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Abstract: Advancements in text representation have produced many deep language models (LMs),
such as Word2Vec and recurrent-based LMs. However, there are scarce works that focus on detecting
implicit sentiments with a small amount of labelled data because there are many different review
areas. Deep learning techniques are suitable to automate the representation learning process. Hence,
we proposed a semi-supervised aspect-based sentiment analysis (ABSA) model for online review to
predict explicit and implicit sentiment in three domains (laptop, restaurant, and hotel). The datasets
of this study, S1 and S2, were obtained from a standard SemEval online competition and Amazon
review datasets. The proposed models outperform the previous baseline models regarding the
F1-score of aspect category detection and accuracy of sentiment detection. This study finds more
relevant aspects and accurate sentiment for ABSA by developing more stable and robust models.
The accuracy of sentiment detection is 84.87% in the restaurant domain on the first dataset. For the
second dataset, the proposed method achieved 84.43% in the laptop domain, 85.21% in the restaurant
domain, and 85.57% in the hotel domain. The novelty is the proposed new semi-supervised model
for aspect sentiment detection with embedded aspect inspired by the encoder–decoder architecture
in the neural machine translation (NMT) model.

Keywords: aspect-based; sentiment analysis; deep learning

1. Introduction

A significant task in sentiment analysis (SA) for a product review is to process reviews
and classify user opinions as positive or negative [1]. This task is doable at different levels
of analysis, from the document level to the sentence and phrase level [2]. Many methods
and techniques have recently been proposed for various tasks at different levels [3–7]. This
study focuses on aspect-level sentiment classification. There are other groups of methods
for aspect-level sentiment classification. However, regardless of the existing techniques, the
most crucial point in any natural language processing (NLP) task is to find a way to make
machines understand language or text. This work investigates a deep language model as
the basis of a new model for aspect-level sentiment classification.

Deep learning techniques automate the process of representation learning in multi-
computational layers. These techniques enabled researchers to improve the state-of-the-art
for many NLP tasks, such as SA [8,9] especially, and in other domains such as image and
speech. Many LMs have been developed, such as Word2Vec [10] and deep LM [11,12].
However, these emerging LMs have not yet fully addressed aspect category detection,
mainly because there is no study to design experiments assessing the effect of recent
advanced LMs on the specific task of aspect-level sentiment classification.

The authors of [12] explored a character-level LSTM-based LM for sentence-level
sentiment classification without using labelled data. The sentiment polarity estimation
methods were categorised into two machine learning methods and the Lexicon/dictionary-
based method in [13]. Lexicon-based methods use sentiment lexicons, which contain a list
of sentiment words to determine a given sentiment’s rating [14–16]. This approach solves
previous machine learning problems because there is no need for training data.
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The strength of these methods is that they perform reasonably well in several areas.
These methods also have weaknesses because using lexicons to find context-dependent
sentiment is hard. The sentiment polarity or rating of words identified by these methods is
not dependent on the reviews’ context. However, some sentiments have context-dependent
polarity. For example, ‘quiet’ is positive for a vacuum cleaner but has a negative sentiment
for a speakerphone. Also, lexicon-based models can hardly detect implicit sentiments.

Classical and modern supervised models are impractical because of their supervised
nature and inability to work in different areas. It is not easy to obtain performance en-
hancement in different supervised learning models, which means that models developed
in one domain do not work in another. A considerable amount of labelled data in one
domain is needed for the model to perform well. There is a lack of annotated datasets to
train a model for all areas. There are many product and service review areas online, and
gathering labelled data is not easy for each domain. Therefore, the method must be as
domain-independent as possible.

The ABSA system characteristics are the system’s ability to work in different areas
without labelled data or at least with a small amount of labelled data, which means working
with unlimited classes or aspects and related sentiments. It is also challenging to find the
domain-dependent orientation of opinions in lexicon-based models [17,18].

