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Abstract: Zebrafish is a well-established model organism for cardiovascular disease studies in which
one of the most popular tasks is to assess cardiac functions from the heart beating echo-videos.
However, current techniques are often time-consuming and error-prone, making them unsuitable
for large-scale analysis. To address this problem, we designed a method to automatically evaluate
the ejection fraction of zebrafish from heart echo-videos using a deep-learning model architecture.
Our model achieved a validation Dice coefficient of 0.967 and an IoU score of 0.937 which attest
to its high accuracy. Our test findings revealed an error rate ranging from 0.11% to 37.05%, with
an average error rate of 9.83%. This method is widely applicable in any laboratory setting and can
be combined with binary recordings to optimize the efficacy and consistency of large-scale video
analysis. By facilitating the precise quantification and monitoring of cardiac function in zebrafish,
our approach outperforms traditional methods, substantially reducing the time and effort required
for data analysis. The advantages of our method make it a promising tool for cardiovascular research
using zebrafish.

Keywords: deep learning; zebrafish; echo-video; ejection fraction; heart disease

1. Introduction

Cardiovascular disease (CVD) constitutes a significant global public health concern.
It is a primary contributor to morbidity and mortality, with an estimated 17.9 million
fatalities occurring annually, representing approximately 32% of all deaths globally [1].
Notwithstanding substantial financial commitments to medical research, the incidence and
prevalence of CVD persist at elevated levels. Therefore, researchers continuously search for
novel methods to study heart disease and potential therapies. In recent years, zebrafish
(Danio rerio) has emerged as a valuable model organism for cardiovascular research [2].
These small fish have numerous advantages over traditional animal models including rapid
development, easy maintenance, and genetic tractability. The optically transparent nature
of zebrafish embryos also allows in vivo observation of cardiac development, providing
researchers with the unique opportunity to scrutinize the intricacies of heart formation
in real time [3]. Additionally, the prolific reproduction capabilities of zebrafish facilitate
the generation of large numbers of progeny, thus expediting the investigation of genetic
variations and their subsequent impact on cardiac function.

Notably, the considerable physiological homology between zebrafish and humans
renders this aquatic species a valuable model organism for advancing our understanding
of cardiovascular processes. The zebrafish cardiac action potential phenotype is similar to
that of humans because they both have a long plateau phase [4]. Moreover, zebrafish can
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regenerate damaged heart tissue like certain amphibians, which could provide essential
insights into developing therapies for human heart disease [5]. Zebrafish are also an invalu-
able tool for testing potential therapies for heart disease as researchers can induce heart
disease in zebrafish through genetic manipulation or chemical exposure and subsequently
examine potential drugs’ efficacy in enhancing heart function [6]. For instance, zebrafish
have been utilized to evaluate the effectiveness of prospective antiarrhythmic drugs [7].

In the last decade, a panel of cardiomyopathy models has been generated in adult
zebrafish, including those modeling inherited cardiomyopathies associated with causative
genes such as Myosin heavy chain 7 (MYH7) and LAMP2 [8–10]. However, access to medi-
cal imaging data, which is fundamental for constructing such a model, is limited. This is
especially true for echo-videos, critical for assessing the heart’s function and structure. The
manual annotation of echo-videos, which is only proper to be labeled by expert biologists,
presents a significant burden, as it is both time-consuming and labor-intensive while also
subject to inconsistencies and challenges in validation if labeled by an untrained individual.
In light of recent advancements in deep learning methodologies, it has become feasible
to devise automated segmentation tools tailored to medical imaging data, encompassing
echo-videos. As a subfield of artificial intelligence, deep learning capitalizes on intricate
algorithms and neural networks, facilitating continuous learning and enhancement through
experiential data. Deep learning algorithms can be meticulously trained in medical imaging
to recognize and segment particular structures within images such as the cardiac region
in echo-videos [11]. Image segmentation is a crucial task in computer vision and medical
imaging that aims to partition an image into different regions based on its semantic mean-
ing. Deep learning-driven image segmentation techniques have demonstrated exceptional
efficacy across many applications in recent years. A prominent deep learning architecture
employed for image segmentation is the encoder–decoder network, which encompasses
two distinct components: an encoder network responsible for extracting high-level features
and a decoder network dedicated to producing a pixel-wise segmentation map [12].

