikes in response to the input patterns. The highest
rate of spikes shows the winner neuron, and it determines the pattern’s class. The STDP
learning algorithm is utilized to train the WTA neural network through an off-chip training
method. This procedure is used to obtain the synaptic weights between the input layer and
output layer of a WTA neural network.

4. Results and Discussion

In this section, the results of the simulation and implementation are presented. First,
the spike rate of the implemented neurons is reported. Next, the functionality of the imple-
mented WTA is evaluated. Finally, the resource consumption of the neurons, synthesized
by Xilinx ISE, is provided, and is also compared with related works.

4.1. Spike Rate of the Simplified and Floating-Point Neurons

One of the most important features of an LIF neuron is the proportion of the output
spike rate in the response to external stimuli. The rate of output spikes is related to the
value of external stimuli. More significant stimuli generate higher spike rates. Thus, the
evaluation of this feature for both the floating point and the simplified neuron is considered
here. Figure 8 demonstrates the comparison between the spike rates of the implemented
floating-point neuron and simulation results using the Tensorflow library in Python. The
results show that the implemented floating-point neuron is comparable with the simulation
and is able to produce a wide range of spike rates. The input current is altered from
0.5 mA to 0.79 mA and the rate of the output spikes ranges from about 250 kHz to 1 MHz,
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accordingly. In the LIF model, the refractory period is not considered, which results in a
linear relationship between the input current and the output spike rates.

Information 2023, 14, x FOR PEER REVIEW 12 of 18 
 

 

kHz to 1 MHz, accordingly. In the LIF model, the refractory period is not considered, 
which results in a linear relationship between the input current and the output spike rates. 

 
Figure 8. Spike rates of the implemented floating-point LIF neuron vs. simulation result. 

Figure 9 shows the spike rate of the simplified neuron using 𝛼 = 0.937 and 𝛽 = 2. The 
simplified neuron has a limited rate of spikes due to the nature of fixed-point representa-
tion. Although the spike rate of the simplified neuron is not as wide as the floating point, 
it is applicable to implement SNNs on FPGAs. As it is shown in Figure 9, the input current 
is altered from 0 to about 17 mA and the neuron is able to produce spike rates from 0 to 
166 Mhz. There is also a linear relationship between the input current and output spike 
rates. 

 
Figure 9. Spike rates of the proposed simplified LIF neuron in terms of different inputs (𝛼 = 0.937 
and 𝛽 = 2). 

The implementation of the simplified LIF neuron shows that it is able to generate a 
wide range of spikes at the output of the neuron. Therefore, it preserves the main feature 
of an LIF model, which is a generation of spike trains proportional to the input current. In 

Figure 8. Spike rates of the implemented floating-point LIF neuron vs. simulation result.

Figure 9 shows the spike rate of the simplified neuron using α = 0.937 and β = 2. The
simplified neuron has a limited rate of spikes due to the nature of fixed-point representation.
Although the spike rate of the simplified neuron is not as wide as the floating point, it is
applicable to implement SNNs on FPGAs. As it is shown in Figure 9, the input current is
altered from 0 to about 17 mA and the neuron is able to produce spike rates from 0 to 166 Mhz.
There is also a linear relationship between the input current and output spike rates.
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The implementation of the simplified LIF neuron shows that it is able to generate a
wide range of spikes at the output of the neuron. Therefore, it preserves the main feature
of an LIF model, which is a generation of spike trains proportional to the input current.
In the next subsection, the simplified neuron is used in the WTA neural network and the
performance of the WTA is evaluated.

4.2. Recognition Accuracy of the Spiking WTA

In this section, the simplified neuron is utilized to implement spiking neural networks
such as spiking WTA. The implemented WTA architecture consists of an input layer and an
output layer with eight neurons. In addition, a standard SNN without inhibitory connec-
tions (a two-layer SNN, which is used in [16]) is implemented to compare its performance
with the spiking WTA. In both architectures, the simplified and floating-point neurons
are utilized. The calculated weights are stored as the synaptic weights of the output layer
neurons in both architectures.