For machine learning models, the same sentence-level sentiment detection methods
are applied at the phrase level [19–23]. Because these models predict each sentence’s
sentiment, they cannot detect the sentiment of more than one aspect in a sentence. This
weakness is more problematic in modern deep-learning models.

The proposed model’s contributions can be summarized as follows:

• The first contribution of the current study is that a new mechanism is proposed to
utilize these sentence level representations for that task of aspect category detection.

• The second contribution is that, by combining this mechanism with word-level simi-
larity measurement, a new model for the aspect category detection is proposed.

• The final contribution of the current study is that a new semi-supervised model for
aspect sentiment detection is proposed.

2. Related Works

Deep learning models are state-of-the-art for many NLP tasks because of their ability
to represent a high-level feature. Recent works have studied advanced deep learning
models for NLP tasks [24–27]. Most of these models are supervised models. Deep learning
models need more data than classical machine learning models to learn the required
features. Further, these models’ incompatibility with different areas still exists because
of their supervised nature. The most accurate results in the literature treat the sentiment
detection of specific aspects as a classification problem and try to augment the element
in the deep learning architecture to find the sentiment of particular aspects using an
attention mechanism. Attentional recurrent models achieve considerable success in implicit
aspect sentiment detection [25,26]. These attentional deep learning models are supervised;
therefore, their performance highly depends on the amount of labelled data for the training.

Section 3 (Materials and Methods) presents the proposed aspect-embedded attentional
encoder–decoder (AE-AED) model. A step-by-step explanation of the proposed architecture
explaining the building blocks of the final model is included. The datasets and evaluation
methods used in this study are discussed. Then, the baselines for this task are presented.
This section continues with the section on Experiments and Discussion. Lastly, we conclude
the paper with future works.

3. Materials and Methods

This section explains the datasets used in this study. The proposed model has two
phases of unsupervised (phase 1) and semi-supervised (phase 2). The unsupervised phase
is trained on a mixed dataset (M + S1 + S2) in this study’s domains. S1 is the SemEval 2014
competition dataset that provided areas of laptops and restaurants [28]. The S2 dataset
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is the SemEval 2015 competition dataset and provided data for laptops, restaurants, and
hotels [29]. We propose that the AE-AED model that retains the sentiment of several aspects
from different areas. Therefore, this study used the Amazon product review dataset M,
which is a combined dataset from Amazon reviews on electronics, SemEval 2016 task
5 restaurant and laptop, Yelp restaurant reviews, and hotel reviews as a training corpus to
learn the distributed sentence representation.

The aspect categories of the unsupervised phase are identified using the similarity
score model. Therefore, the input of the sentiment detection model is a sentence with
one specific aspect category. If the sentence has more than one aspect category, then the
sentence with each aspect category is a separate input to the model. In the semi-supervised
AE-AED phase, a pre-trained model of the unsupervised phase is used as the initial model
to be trained more with the labeled datasets of S1 and S2.

The distribution of sentiment classes in S1 and S2 is shown in Tables 1 and 2, respec-
tively. It is clear from the table that positive is the majority class in all areas in both S1
and S2. The sentiment distribution is imbalanced in the laptop domain in S2, while in
the restaurant domain, there is a significant imbalance between the positive and negative
classes across the training and test sets in S2. The same occurs for the restaurant domain
positive class in S1.

Table 1. Sentiment distribution for S1 [28].

Data Positive Negative Neutral

Restaurants—Train 61.46% 10.73% 21.76%
Restaurants—Test 78.95% 11.94% 21.45%

Table 2. Sentiment distribution for S2 [29].

Data Positive Negative Neutral

Restaurants—Train 72.43% 24.36% 3.20%
Restaurants—Test 53.72% 40.96% 5.32%

Laptop—Train 55.87% 38.75% 5.36%
Laptop—Test 57.00% 34.66% 8.32%

Restaurants—Test 71.68% 24.77% 3.53%

We selected ten subsets from the training data S1 and S2, ranging from 10% to 100% of
the training data on laptops and restaurants. No training data were available in the hotel
domain in S2 to evaluate the model on less labelled data with the implicit sentiment.

