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Abstract: The accurate segmentation of colorectal polyps is of great significance for the diagnosis
and treatment of colorectal cancer. However, the segmentation of colorectal polyps faces complex
problems such as low contrast in the peripheral region of salient images, blurred borders, and
diverse shapes. In addition, the number of traditional UNet network parameters is large and the
segmentation effect is average. To overcome these problems, an innovative nonlinear activation-free
uncertainty contextual attention network is proposed in this paper. Based on the UNet network, an
encoder and a decoder are added to predict the saliency map of each module in the bottom-up flow
and pass it to the next module. We use Res2Net as the backbone network to extract image features,
enhance image features through simple parallel axial channel attention, and obtain high-level features
with global semantics and low-level features with edge details. At the same time, a nonlinear n on-
activation network is introduced, which can reduce the complexity between blocks, thereby further
enhancing image feature extraction. This work conducted experiments on five commonly used polyp
segmentation datasets, and the experimental evaluation metrics from the mean intersection over
union, mean Dice coefficient, and mean absolute error were all improved, which can show that our
method has certain advantages over existing methods in terms of segmentation performance and
generalization performance.

Keywords: colorectal polyp segmentation; edge details; image feature extraction; nonlinear activation-
free; salient images; uncertainty context attention

1. Introduction

Image segmentation is one of the fundamental and challenging research topics in com-
puter vision, which aims at classifying each pixel in a given image. Image segmentation is
applied in different fields, among which the most widely used is medical image segmenta-
tion for classifying each organ in a given tomographic image, such as cells in microscopic
images [1], pancreatic segmentation [2], or segmentation of pathological regions from nor-
mal bodies such as brain tumors [3], as well as polyp segmentation in this paper. Colorectal
cancer (CRC) has become one of the most common malignant tumors that endanger human
health, mostly evolving from adenomatous polyps, and initially benign polyps are at risk
of malignant transformation if timely and effective treatment is not available. Nowadays,
colonoscopy is widely used clinically and has become a general method for screening
for rectal cancer. Therefore, accurate medical image segmentation plays a crucial role in
clinical applications [4]. Early polyp segmentation is usually analyzed in terms of color
distribution, textural characteristics, structural changes [5], etc., and manual features are
extracted to distinguish the polyps as well as the background. The low contrast between
the polyp and the surrounding mucosa, as well as the blurred borders of the abnormal
tissue, leads to a high rate of missed diagnoses [6].
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The general purpose of the method is to design a segmentation network that gener-
alizes to multiple segmentation tasks. However, designing such a network is extremely
challenging due to the large variance between different segmentation tasks. Among the
existing solutions, the more common solution is to focus on the commonality between the
segmentation tasks but ignore the differences, which simplifies the network to a certain
extent. In other words, it is necessary to summarize the common features among multiple
tasks, and then deal with them from different aspects. Examples include the extraction
of contextual information [7], fusion of local and global information [8], boundary con-
straints [9], and redesign of skip connections [10]. Although the general method has a
good performance in processing multiple segmentation tasks simultaneously, it cannot
avoid ignoring the specific features of different segmentation tasks, and the generalization
performance is low to a certain extent. Therefore, it is crucial to design a method with high
performance in specific object segmentation tasks.

In recent years, several methods have been implemented to solve the segmentation
problem of polyps, and the consensus of these methods lies in the specific features of the
polyps considered during the design of the network. Methods for polyp segmentation
can be broadly divided into traditional methods based on threshold, edge detection, etc.,
and deep learning methods. Traditional methods are relatively simple to implement, but
there are certain limitations in image segmentation [11]. Nowadays, image segmentation
using deep learning has become mainstream, and UNet [1] has achieved great success in
medical images, following the encoder–decoder architecture, where in the encoder stage,
feature extraction units with high-level semantic information and low-level spatial details
are used to represent the object. In the decoder stage, features from the encoder are inte-
grated to generate prediction masks. Based on UNet, UNet++ [12] is able to better alleviate
the semantic divide between the encoder and decoder feature maps, and its encoder is
connected by some nested dense convolutions. For the characteristics of colon polyps,
ResUNet++ [13] combines UNet with residual networks [14] and achieves multi-scale fea-
ture fusion and information feature extraction by adding a squeeze-and-excitation module
(SE) [15] and atrous spatial pyramid pooling (ASPP) [16]. Although the performance of
convolution-based methods is satisfactory, they are somewhat limited in learning long
distance dependencies between pixels due to the spatial context of the convolution op-
eration [17]. To overcome this limitation, the attention module is incorporated into the
architecture of the network, thus enhancing the feature maps and enabling pixel-level
classification of medical images. PraNet [18] introduces a parallel reverse attention mecha-
nism network to accurately segment polyps and mitigate the effects of noise from uneven
light distribution and randomization of polyp positions. Previous polyp segmentation
networks usually adopt the saliency object detection (SOD) method, which can better
highlight the object region rather than the background region, and usually, in practice,
there are ambiguous boundaries and regions, and the saliency object detection method can
generate polyp masks and boundary masks simultaneously. However, this increases the
convergence burden of the network and also the cost of obtaining additional edge data is
higher. The reverse attention mechanism uses the reverse saliency maps to obtain boundary
cues, but since the boundary region is highly correlated with the fuzzy saliency scores, the
saliency maps without the reverse operation already have such boundary information.

