M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications
Abstract
:1. Introduction
- Design of a modulation scheme that transmits multiple overlapping up-chirp signals;
- Mathematical formulation of the symbol time and the number of overlaps;
- Deriving the mathematical expression for the bit error probability of the proposed scheme as a function of inter-symbol interference and number of overlaps;
- Performance evaluation using various metrics to demonstrate the effectiveness of our approach.
2. Direct Modulation CSS
3. M-Ary Phase Shift Keying
4. Proposed Model
4.1. Modulation Scheme
4.2. Overlapping Chirps
4.3. Inter-Symbol Interference Due to Overlap
4.4. Zero-ISI Transmission
4.5. Probability of Bit Error
5. Performance Analysis and Discussion
5.1. Simulation Environment
5.2. Spectral Efficiency Analysis
5.3. BER Performance Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AWGN | Additive White Gaussian Noise |
BER | Bit Error Rate |
BOC | Binary Offset Carrier |
BOK | Binary Orthogonal Keying |
CCC | Cross Correlation Coefficients |
CSS | Chirp Spread Spectrum |
DM CSS | Direct Modulation Chirp Spread Spectrum |
ISI | Inter-Symbol Interference |
MPSK | M-ary Phase Shift Keying |
Appendix A. Expression of the Receiver Output
Appendix B. Probability of Bit Error
Appendix B.1. Euclidean Distance between sm and ssmi
References
- Pickholtz, R.; Schilling, D.; Milstein, L. Theory of spread-spectrum communications-a tutorial. IEEE Trans. Commun. 1982, 30, 855–884. [Google Scholar] [CrossRef] [Green Version]
- Springer, A.; Gugler, W.; Huemer, M.; Reindl, L.; Ruppel, C.; Weigel, R. Spread spectrum communications using chirp signals. In Proceedings of the IEEE/AFCEA EUROCOMM 2000. Information Systems for Enhanced Public Safety and Security (Cat. No. 00EX405), Munich, Germany, 19 May 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 166–170. [Google Scholar]
- Gbadouissa, J.E.Z.; Ari, A.A.A.; Titouna, C.; Gueroui, A.M.; Thiare, O. HGC: HyperGraph based Clustering scheme for power aware wireless sensor networks. Future Gener. Comput. Syst. 2020, 105, 175–183. [Google Scholar] [CrossRef]
- Ari, A.A.A.; Labraoui, N.; Yenké, B.O.; Gueroui, A. Clustering algorithm for wireless sensor networks: The honeybee swarms nest-sites selection process based approach. Int. J. Sens. Netw. 2018, 27, 1–13. [Google Scholar] [CrossRef]
- Dixon, R. Why spread spectrum? Commun. Soc. 1975, 13, 21–25. [Google Scholar] [CrossRef]
- Torrieri, D. Principles of Spread-Spectrum Communication Systems; Springer: Berlin/Heidelberg, Germany, 2005; Volume 1. [Google Scholar]
- Aydin, N.; Arslan, T.; Cumming, D.R. A direct-sequence spread-spectrum communication system for integrated sensor microsystems. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Hengstler, S.; Kasilingam, D.P.; Costa, A.H. A novel chirp modulation spread spectrum technique for multiple access. In Proceedings of the IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications, Prague, Czech Republic, 2–5 September 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 1, pp. 73–77. [Google Scholar]
- Ouyang, X.; Dobre, O.A.; Guan, Y.L.; Zhao, J. Chirp spread spectrum toward the Nyquist signaling rate—Orthogonality condition and applications. IEEE Signal Process. Lett. 2017, 24, 1488–1492. [Google Scholar] [CrossRef]
- Kim, K.Y.; Lee, S.W.; Shin, Y. Spectral Efficiency Improvement of Chirp Spread Spectrum Systems. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 16–18 October 2019. [Google Scholar]
- Qiu, S.; Zhao, D.; Wang, Y.; Tang, X.; Zhao, X.; Zhang, Y. A Linear Chirp Wireless Transmission Method utilizing Doppler Effect. Wirel. Pers. Commun. 2022, 124, 2965–2982. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, H.H.; Barton, R.; Grossetete, P. Efficient Design of Chirp Spread Spectrum Modulation for Low-Power Wide-Area Networks. IEEE Internet Things J. 2019, 6, 9503–9515. [Google Scholar] [CrossRef]
- Hosseini, N.; Matolak, D.W. Chirp Spread Spectrum Signaling for Future Air-Ground Communications. In Proceedings of the MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 153–158. [Google Scholar]