In the laptop domain, 22% of the sentences in S1 and 23% of the sentences in S2 have
implicit sentiment (Table 3). Similarly, in the restaurant domain, 24% of the sentences in S1
and 26% of the sentences in S2 have implicit sentiment. The subsets are selected randomly
from the original training data that follow a similar proportion of unspoken sentiment and
the proportion of classes for each area.

Table 3. Sentiment distribution per domain (RS—restaurants, LP—laptops), S1 and S2.

Data Implicit Sentiment

S1-LP 22%

S1-RS 24%

S2-LP 23%

S2-RS 26%

3.1. Proposed Aspect Sentiment Classification Model

We proposed a model that addresses aspect sentiment detection tasks using LSTM,
attention mechanism, and encoder–decoder architecture with embedded aspect. The model
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is called aspect-embedded attentional encoder–decoder (AE-AED). The model is based on
the encoder–decoder LM with attention, which needs a small amount of labelled data. The
encoder part of this LM is trained on new data with the same architecture. The idea is to
train the attentional decoder part of the model with the new dataset, aspect augmentation,
and SoftMax classifier.

The decoder part of the same model is trained with new pre-processed data to classify
the sentiment of aspects for multi-domain online reviews. The AE-AED model has an
unsupervised part followed by a semi-supervised part and classifier with labelled data for
each domain.

3.2. Sentiment Detection Model

The idea of detecting sentiment without many labelled data is to find a good represen-
tation of a sentence, which is well enough to represent a sentence’s sentiment concerning
the specific aspect. This study tries to determine if vector representations of the sentences,
generated by the LM, contain each aspect’s sentiment information. If so, then with a small
amount of labelled data from each domain, the model can be trained to predict sentiment
regarding specific aspects. The proposed model has two phases—unsupervised (phase 1)
and semi-supervised (phase 2). The unsupervised phase is trained on a mixed dataset
(M + S1 + S2) in this study’s domains. The aspect categories of the unsupervised phase are
identified from the similarity score model. The process is presented in Figure 1. Therefore,
the input of the sentiment detection model is a sentence with one specific aspect category. If
the sentence has more than one aspect category, then each aspect category of the sentence is
a separate input to the model. Therefore, the model detects sentiment for all of the detected
aspect categories for the sentence. In the semi-supervised AE-AED phase, a pre-trained
model of the unsupervised phase is used as the initial model to be trained more with
the labelled datasets of S1 and S2. Considering that the objective is to develop a model
that needs a small amount of labelled data compared with the state-of-the-art models, in
this study, an experiment is conducted to find the amount of data required for this model
compared with the state-of-the-art models.

The input of this process is a sentence list with aspect categories. It is necessary to
pre-process the data and repeat each sentence for each aspect category in a separate line.
One sentence relates to one aspect per line. For S1 and S2, the sentence list with aspect
categories presented in the data is pre-processed. The sentence list with aspect categories is
pre-processed for dataset M.

The following section explains the encoder–decoder LSTM. Then, the proposed model
is presented. The proposed model is an encoder–attention–decoder LSTM with an embed-
ded aspect followed by a classifier. As the aspect is embedded in our proposed model, the
new model is called the aspect-embedded attentional encoder–decoder (AE-AED). The
following sections further describe the building blocks of AE-AED.

