Biparametric Q Rung Orthopair Fuzzy Entropy Measure for Multi Criteria Decision Making Problem
Abstract
:1. Introduction
2. Preliminaries
- (q-ROFS1) Sharpness property: iff M is a crisp set i.e., ; or .
- (q-ROFS2) Maximality property: is maximum iff .
- (q-ROFS3) Symmetry property: .
- (q-ROFS4) Resolution property: iff , i.e., and for or if and for .
- ,
- ,
- , where is the inverse of ,
- if and only if , .
- ,
- ,
- iff ,
- if then and .
- Hamming Distance: q-ROFS(M, N) =
- Normalized Hamming Distance: q-ROFS(M, N) =
3. Entropy Measure of q-ROFS
- (q-ROFS1) Sharpness property: If , thenSince and then the previously mentioned condition is true in the following cases:
- (a)
- Either i.e., , or
- (b)
- i.e., , or
- (c)
- i.e., .
These three examples indicate that M is a crisp set, and therefore is returned. - (q-ROFS2) Maximality property: Mathematically, we confirm the concavity of the by calculating its Hessian at the critical point, i.e., with particular values of R and S. The Hessian of is as :It should be observed that is a negative semi-definite matrix for all conceivable combinations of R and S, implying that the function is concave. As a result, the maximality property is determined by the function’s concavity.
- (q-ROFS3) Symmetry property: The definition makes it clear that
- (q-ROFS4) Resolution property: We have
4. Numerical Example
- —solace,
- —mileage,
- —security,
- —interior design.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A.; Klir, G.J.; Yuan, B. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems; Selected Papers; World Scientific: Singapore, 1996; Volume 6. [Google Scholar]
- Cagri Tolga, A.; Basar, M. The assessment of a smart system in hydroponic vertical farming via fuzzy MCDM methods. J. Intell. Fuzzy Syst. 2022, 42, 1–12. [Google Scholar] [CrossRef]
- Tolga, A.C.; Parlak, I.B.; Castillo, O. Finite-interval-valued Type-2 Gaussian fuzzy numbers applied to fuzzy TODIM in a healthcare problem. Eng. Appl. Artif. Intell. 2020, 87, 103352. [Google Scholar] [CrossRef]
- Mendel, J.M. Type-2 fuzzy sets and systems: An overview. IEEE Comput. Intell. Mag. 2007, 2, 20–29. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Int. J. Bioautom. 2016, 20, 1. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Intuitionistic fuzzy sets in some medical applications. In Computational Intelligence. Theory and Applications: International Conference, 7th Fuzzy Days Dortmund, Germany, 1–3 October 2001 Proceedings 7; Springer: Berlin/Heidelberg, Germany, 2001; pp. 148–151. [Google Scholar]
- De, S.K.; Biswas, R.; Roy, A.R. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 2001, 117, 209–213. [Google Scholar] [CrossRef]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 57–61. [Google Scholar]
- Wang, Z.; Xiao, F.; Cao, Z. Uncertainty measurements for Pythagorean fuzzy set and their applications in multiple-criteria decision making. Soft Comput. 2022, 26, 9937–9952. [Google Scholar] [CrossRef]
- Yager, R.R.; Alajlan, N.; Bazi, Y. Aspects of generalized orthopair fuzzy sets. Int. J. Intell. Syst. 2018, 33, 2154–2174. [Google Scholar] [CrossRef]
- Yager, R.R.; Alajlan, N. Approximate reasoning with generalized orthopair fuzzy sets. Inf. Fusion 2017, 38, 65–73. [Google Scholar] [CrossRef]
- Deveci, M.; Pamucar, D.; Gokasar, I.; Köppen, M.; Gupta, B.B. Personal mobility in metaverse with autonomous vehicles using Q-rung orthopair fuzzy sets based OPA-RAFSI model. IEEE Trans. Intell. Transp. Syst. 2022. [Google Scholar] [CrossRef]
- Garg, H.; Ali, Z.; Mahmood, T. Algorithms for complex interval-valued q-rung orthopair fuzzy sets in decision making based on aggregation operators, AHP, and TOPSIS. Expert Syst. 2021, 38, e12609. [Google Scholar] [CrossRef]
- Ali, M.I. Another view on q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2018, 33, 2139–2153. [Google Scholar] [CrossRef]
- Liu, P.; Wang, P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 2018, 33, 259–280. [Google Scholar] [CrossRef]
- Liu, P.; Chen, S.M.; Wang, P. Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 3741–3756. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J. Some q-rung orthopai fuzzy Bonferroni mean operators and their application to multi-attribute group decision making. Int. J. Intell. Syst. 2018, 33, 315–347. [Google Scholar] [CrossRef]