- Yang, Y.; Zhang, Y.; Dai, L.; Li, J.; Mumtaz, S.; Rodriguez, J. Transmission capacity analysis of relay-assisted device-to-device overlay/underlay communication. IEEE Trans. Ind. Inform. 2016, 13, 380–389. [Google Scholar] [CrossRef]
- Pohl, A.; Ostermayer, G.; Steindl, R.; Seifert, F.; Weigel, R. Fine tuning of data rate enhances performance of a chirp spread spectrum system. In Proceedings of the 1998 IEEE 5th International Symposium on Spread Spectrum Techniques and Applications-Proceedings. Spread Technology to Africa (Cat. No. 98TH8333), Sun City, South Africa, 4 September 1998; IEEE: Piscataway, NJ, USA, 1998; Volume 1, pp. 78–81. [Google Scholar]
- Kim, K.Y.; Shin, Y. Simultaneous Orthogonal Transmission for Direct Modulation Chirp Spread Spectrum Systems. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 472–474. [Google Scholar]
- Reynders, B.; Pollin, S. Chirp spread spectrum as a modulation technique for long range communication. In Proceedings of the 2016 Symposium on Communications and Vehicular Technologies (SCVT), Mons, Belgium, 22 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Cai, C.; Chen, Z.; Luo, J.; Pu, H.; Hu, M.; Zheng, R. Boosting chirp signal based aerial acoustic communication under dynamic channel conditions. IEEE Trans. Mob. Comput. 2021, 21, 3110–3121. [Google Scholar] [CrossRef]
- Araújo, D.C.; Ferré, G.; Cavalcante, C.C.; Guerreiro, I.M. A Spectral Efficiency Enhancement for Chirp Spread Spectrum Downlink Communications. In Proceedings of the 2020 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 18–20 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Azim, A.W.; Bazzi, A.; Shubair, R.; Chafii, M. Dual-Mode Chirp Spread Spectrum Modulation. arXiv 2022, arXiv:2205.09421. [Google Scholar] [CrossRef]
- Pham, T.M.; Barreto, A.N.; Fettweis, G.P. Efficient Communications for Overlapped Chirp-Based Systems. IEEE Wirel. Commun. Lett. 2020, 9, 2202–2206. [Google Scholar] [CrossRef]
- Yoon, T.; Lee, Y.; Park, S.R.; Kim, S.C.; Song, I.; Yoon, S. Analysis of Intersymbol Interference due to Overlap in DM-BPSK. IEICE Trans. Commun. 2010, 93, 1310–1312. [Google Scholar] [CrossRef]
- Yoon, T.; Yoo, S.H.; Kim, S.Y.; Yoon, S. A Closed Form BER expression for an Overlap-based CSS System. In Proceedings of the ITC-CSCC: International Technical Conference on Circuits Systems, Computers and Communications, Shimonoseki City, Japan, 6–9 July 2008; pp. 105–108. [Google Scholar]
- Pinkney, J. Low Complexity Indoor Wireless Data Links Using Chirp Spread Spectrum. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2004. [Google Scholar]
- Mumtaz, S.; Huq, K.M.S.; Radwan, A.; Rodriguez, J.; Aguiar, R.L. Energy efficient interference-aware resource allocation in LTE-D2D communication. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 282–287. [Google Scholar]
- Yang, Q.; Jiang, T.; Beaulieu, N.C.; Wang, J.; Jiang, C.; Mumtaz, S.; Zhou, Z. Heterogeneous semi-blind interference alignment in finite-SNR networks with fairness consideration. IEEE Trans. Wirel. Commun. 2020, 19, 2472–2488. [Google Scholar] [CrossRef]
- Grami, A. Passband Digital Transmission; Academic Press: Cambridge, MA, USA, 2015; Chapter 7; pp. 299–355. [Google Scholar]
1 | ||||||||
1 | 1 | 2 | 2 | 3 | 4 | 6 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacko Gbadoubissa, J.E.; Abba Ari, A.A.; Radoi, E.; Gueroui, A.M. M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications. Information 2023, 14, 323. https://doi.org/10.3390/info14060323
Zacko Gbadoubissa JE, Abba Ari AA, Radoi E, Gueroui AM. M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications. Information. 2023; 14(6):323. https://doi.org/10.3390/info14060323
Chicago/Turabian StyleZacko Gbadoubissa, Jocelyn Edinio, Ado Adamou Abba Ari, Emanuel Radoi, and Abdelhak Mourad Gueroui. 2023. "M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications" Information 14, no. 6: 323. https://doi.org/10.3390/info14060323
APA StyleZacko Gbadoubissa, J. E., Abba Ari, A. A., Radoi, E., & Gueroui, A. M. (2023). M-Ary Direct Modulation Chirp Spread Spectrum for Spectrally Efficient Communications. Information, 14(6), 323. https://doi.org/10.3390/info14060323