3.3. Attentional LSTM

Adding an attention layer to LSTM helps the network to capture the key part of the
sentence for a given aspect. The attention mechanism will produce an attention weight
vector α and a weighted hidden representation r. Let H ∈ Rd×N be a matrix consisting of
hidden vectors [h1, . . . , hN] produced by the LSTM, where d is the size of the hidden layers
and N is the length of the given sentence. Furthermore, va represents the embedding of the
aspect and eN ∈ RN is a vector of 1 s. r is computed as follows:

α = softmax (wTM) (1)

r = HαT (2)

where M ∈ R(d+da)×N, α ∈ RN, r ∈ Rd. Wh ∈ Rd×d, Wv ∈ Rda×da, and w ∈ Rd+da are
projection parameters. α is a vector consisting of attention weights and r is a weighted
representation of sentence with a given aspect. The operator (a circle with a multiplication
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sign inside) means va ⊗ eN = [v; v; . . . ; v]; that is, the operator repeatedly concatenates
v for N times, where eN is a column vector with N 1 s. Wvva ⊗ eN repeats the linearly
transformed va as many times as there are words in the sentence. The final sentence
representation is given by the following:

h∗ = tanh (Wpr + WxhN) (3)

where h∗ ∈ Rd, Wp, and Wx are projection parameters to be learned during training.
Figure 2 illustrates the attentional BLSTM architecture.
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3.4. Encoder–Decoder Model

The encoder and decoder choice of this model can be any type of RNN such as GRU
and LSTM. It consists of an encoder for a source language and a decoder for a target
language. The idea is that all RNNs can be trained to map an input sequence to an output
sequence. The encoder RNN obtains the input sequence and produces the context c, which
is usually the final hidden states of the RNN. The decoder is often trained to predict the
next word yt, given the context vector c and all previously predicted words {y1, . . . , yt−1}.
In other words, the decoder defines a probability over the translation y by decomposing
the joint probability into the ordered conditionals:

p(Y) = ∏T
t=1 p({y1, . . . , yt−1}, c) (4)

where y = (y1, . . . , yTy). With an RNN, each conditional probability is modeled as follows:

p(yt|{y1, . . . , yt−1}, c) = g(yt|yt−1, st, c) (5)

where g is a nonlinear, potentially multi-layered function that outputs the probability of yt,
and st is the hidden state of the RNN. The limitation of this architecture is that the context
vector c cannot properly summarize a long sequence. This problem is detected by [30].
Hence, they solved the issue using attentional mechanism explained in the previous section.
Using attention weights; each decoder output depends on a weighted combination of all
of the input states, not just the last state. Figure 3 shows the architecture of an attentional
encoder–decoder depicted from [30].
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Next, the neural translation model is described. The encoder components are denoted
by index j, and the referred decoder components by index i. The same annotation is
followed in this work. At each time-step i, the attention mechanism computes a different
context vector ci ∈ R2H as the weighted sum of the sequence of annotations hj

1:

ci = ∑j
j=1 αijhj (6)

where αij ∈ R is the weight assigned to each annotation hj. This weight is computed by
means of the SoftMax function:
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αij =
exp

(
aij

)
∑

j
k=1 exp(aij)

(7)

where aij ∈ R is a score provided by a soft alignment model, which measures how well the
inputs from the source position j and the outputs around the target position i match. This
alignment model is implemented by a perceptron with N units:

aij = VT
a tan h

(
Wasi−1 + Uahj

)
(8)

where si−1 ∈ RH is the hidden state from the decoder; tanh(•) is applied element-wise; and
va ∈ RN, Wa ∈ RN×H, and Ua ∈ RN×2H are the weight matrices. The decoder is an RNN
with GRU units, which generates the translated sentence yI

1 = y1, . . . , yI. Each word yi
depends on the previously generated word yi−1, the current hidden state of the decoder si,
and the context vector ci; the probability of a word at the time-step i is defined as follows:

p(yi|yi−1
1 , xj

1; θ}) = yT
i ϕ(Vη|yi−1, si, ci) (9)

where ϕ(·) ∈ R|Vy| is a SoftMax function that produces a vector of probabilities, |Vy|
is the size of the target vocabulary, yi ∈ N|Vy| is the one-hot representation of the word
yi, V ∈ R|Vy|×L is the weight matrix, and η is the output of LSTM units with an L-sized
maxout output layer.