- Liu, P.; Li, D. Some Muirhead mean operators for intuitionistic fuzzy numbers and their applications to group decision making. PLoS ONE 2017, 12, e0168767. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Liu, P. Multiple attribute group decision making based on q-rung orthopair fuzzy Heronian mean operators. Int. J. Intell. Syst. 2018, 33, 2341–2363. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, R.; Wang, J.; Bai, K.; Xue, J. A new multi-criteria group decision-making approach based on q-rung orthopair fuzzy interaction Hamy mean operators. Neural Comput. Appl. 2020, 32, 7465–7488. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, M.I.; Mahmood, T.; Munir, M. q-Rung orthopair fuzzy soft average aggregation operators and their application in multicriteria decision-making. Int. J. Intell. Syst. 2020, 35, 571–599. [Google Scholar] [CrossRef]
- Banerjee, D.; Dutta, B.; Guha, D.; Martínez, L. SMAA-QUALIFLEX methodology to handle multicriteria decision-making problems based on q-rung fuzzy set with hierarchical structure of criteria using bipolar Choquet integral. Int. J. Intell. Syst. 2020, 35, 401–431. [Google Scholar] [CrossRef]
- Peng, X.; Krishankumar, R.; Ravichandran, K.S. Generalized orthopair fuzzy weighted distance-based approximation (WDBA) algorithm in emergency decision-making. Int. J. Intell. Syst. 2019, 34, 2364–2402. [Google Scholar] [CrossRef]
- Zhong, Y.; Gao, H.; Guo, X.; Qin, Y.; Huang, M.; Luo, X. Dombi power partitioned Heronian mean operators of q-rung orthopair fuzzy numbers for multiple attribute group decision making. PLoS ONE 2019, 14, e0222007. [Google Scholar] [CrossRef]
- Bajaj, R.K.; Kumar, T.; Gupta, N. R-norm intuitionistic fuzzy information measures and its computational applications. In Proceedings of the Eco-Friendly Computing and Communication Systems: International Conference, ICECCS 2012, Kochi, India, 9–11 August 2012; pp. 372–380. [Google Scholar]
- Gandotra, N.; Bajaj, R.K.; Mathew, J. On Ranking in Triangular Intuitionistic Fuzzy Multi-criteria Decision Making under (a, ß)-cut with’Useful’Parametric Entropy. In Proceedings of the 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), Kochi, India, 2–4 September 2015; pp. 69–74. [Google Scholar]
- Guleria, A.; Bajaj, R.K. Pythagorean fuzzy-norm information measure for multicriteria decision-making problem. Adv. Fuzzy Syst. 2018, 2018, 8023013. [Google Scholar] [CrossRef]
- Garg, H. A new possibility degree measure for interval-valued q-rung orthopair fuzzy sets in decision-making. Int. J. Intell. Syst. 2021, 36, 526–557. [Google Scholar] [CrossRef]
- Garg, H.; Chen, S.M. Multiattribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets. Inf. Sci. 2020, 517, 427–447. [Google Scholar] [CrossRef]
- Peng, X.; Liu, L. Information measures for q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2019, 34, 1795–1834. [Google Scholar] [CrossRef]
- Liu, D.; Chen, X.; Peng, D. Some cosine similarity measures and distance measures between q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2019, 34, 1572–1587. [Google Scholar] [CrossRef]
- Khan, M.J.; Kumam, P.; Shutaywi, M. Knowledge measure for the q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2021, 36, 628–655. [Google Scholar] [CrossRef]
- Khan, M.J.; Ali, M.I.; Kumam, P. A new ranking technique for q-rung orthopair fuzzy values. Int. J. Intell. Syst. 2021, 36, 558–592. [Google Scholar] [CrossRef]
(0.9, 0.3) | (0.7, 0.6) | (0.5, 0.8) | (0.6, 0.3) | |
(0.4, 0.7) | (0.9, 0.2) | (0.8, 0.1) | (0.5, 0.3) | |
(0.8, 0.4) | (0.7, 0.5) | (0.6, 0.2) | (0.7, 0.4) | |
(0.7, 0.2) | (0.8, 0.2) | (0.8, 0.4) | (0.6, 0.6) |
0.19701 | 0.083599 | |
0.07313 | 0.049739 | |
0.020283 | 0.071691 | |
0.15843 | 0.037391 |
−0.24357 | −4.02108 | −0.42271 | −0.55273 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suri, G.; Svitenko, H.; Guleria, A.; Gandotra, N.; Saini, N.; Sałabun, W. Biparametric Q Rung Orthopair Fuzzy Entropy Measure for Multi Criteria Decision Making Problem. Information 2023, 14, 304. https://doi.org/10.3390/info14060304
Suri G, Svitenko H, Guleria A, Gandotra N, Saini N, Sałabun W. Biparametric Q Rung Orthopair Fuzzy Entropy Measure for Multi Criteria Decision Making Problem. Information. 2023; 14(6):304. https://doi.org/10.3390/info14060304
Chicago/Turabian StyleSuri, Gitesh, Heorhii Svitenko, Abhishek Guleria, Neeraj Gandotra, Namita Saini, and Wojciech Sałabun. 2023. "Biparametric Q Rung Orthopair Fuzzy Entropy Measure for Multi Criteria Decision Making Problem" Information 14, no. 6: 304. https://doi.org/10.3390/info14060304
APA StyleSuri, G., Svitenko, H., Guleria, A., Gandotra, N., Saini, N., & Sałabun, W. (2023). Biparametric Q Rung Orthopair Fuzzy Entropy Measure for Multi Criteria Decision Making Problem. Information, 14(6), 304. https://doi.org/10.3390/info14060304