The Unet architecture is widely utilized for image segmentation and has become a
standard reference for evaluating the performance of image segmentation algorithms [13].
Unet consists of a contracting path for context capture and a symmetric expanding path for
precise localization. This unique design enables Unet to capture global context information
while preserving detailed spatial information, making it practical for segmenting objects of
various sizes and shapes. To enhance the segmentation performance of Unet, Unet++ was
proposed as an advanced version [14]. Unet++ utilizes nested and dense skip connections
between the encoder and decoder networks, enabling it to capture multi-scale features
and achieve better localization accuracy than Unet. In addition, Unet++ employs deep
supervision, which involves adding auxiliary segmentation branches to intermediate layers
of the network, enhancing training stability and accelerating convergence, leading to better
segmentation performance.

Deep learning-based image segmentation architectures, including Unet and Unet++,
have demonstrated remarkable promise for medical imaging applications. Furthermore,
unsupervised image/video segmentation models have been applied to medical datasets.
These models allow for the precise and efficient segmentation of various objects in med-
ical images, thereby aiding in the development of automated and dependable medical
diagnosis and treatment systems. In addition, this research has conducted experiments
with unsupervised segmentation and supervised image segmentation. Among these, only
supervised image segmentation has demonstrated sufficient accuracy for the segmentation
task and the evaluation of ejection fraction.

2. Materials and Methods
2.1. Experimental Animals

Zebrafish (Danio rerio) were maintained under a 14 h light/10 h dark cycle at 28.5 ◦C.
All animal study procedures were performed in accordance with the Guide for the Care
and Use of Laboratory Animals published by the U.S. National Institutes of Health (NIH
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Publication No. 85-23, revised 1996). Animal study protocols were approved by the Mayo
Clinic Institutional Animal Care and Use Committee (IACUC #A00002783-17-R20).

2.2. Dataset

The present study utilized a dataset consisting of echo-videos of zebrafish. The
production of video files was achieved by utilizing the Vevo 3100 high-frequency imaging
system, which is equipped with a 50 MHz (MX700) linear array transducer (manufactured
by FUJIFILM VisualSonics Inc. Toronto, ON, Canada). This advanced imaging system
was employed to precisely measure cardiac function indices in adult zebrafish of varying
ages and mutant types. To ensure the highest level of image clarity and detail, we applied
acoustic gel (specifically, Aquasonic® 100, produced by Parker Laboratories, Fairfield, NJ,
USA) to the surface of the transducer, promoting optimal coupling between the transducer
and the tissue interface. To obtain these images, we anesthetized the adult zebrafish using
a 0.02% Tricaine (MS 222) solution, which lasted approximately five minutes. Subsequently,
each zebrafish was placed ventral side up and held firmly, yet gently, in place using a soft
sponge stage.

Regarding image acquisition, the 50 MHz (MX700) transducer was positioned directly
above the zebrafish, allowing for the clear capture of images from the sagittal imaging plane
of the heart. We secured B-mode images within an imaging field of view of 9.00 mm in the
axial direction and 5.73 mm in the lateral direction. Additionally, we maintained a frame
rate of 123 Hz, used medium persistence, and set the transmit focus at the heart’s center
to ensure the utmost image clarity and accuracy. Our data acquisition and subsequent
processing followed protocols as outlined in a report available in the existing literature [15].
The application of doxorubicin was also involved, a compound recognized for its capac-
ity to induce cardiomyopathy in adult zebrafish [16,17]. We administered doxorubicin
intraperitoneally at a dosage of 20 mg/kg. The ejection fraction decline, a key measure
of cardiac function, became detectable via echocardiography 56 days post-injection (dpi).
In the orientation of the zebrafish within the echocardiography apparatus, we adhered
to a consistent protocol whereby the zebrafish was oriented with its head to the left and
ventral side facing upwards. This consistent positioning facilitated reproducibility and
standardization across all imaging procedures.