3.5. Aspect-Embedded Attentional Encoder–Decoder (AE-AED) Model

In this study, the aspect category is embedded in an attentional NMT to propose
AE-AED. Putting all of the above together, the final architecture is very similar to NMT [30],
as shown in Figure 3. However, the goal in AE-AED is to find a new representation for
sentences that focuses on a specific aspect, whereas the goal in NMT is to translate a sentence
from one language to another language. Therefore, in AE-AED, both the source and target
languages are the same (English language). Another difference between AE-AED and NMT
is that the related aspect of a sentence is embedded in the AE-AED model to obtain the
aspect-specific representation of a sentence. Before the AE-AED model is trained on S1
and S2, the encoder–decoder model without aspect augmentation is trained using dataset
M and unlabelled S1 and S2. The objective is to predict the next word. After training the
encoder–decoder LM, the encoder part of the model is frozen, then the attentional decoder
with aspect augmentation is trained on M, S1, and S2. The same encoder representation for
a list of pre-known aspects is used. The hidden layer of this encoder is concatenated with
the hidden layer of encoder in a neural model translation with attention, shown in Figure 3.
The model does not use any new encoder to obtain the aspect representations. Therefore,
for the AE-AED model, Equation (6) is changed to the following:

ci = ∑j
j=1 αij

(
hj + haj

)
(10)

The final output layer was a three-dimensional SoftMax layer representing each output
class. SoftMax classifier is used on top of the new sentence representations on 10% of dataset
S1 and S2 for polarity prediction (Figure 4).

We compare our proposed approach (AE-AED) with several deep learning and none-
deep learning models on S1 and S2. The deep learning models include Bidirectional form
of target dependent LSTM which is called TD-LSTM [31] and name it as TD-BLSTM. The
second baseline is [24] which integrates CRF with Recursive Neural Network and add
linguistic features. The third baseline is [25] which applied attention with bidirectional
GRU model to attend the aspect information for one given aspect and extract sentiment for
that given aspect. The final recent baseline is [26]. They proposed an LSTM base model
which combines implicit and explicit knowledge. The model adopted a sequence-encoder
and a self-attention mechanism to calculate and incorporate common-sense knowledge
into LSTM-based model to jointly extract aspect categories and predict sentiment for them.
A non-deep learning baseline is the winner of SemEval 2015 competition on S2 dataset
which is supervised. The best accuracy for this dataset were achieved by Sentiue [32]
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with a Maximum Entropy classifier along with features based on n-grams, POS tagging,
lemmatization, negation words and publicly available sentiment lexica (MPQA, Bing Liu’s
lexicon, AFINN) for laptop and restaurant domain. Another non-deep learning baseline is
the winner of SemEval 2014, NRC-Ca [33] on S1. The model uses SVM along with several
lexical features.
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The last non-deep learning baseline is the unsupervised baseline of V3 [17] on S1
dataset. They have used the SentiWords of [34] and lexicon of [35] as a sentiment lexicons.
Using direct dependency relations between aspect terms and sentiment bearing words
they assign the sentiment value from the lexicon to the aspect term. They make a simple
count of the sentiments of the aspect terms classified under a certain category to assign the
sentiment of that category in a particular sentence.

3.6. Model Selection

The accuracy of the two-layer bi-directional LSTM (Bi-LSTM-2L) and two-layer bi-
directional GRU (Bi-GRU-2L) is evaluated on the sentiment detection task on the final
model. The result is shown in Table 4. As the result shows the LSTM base model is more
accurate. Therefore, the two-layer bi-directional LSTM is used for both the encoder and
decoder of the model on all areas of the laptop and restaurant domains on the S2 dataset.

Table 4. Sentiment detection accuracy results for the two architectures.