To evaluate the WTA, a dataset consisting of eight patterns is utilized (the number of
patterns is equal to the number of output neurons). Figure 10 shows the patterns (top) and
corresponding synaptic weights (bottom). The size of the binary patterns is 5 × 5, which
is equal to the number of input neurons. The synaptic weights are calculated using the
STDP rule and each weight matrix is stored in an input RAM of an output neuron, shown
in Figure 4.
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The robustness of the spiking WTA is evaluated using generated patterns that are
affected by random noises. In this regard, according to a noise percentage, elements of the
patterns are randomly selected and converted from 1 to 0 and vice versa. Indeed, each pixel
was selected when a certain amount of noise applied to our patterns. The selected pixels
then toggled to a noisy pattern. Figure 11 shows some of the generated noisy patterns.

Information 2023, 14, x FOR PEER REVIEW 13 of 18 
 

 

the next subsection, the simplified neuron is used in the WTA neural network and the 
performance of the WTA is evaluated. 

4.2. Recognition Accuracy of the Spiking WTA 
In this section, the simplified neuron is utilized to implement spiking neural net-

works such as spiking WTA. The implemented WTA architecture consists of an input layer 
and an output layer with eight neurons. In addition, a standard SNN without inhibitory 
connections (a two-layer SNN, which is used in [16]) is implemented to compare its per-
formance with the spiking WTA. In both architectures, the simplified and floating-point 
neurons are utilized. The calculated weights are stored as the synaptic weights of the out-
put layer neurons in both architectures. 

To evaluate the WTA, a dataset consisting of eight patterns is utilized (the number of 
patterns is equal to the number of output neurons). Figure 10 shows the patterns (top) and 
corresponding synaptic weights (bottom). The size of the binary patterns is 5 × 5, which is 
equal to the number of input neurons. The synaptic weights are calculated using the STDP 
rule and each weight matrix is stored in an input RAM of an output neuron, shown in 
Figure 4. 

 
Figure 10. The applied patterns and synaptic weights for the proposed architecture of the WTA. 

The robustness of the spiking WTA is evaluated using generated patterns that are 
affected by random noises. In this regard, according to a noise percentage, elements of the 
patterns are randomly selected and converted from 1 to 0 and vice versa. Indeed, each 
pixel was selected when a certain amount of noise applied to our patterns. The selected 
pixels then toggled to a noisy pattern. Figure 11 shows some of the generated noisy pat-
terns. 

 
Figure 11. Randomly generated noisy patterns. 

The evaluation of the recognition accuracy of the WTA shows the applicability of the 
neuron in the implementation of spiking neural networks. 

To evaluate the recognition accuracy, the noisy patterns are applied to the neural 
networks. Then, the output spikes are obtained, and the winning neuron is determined. If 
the winning neuron is corresponding to the input pattern, it is considered a correct recog-
nition. The evaluation is repeated ten times for each pattern. Figure 12 shows the recogni-
tion accuracy versus the noise percentage for the spiking WTA and the two-layer SNN. 
Results show that the accuracy of the spiking WTA is better than the standard SNN by 
almost 27% on average. In addition, using the floating-point neurons produces better ac-
curacy than using the simplified neuron. 

Figure 11. Randomly generated noisy patterns.

The evaluation of the recognition accuracy of the WTA shows the applicability of the
neuron in the implementation of spiking neural networks.

To evaluate the recognition accuracy, the noisy patterns are applied to the neural
networks. Then, the output spikes are obtained, and the winning neuron is determined.
If the winning neuron is corresponding to the input pattern, it is considered a correct
recognition. The evaluation is repeated ten times for each pattern. Figure 12 shows the
recognition accuracy versus the noise percentage for the spiking WTA and the two-layer
SNN. Results show that the accuracy of the spiking WTA is better than the standard SNN
by almost 27% on average. In addition, using the floating-point neurons produces better
accuracy than using the simplified neuron.
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Figure 12. Recognition accuracy rate between different types of neural networks.