A total of 1005 frames were selected from 164 videos, with a range of 2 to 10 frames
extracted from each video (Figure 1a). These frames underwent manual annotation using
Vevo Lab software by our team member who is a well-trained biologist working in the field.
The cyan lines in the image depicted ventricular boundaries, the long axis (LAX), and the
short axis (SAX) of the ventricle (Figure 1b). Following the annotations provided, masks
representing the ventricular area were produced through ImageJ software for training
the image segmentation model (Figure 1c). We employed data augmentation methods,
resulting in a four-fold increase in the dataset’s size. We utilized group k-fold cross-
validation (k = 5) in data splitting and our model evaluation. Importantly, it was ensured
that the validation set contained frames from videos distinct from those in the training set.
This step aimed to avoid potential overfitting, wherein the model achieves high accuracy
only by extracting features from familiar patterns and signal noise.
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2.3. Cardiac Function Assessment

Ejection fraction (EF), an essential metric to evaluate heart function, is quantified as
the ratio of blood ejected from the ventricle with each heartbeat and can be mathematically
expressed as follows:

EF% =
(EDV − ESV)

EDV
× 100%. (1)

The end-diastolic volume (EDV) and end-systolic volume (ESV) represent the ventricular
volumes at the end of diastole and end-systole, respectively. The area–length method is
frequently utilized to calculate EDV and ESV [18] using the following formula:

EDV =
8× Area(diastolic)2

3π × LAX(diastolic)
, (2)

ESV =
8× Area(systolic)2

3π × LAX(systolic)
. (3)

This method involves the measurement of the area of the ventricle and the length of the
ventricular long axis (LAX), which is the line connecting the middle of the base of the heart
to its tip.

2.4. Unsupervised Segmentation Approach

Unsupervised image and video segmentation have shown considerable promise in
computer vision tasks. The challenge is identifying which method can be applied for
extracting features for zebrafish echo-videos. Modified convolutional neural networks
(CNNs) [19] have been used (Figure 2c), which assign labels to pixels without requiring
labeled data. The pixel labels and feature representations are optimized through gradient
descent to update the network’s parameters.
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Figure 2. Unsupervised segmentation trials utilizing different methods failed to detect expected
masks. Each image is represented by a distinct color, signifying the model-generated segmentation
regions. (a) An original frame, where individuals without training could not accurately classify the
ventricle’s location due to the lack of ground truth labels; (b) An expected mask created manually;
(c) A result frame obtained using modified CNNs revealing that the model is susceptible to color
interference and, as such, is unsuitable for echo-videos; (d) A result of Dino demonstrating the model
was incapable of detecting the ventricle due to background noise.
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Dino, an implementation of self-supervised learning on Vision Transformers (ViTs) [20],
was applied for unsupervised video segmentation(Figure 2d). Dino employs a simplified
self-supervised training approach by predicting the output of a teacher network. It com-
prises a momentum encoder and uses a standard cross-entropy loss. Dino has two key
features that distinguish it from CNNs and supervised ViTs: it explicitly encodes semantic
information about image segmentation such as scene layout and object boundaries.

However, these methods are not robust enough to handle echo-video’s blurring and
signal noise, making them unsuitable for the image segmentation task and ejection fraction
assessment. As a result, supervised image segmentation has been the only method to
demonstrate sufficient accuracy in this work.