Model/Domain Laptop Restaurant Hotel

Bi-LSTM-2L 84.43% 85.21% 83.93%
Bi-GRU-2L 83.37% 83.58% 80.49%
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Continued training can be sensitive to the learning rate. Therefore, this study runs
a continued training experiment over four learning rates (0.1, 0.25, 0.50, and 0.75) and
chooses the best result based on the average accuracy on the test set. These learning rates
are the most common learning rates to test for the encoder–decoder architecture. As is clear
in Figure 5, the best result is with a learning rate of 0.5.
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To investigate how the accuracy changes by increasing the number of records in the
training data, the accuracy of the best model for 10 subsets of training data is analyzed.
The trend is shown in Figures 6–8 for S1 and S2.
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Figure 6. Accuracy of sentiment detection by increasing the data proportion on restaurant S1.
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4. Results

To evaluate the model on less labelled data with implicit sentiment, which is the
third objective of this study, 10 subsets were selected from the training data, ranging from
10% to 100% of the training data on laptop and restaurant. There were no training data
available in hotel area in S2. In the laptop area, 22% of the sentences in S1 and 23% of the
sentences in S2 has implicit sentiment, respectively, as shown in Table 5. Similarly, in the
restaurant area, 24% of the sentences in S1 and 26% of the sentences in S2 had implicit
sentiment, respectively, as shown in Table 5. The subsets were selected randomly from
the original training data, which follow the similar proportion of implicit sentiment and
similar proportions of classes for each area.

Word embedding is vector representation for words. The commonly used ones are
random initialization and unsupervised pre-training of word embedding. Our experiment
used unsupervised pre-training of the Word2Vec method on dataset A. Then, the word
vectors were fine-tuned along with other model parameters during training.
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Table 5. Sentiment distribution per domain (RS—restaurants, LP—laptops) for S1 [28] and S2 [29].

Data Implicit Sentiment

S1-LP 22%
S1-RS 24%
S2-LP 23%
S2-RS 26%

Vectors for all training sentences were extracted from the encoder part of the AE-AED.
Then, the decoder part of AE-AED was trained with aspects on the related domain (dataset
M). The model was then frozen for the second time and a classifier was added on top of the
decoder’s extracted representations, with no additional fine-tuning or backpropagation
through the encoder and decoder part of the model. The result of sentiment detection is
shown in Tables 6 and 7.

Table 6. Sentiment detection accuracy on S1 (restaurant).

Reference Model Name Accuracy

[17] V3 47.21%
[33] NRC-Can 82.92%
[25] Hierarchical Attention 85.10%

Proposed approach AE-AED 84.87%

Table 7. Sentiment detection accuracy on S2.

Reference Model Name Laptop Restaurant Hotel

[17] V3 68.38% 69.46% 71.09%
[32] Sentiue 79.34% 78.69% 85.84%
[31] TD-BLSTM 82.7% - -

[24] Recursive Neural Conditional
Random Fields 79.44% 84.14% -

[25] Hierarchical Attention 85.11% 80.50% -
[26] Joint Aspect Sentiment Model - 74.11% -

Proposed
approach AE-AED 84.43% 85.21% 85.57%

The lexicon-based model V3 shows an inferior performance on S1 compared with
AE-AED. The dataset has implicit sentiments and sentiment keywords, not just adjectives.
Therefore, a simple dependency relation cannot extract the right sentiment words. The
result of V3 is better on S2, but still significantly lower compared with the AE-AED model
on both datasets S1 and S2.

The AE-AED model results are better than the non-deep learning baseline on S1 (NRC-
Can) [33] and the non-deep learning baseline on S2 (Sentiue) [32] (Table 7). This result
shows that automatically extracted features in deep learning models can be better than
hand-engineered features in classical machine learning for sentiment detection.

5. Discussion

The results show that AE-AED is comparable to deep learning baselines and TD-
BLSTM, where representations are learned directly for the specific task at hand on a
complete label data. This indicates that an encoder–decoder with attention to a specific as-
pect category can extract the feature representation for sentiment detection of one particular
aspect category from an extensive related dataset. Therefore, using only 10% of the labelled
data, this study competed with deep learning rivals on fully labelled S1 and S2. One
drawback of fully supervised deep learning models is that they rely on the representations
they obtain from labelled datasets S1 and S2. The strength of deep learning models is from
the features they extract from large datasets; therefore, the performance of aspect sentiment
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representation removed from only S1 or S2 relies on the reviews used in these datasets to
classify the correct sentiment related to a specific aspect. Using these models on a new
dataset and domain makes it very hard.