In another evaluation, the patterns that are represented in [16] are used, as well.
Figure 13 shows a comparison between the proposed WTA and standard SNN [16]. The
noise percentages of 4%, 8%, and 12% were applied to the patterns. As shown in Figure 13,
the WTA architecture obtains 100% accuracy compared to the architectur. The simulation
results show that the accuracy of the WTA architecture is better than the standard SNN [16].
In addition, the floating point enables an SNN to have better accuracy. However, the
resource consumption of the simplified neuron is much less than the floating-point neurons
and other similar neurons, which is discussed in the next subsection.
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Figure 13. Comparison of the obtained recognition accuracy of the standard SNN in [16] and our
spiking WTA.

4.3. Resource Consumption

One of the main goals of our work is to reduce the amount of resource consumption.
For comparison, a Virtex-6 XC6VLX240T is chosen for synthesis and implementation.
Table 1 provides the device utilization of the simplified neuron on the device in terms of
the utilized registers and LUTs. The results indicate that the resource utilization of the
simplified neuron decreases by almost 30 percent compared to related works. In addition,
the consumed resources for the simplified neuron are reduced by a factor of 10 compared
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to the floating-point model. Moreover, a comparison of the maximum frequency of the
target device is reported. However, the maximum frequency of the device depends on the
device’s technology. To have a fair comparison, the spiking WTA and standard SNN in [16]
are implemented on an identical FPGA. Table 2 also provides the resource consumption
of the spiking WTA and standard SNN in [16]. According to the results, the operation
frequency of the spiking WTA considerably increased. Resource consumption is another
factor that is dramatically reduced compared to the standard SNN [16].

Table 1. Resource comparison of the simplified neuron with the related works.

Model
Slice Registers Slice LUTs Max Frequency

(MHZ)
Target Device

Number Utilization Number Utilization

Izhikevich [41] 493 2% 617 2% 241.9 Virtex-II Pro XC2VP30
AdEx [42] 388 1% 1279 4% 190 Virtex-II Pro XC2VP30

Morris–Lecar [15] 618 2% 3616 13% 135 Virtex-II Pro XC2VP30
FitzHugh–Nagumo [13] 529 18% 1085 38% - Virtex-II Pro XC2VP30
Hindmarsh–Rose [14] 431 1% 659 2% 81.2 Virtex-II Pro XC2VP30

Wilson [12] 365 0% 611 0% 98 Virtex-6 ML605
Leaky Integrate and Fire [16] 46 0% 56 0% 412.371 Virtex-6 ML605

This work (fixed-point model) 17 1% 36 1% 576.319 Virtex-6 XC6VLX240T
This work (floating-point model) 266 1% 417 1% 314.095 Virtex-6 XC6VLX240T

Table 2. Comparison between different types of SNNs in terms of resource utilization and opera-
tion frequency.

Logic Utilization WTA Fixed-Point WTA Floating-Point Standard SNN [16]

Number of Slice Registers 204 2016 1023
Number of Slice LUTs 350 1767 11,339

Number of
BUFG/BUFGCTRLs 1 3 1

Max Frequency (MHz) 514.095 MHz 443.941 MHz 189.071 MHz

5. Conclusions

Considering the importance of the new generation of Metaverse platforms on the edge
layer, it is essential to produce more efficient, secure, and reliable equipment to improve the
quality of services, especially in the case of performance and energy consumption. One of the
most critical components required to provide this potential equipment is their processor. The
more efficient a processor is, the better the edge services that can be achieved. Accordingly,
a TinyML processor based on a simplified neuron imitating the LIF neuron model has been
designed and implemented in this paper. Using the LIF neuron, two different architectures
of SNNs in the TinyML processor have been proposed here, including a spiking WTA and a
standard SNN. The results showed the desired operation of the proposed processor. The most
important contributions of the proposed processor are as follows:

i Presenting a super-efficient TinyML chip for a wide range of IoTs and smart gadgets
to be used in the edge-enabled Metaverse.

ii Demanding low resource consumption.
iii High operating frequency and speed.
iv Increasing the accuracy significantly, making it an ideal option for medical applications

in Metaverse applications.

The resource consumption of the proposed simplified LIF neuron is reduced by
30% compared to related works. In addition, evaluations show that the accuracy of the
spiking WTA based on the simplified neuron is much better than the standard SNN. The
above-mentioned features, along with low resource consumption, which is considered
in our proposed neuron, make this model appropriate for implementing SNNs on edge
devices with a concentration on edge-based Metaverse platforms.
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