2.5. Supervised Image Segmentation Approach

In our previous work, we proposed the ZACAF, a framework based on a deep learn-
ing model for automated assessment from bright field microscopy videos [21]. This study
employed various deep learning models to perform image segmentation on a given dataset,
utilizing segmentation model modules on the PyTorch platform. Resnet [22], Efficient-
net [23], ResNeXt [24], and Mobilenet [25] were selected as the encoder components.
Resnet34, Efficientnet-b4 (Figure 3), and ResNeXt-50-32x4d were chosen to enable com-
parative analysis and investigate which architecture could extract better features from
this dataset with comparable parameter sizes. Resnet is a widely used architecture with
a relatively shallow depth, while Efficientnet has demonstrated excellent performance in
various image classification tasks due to its hierarchical structure. ResNeXt, on the other
hand, employs a split-transform-merge strategy to aggregate information from multiple
pathways. In addition, Mobilenet-v2 was selected for comparison due to its lightweight
design, which makes it a practical choice for mobile and embedded devices.
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Figure 3. The selected example supervised image segmentation model architecture and its associated
process flow. Specifically, we utilized Efficientnet-b4 as the Encoder and Unet as the Decoder in this
figure. Initially, we cropped the frame from echocardiography videos and fed it into the Encoder.
The Encoder comprised a convolution layer (Conv layer), batch normalization layer (BN layer), and
Convolution block (Conv Block), each consisting of several convolution layers and batch normalization
layers with varying scales. Next, we utilized the Decoder, which included the Decoder block, convolution
layer, and sigmoid function. Each decoder block contains a convolution layer, batch normalization layer,
and rectified linear unit (ReLU) activation function. Upon completing the deep learning model, we
obtained a segmentation mask. Subsequently, we utilized contour detection to locate the ventricle, with
the LAX determined via the midpoint of the left base connected to the right tip of the heart.
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Unet (Figure 3) and Unet++ were chosen as decoders for the image segmentation
decoder component. The training process was executed using NVidia’s A10 and H100
GPU, which was provided by an online cloud service. The dice loss function, a widely used
semantic image segmentation loss function, was applied to train the models [26]. This loss
function is particularly suitable for medical image segmentation tasks, as it addresses the
imbalance between foreground and background classes. It penalizes false negative and
false positive errors equally, guaranteeing precise segmentation results. In contrast, we
discovered that using pre-trained weights, often employed to enhance the performance
of deep learning models by transferring knowledge from large-scale datasets, negatively
impacted the model’s accuracy in several experiments. This could be attributed to the
domain shift between the pre-trained and specific medical datasets used in this work.

2.6. Quantitative Comparison of Approaches
2.6.1. Dice Coefficient

The dice coefficient (DC) is a commonly used evaluation metric in image segmentation
tasks. It measures the degree of similarity between two objects, where a score of 1 denotes
perfect agreement or complete overlap, and a score of 0 indicates no overlap. The calculation
of the dice coefficient is obtained by taking twice the intersection of the two objects and
dividing it by the sum of the pixels in both objects. In the case of binary segmentation, the
formula can be expressed as:

Dice =
2|A ∩ B|
|A|+|B| , (4)

where A and B represent the two objects being compared and the absolute values of A and
B denote the total number of pixels in each object. The intersection of the two objects is the
number of pixels that both objects have in common.

2.6.2. Intersection over Union

Intersection over union (IoU), also known as the Jaccard Index, is a widely used metric
for evaluating the performance of image segmentation algorithms. This metric is calculated
by taking the ratio of the area of overlap between the predicted segmentation and the
ground truth segmentation to the area of union between them. IoU ranges from 0 to 1, with
0 indicating no overlap and 1 indicating perfect overlap. For binary segmentation, the IoU
can be computed using the following formula:

J =
|A ∩ B|
|A ∪ B| , (5)

where A and B represent the predicted and ground truth segmentation masks, respectively.
The intersection between A and B refers to the set of pixels where both A and B have
a non-zero value, while the union between A and B refers to the set of pixels where
either A or B has a non-zero value. This metric is commonly used in deep learning-based
segmentation models, as it provides a reliable measure of the accuracy of the model’s
predictions compared to the ground truth segmentation.