In contrast, the AE-AED model is trained on an extensive dataset in a related domain
(M) to understand sentiment representations. The result shows that unsupervised pre-
training helps to increase the robustness of models by seeing more variation of the same
aspects in an extensive dataset compared with S1 and S2. Thus, more precise sentiments
are detected. The AE-AED’s strength is that it works only with 10% of the labelled S1
and S2 and achieves comparable results with the baselines. Although no labelled data are
available for the hotel domain in S2, AE-AED classifies the hotel review sentences with
85.57% accuracy. The presentations learnt on the hotel review area in the unsupervised
phase helped the model classify sentences in this area without any labelled data. The
results of [25] are slightly better in the restaurant area on S1 and the laptop domain on S2.
However, the AE-AED results are more stable in all three areas, restaurants, laptops, and
hotels, across different datasets of S1 and S2. It is also clear from the results that AE-AED is
more stable on separate datasets and areas than all other baselines in this study.

This study proposed a model for online review sentiment detection that finds more
accurate sentiment with a few labelled data for the multi-domain dataset. Based on the
result, our model works better than most of the baselines that use fully labelled data
and works in three different areas mainly because the representations for specific aspect
sentiments are generated from deep LM trained on a related domain.

6. Future Works and Conclusions

The first suggestion for future research is to interpret the results to provide a trans-
parent view of the developed model that researchers can use to improve the results even
further. It is not easy to solve these complex neural models. All deep models show little
transparency concerning their inner workings. As a result of a complicated procedure, a
typical model often lacks a reasonable explanation or understanding of its computation.
This shortcoming could be problematic for developing new methods for real-world applica-
tions. For example, researchers need to understand the hidden layer’s results to extend and
improve the practices. Besides, ordinary users often require justifications for the model’s
prediction. Interpreting the proposed model results using visualisation techniques can be
another right direction for future research. Unsupervised DL models such as restricted
Boltzmann machines (RBMs) and more recent DL models such as generative adversarial
networks (GANs) are more recent architectures applied to NLP tasks. These models are
unsupervised and do not need labelled data. Another direction for future research is to
work on these architectures instead of the encoder–decoder architecture.

The proposed semi-supervised sentiment detection model, AE-AED, works in three
domains. In the implementation details, the Word2Vec training parameters are presented,
and the best parameters are decided based on the result of the sentiment detection task
at the review level. The encoder–decoder model selection and best learning rates of the
AE-AED model are discussed. The best result was a learning rate of 0.5. The result is
shown in terms of sentiment detection accuracy on this study’s datasets and compared
with the baselines. The result is presented on ten random portions of the datasets to test
the performance of the AE-AED by increasing the labelled volume. An equal ratio of
classes for each area is comparable to or higher than the baseline models on the completely
labelled datasets.

Deep learning models have shown considerable improvement in ABSA and all other
NLP tasks. However, these models are domain-dependent and need many labelled data in
different domains. This study proposed a new model based on deep learning architectures
for each task of ABSA. This study shows that the new models are experimentally better or
at least comparable to the benchmark models.

To conclude, we proposed AE-AED for ABSA tasks using deep learning architectures,
which solves the problems identified in the benchmarks. The result of this study shows the
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power of unsupervised neural LM and fine-tuning it on in-domain data for both tasks of
this study, aspect category detection and sentiment detection. These results can also be used
in other computer systems, such as recommendation systems, to explain recommendations.
The AE-AED can place a product ad with similar rated aspects in an advertising system.
Other possible benefactors are business tasks related to sale management, reputation
management, and public relations.
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