2.6.3. Receiver Operating Characteristic (ROC)

The receiver operating characteristic (ROC) curve serves as a graphic representation
of a binary classifier’s diagnostic competence as the discrimination threshold is adjusted.
For the incorporation of ROC curves in the image segmentation model, our preliminary
step was the calculation of a probability map corresponding to the target segmentation.
Herein, each pixel is attributed with a probability value indicating its likelihood of being a
part of the foreground. As the next step, we adjusted the threshold used to classify a pixel
as foreground or background, facilitating the computation of the true positive rate and the
false positive rate at each respective threshold.
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The area under the ROC curve (AUC), a critical metric, provides a quantitative measure
of the model’s precision in pixel classification, irrespective of the selected threshold. In
an ideal scenario, a flawless classification model would be characterized by an AUC of 1,
whereas a model whose performance equates to that of random classification would exhibit
an AUC of 0.5. The ROC curve and the AUC together serve as indicators of our image
segmentation models.

3. Results

The findings depicted in Figure 4 illustrate the model’s performance trained using the
dice loss function alongside an Adam optimizer and a learning rate of 0.001, incorporating
a decay rate of 0.8 every 20 epochs. We employed an early stopping mechanism during
model training to cease training when the model’s performance on the validation set does
not show substantial improvement, thus avoiding unnecessary computational expenditure
and the potential for overtraining. The hyperparameters were carefully adjusted to attain
the best validation IoU score. The Unet++ and Efficientnet architectures outperformed the
other encoder–decoder architectures, achieving validation Dice coefficients of 0.967 and
validation IoU scores of 0.937. Efficientnet proved its capability in extracting reliable
features from the specific frames despite its comparable parameter sizes to the other
encoder architectures. Furthermore, Mobilenet_v2, with its relatively low number of
parameters attained a similar IoU score with other encoders, suggesting its effectiveness as
a feasible alternative for lightweight segmentation tasks. During the k-fold cross-validation
training process, the model demonstrated consistently high performance, with AUC values
exceeding 0.93 in all instances. The detailed results of the ROC analysis, along with these
AUC scores, were presented in Figure 5.
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The present study aimed to develop a method for automatically calculating ejection
fraction (EF) in fish populations using image processing techniques (Figure 6). The method’s
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performance was evaluated by comparing its results with manual assessments of the EF by
three experienced biologists. The methodology involved detecting the ventricle area and
subsequently measuring its size and the left axis length (LAX) from selected frames. A set
of 51 videos containing three groups of fish was utilized for the evaluation, with manually
labeled frames being chosen for the analysis. The obtained results indicated that the error
rate ranged from 0.11% to 37.05% (Figure 7). Results from our automatic EF evaluation
are consistent with manual measurements by each of the three biologists. A significant
reduction of cardiac function in the AIC model can be detected (Figure 8). Notably, the
average error was 9.83%, indicating the high accuracy of the automatic EF evaluation. The
study reveals that the proposed method is promising to enhance the efficiency and accuracy
of EF calculation in zebrafish.
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corresponded to the ventricle contour and the LAX and detected by the proposed method. The
cropped images, labeled manually with dotted lines, correspond to the manual label for each frame.
The figures in the same row were selected from the same fish group, and the measurements are
in pixels.
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Figure 8. (a–c) Quantification of the ejection fraction in adult zebrafish showed no significant
difference by using automatic and manual methods in two different groups by three researchers
(n = 5–12 per group). Dox group: intraperitoneal injection of DOX dosed at 20 mg/kg, echoed at
10 dpi or 56 dpi. Automatic and manual methods both detected Dox induced cardiac function
deduction. Of note, the automatic method was also able to detect reduced EF in 10 dpi Dox fish
injected by researcher 3. Data are presented as mean ± SD, * p < 0.05, ** p < 0.01. NS, non-significant.
WT, wild type.

4. Discussion

Medical image segmentation is critical in analyzing cardiac function in research and
clinical settings. Manual segmentation is time-consuming and prone to variability, mak-
ing automated segmentation methods highly desirable. In this study, we investigate the
segmentation of zebrafish heart imaging to evaluate the efficacy of several segmentation
model architectures. Unsupervised learning methods have emerged as promising for image
and video segmentation because they can extract features without requiring labeled data.
However, the effectiveness of unsupervised learning heavily relies on the quality and
complexity of the dataset [27]. The quality of the zebrafish dataset has several limitations
that affect the performance of unsupervised learning methods. Firstly, the dataset’s small
size and blurred nature pose challenges for unsupervised learning, leading to suboptimal
segmentation outcomes. Secondly, an untrained individual would have difficulty classify-
ing the dataset due to the variability in the videos’ visual appearance. Furthermore, videos
from the same fish group can look different even if they are in the same group, making
classification challenging.

Combining Efficientnet and Unet++ yielded the highest segmentation results in
the zebrafish dataset. Despite implementing data augmentation, overfitting, a common
pitfall in machine learning, was observed in the remaining architectures. This technique,
commonly employed to enhance dataset size, failed to elevate validation outcomes in
our study. The highly specialized dataset, temporal information, and limited dataset
variability rendered the data augmentation ineffective in enhancing model consistency.
Interestingly, a marked increase in model accuracy was only observed when the encoder
was paired with Efficientnet. As for the decoder architecture, Unet generated comparable
results to Unet++ despite a notable difference in training time. Unet++ necessitated more
than one-third of the total time for training compared to Unet, making the latter a more
time-efficient option, especially for newer and smaller datasets. These findings suggest
that over-complex architectures may not generalize well to smaller datasets such as the
zebrafish dataset.

Lower Intersection over Union (IoU) scores could engender inaccuracies in the
ventricle area and LAX measurements. Such inaccuracies precipitate anomalies in
ejection fraction (EF) evaluations, given that the demarcated area may not accurately
emulate the configuration of the ventricle. The primary causative factor leading to
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an error rate as substantial as 37.05% is attributed to the oversight of the ventricle
shape during the mask segmentation phase, resulting in a volume calculation that is
excessively large in relation to the LAX. Moreover, the Dice loss function, premised
solely on the intersection of the two entities, may neglect the inclusion of the shape
pattern. This issue underscores the significance of shape preservation during cardiac
image analysis. Although unsupervised learning has demonstrated potential in more
expansive datasets, such as DAVIS [28], constraints related to the zebrafish dataset’s
size and quality impede optimal performance. In light of these restrictions, forthcoming
research endeavors should examine more comprehensive and superior-quality datasets
to further augment the efficacy of unsupervised learning approaches. Furthermore,
combining supervised and unsupervised learning methods could improve medical
image segmentation accuracy [29]. A supervised segmentation model based on the video
model can also improve segmentation accuracy. However, this would require significant
amounts of data and extensive labeling efforts, which are not feasible for this study’s
original proposal. Therefore, future work could also focus on selecting the unsupervised
algorithm for extracting the features that support the model training.

5. Conclusions

The utilization of deep learning algorithms for the segmentation and assessment
of cardiovascular metrics presents a promising research direction due to its potential to
improve accuracy, efficiency, and objectivity in analyzing complex biomedical data. The
accurate and automatic evaluation of cardiovascular metrics from echo-videos has the
potential to support studies in zebrafish models. The implementation of automation in
image processing and analysis has the potential to alleviate the burden on researchers while
simultaneously enhancing the precision and replicability of data interpretation. Neverthe-
less, this investigation emphasizes the inherent difficulties and constraints of employing
deep-learning methodologies on compact and domain-specific datasets. The paucity of
training data may render deep-learning models vulnerable to overfitting, consequently,
leading to diminished generalization capabilities and a decline in overall predictive ac-
curacy. Therefore, exploring and optimizing techniques to improve model performance
on small datasets is crucial. Overall, developing an automated system for segmenting
zebrafish embryos from echo-videos utilizing supervised deep-learning methods advance
biomedical research. Further optimization and improvement of deep learning models
will enable accurate and efficient evaluation of cardiovascular metrics from echo-videos,
supporting research on cardiovascular development, disease diagnosis, and drug discovery
in zebrafish models.
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