In this paper, the nonlinear activation-free and uncertainty context attention network
(NAF_UCANet) is proposed. The method in this paper calculates regions with fuzzy saliency
scores and combines foreground and background regions to better implement the contextual
attention module. It can enhance the uncertainty regions on saliency maps that are highly
correlated with boundary information, and at the same time enhance image detail feature
extraction using a nonlinear activation-free network. The feature map is divided into two parts
in the channel dimension by simple gate element-wise multiplication to replace the nonlinear
activation function. Based on a modified version of the UNet structured network with
additional encoders and decoders, multiple regions are weighted and summed to aggregate
the feature maps to obtain a context vector for each region and calculate the similarity of



Information 2023, 14, 362 3 of 18

the feature maps. To address the characteristics of previous polyp segmentation methods,
the combination of a nonlinear activation-free network and simple parallel axial channel
attention proposed in this paper can further improve the feature extraction of polyp images.
In this paper, five more well-known polyp segmentation benchmarks, CVC-ClinicDB, Kvasir,
CVC-ColonDB, ETIS, and CVC-300, were used to validate the method. In summary, the
contributions of this paper are as follows:

1. Instead of simply aggregating feature maps from multiple layers to generate coarse
segmentation masks, the complementary information between different layers and the
contextual information of each layer are integrated. The nonlinear activation-free uncer-
tainty contextual attention network proposed in this paper is able to enhance uncertainty
regions on saliency maps that are highly correlated with boundary information.

2. In order to realize the calculation of areas with fuzzy saliency scores in the case of
various polyp locations and the presence of fuzzy areas that are easily confused with
polyp areas, a contextual attention module is implemented by combining foreground
and background areas. In this paper, a simple parallel axial channel attention is
proposed so as to correctly identify polyps from the background region.

3. A nonlinear and non-activating feature detail extraction enhancement technique is
introduced, which can fuse feature maps of multiple regions based on an improved
U-shaped network with additional encoders and decoders in order to explore the
contextual features of each layer more accurately and achieve better segmentation
accuracy and computational efficiency.

2. Related Work
2.1. Medical Image Segmentation

Medical imaging has gained immense importance [19] in healthcare throughout his-
tory. Nowadays, deep learning is booming, realizing the first pixel-level segmentation
fully convolutional network (FCN) [20], combining the skip connection encoder–decoder
structure Unet [1], conditional random field, and Deeplab [21] with multiple convolutional
layers with different dilation rates and achieving good results in image segmentation.
Most of the current medical image segmentation is based on the improvement of UNet,
which is used in different segmentation tasks to improve the efficiency of segmentation.
UNet++ [12] redesigns the skip connections in UNet by nesting densely, thereby reducing
the semantic gap between encoders and decoders, aggregating various semantic features,
and capturing objects of different sizes. The pyramid spatial pooling network (PSPNet)
processes multi-scale images through grid pooling as well as grids of multiple sizes. For the
features of the encoder resolution when corresponding in the decoder, AttentionUNet [22]
used attention gating signals to control the different spatial location feature information
to further adjust the output features to improve the segmentation efficiency. The dual
attention network [23] uses a self-attention mechanism for the segmentation network,
including a dual path network in spatial and channel dimensions, which can combine
local features with global dependencies. Furthermore, the object context representation
(OCR) [24] adds a non-local operation, aggregating pixel representations of each category
to consider segmented regions, while calculating the similarity to pixels in the feature maps.
Contextual information can represent segmentation objects with different shapes and sizes,
and utilizing appropriate context methods is more critical in the field of segmentation.

2.2. Image Feature Details Extraction Enhancement

The purpose of image feature extraction is to obtain useful information and data
from images and describe them in a non-image form, so to make it better understood
by computers. The introduction of an attention mechanism enables advanced feature
extraction while retaining local spatial information. Deep-learning-based methods are
able to process unenhanced data [25] by automatically extracting salient features. Some
methods improve on UNet, stacking blocks into a U-shaped structure similar to the UNet
skip connections. These improvements can better enhance the performance and system
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complexity of feature extraction, which are mainly divided into inter-block complexity and
intra-block complexity.

Inter-block complexity [26] is the result of a multi-level network and each level is
U-shaped. The original intention of this design was to divide the difficult image feature
extraction task into multiple subtasks. In contrast, [27] is a single-level design and has
some competition, but this method introduces more complex connections between feature
maps of different sizes. Some keep the simple architecture of the single-level UNet and add
intra-block complexity on top of that. The intra-block complexity contains an assortment of
intra-block design methods, among which [28] is to reduce the time complexity of the self-
attention mechanism by replacing the spatial division with the channel division attention
map. Additionally, a gated linear unit [29] (GLU) is added to the feedforward network. The
authors of [30] incorporated window-based multi-headed self-attention and introduced
locally enhanced feedforward networks in this module, and the use of deep convolution
can enhance the ability to capture local information. The gated linear unit [29] is generated
element-wise by two linearly varying layers and one is activated by nonlinear activation.
From another point of view, GLU is a generalization of the activation function and can
replace the nonlinear activation function to some extent. Among them, [30] does not use
nonlinear activation functions in GLU, but there is no degradation in performance. The
nonlinear activation-free GLU based on nonlinearity is itself characterized by nonlinearity
because the product of two linear variations enhances the nonlinearity. In this method,
the multiplication of two feature maps is used instead of the nonlinear activation function,
which can enhance the feature extraction of image detail edges.

2.3. Polyp Segmentation

The current published literature related to polyps performs better in some specified
datasets, using small and validated datasets [31]. Figure 1 shows the associated colorectal
polyp maps. Models evaluated on smaller datasets cannot be generalized to a certain extent,
and robustness is also difficult to guarantee. Although a full convolutional network [20]
can be used to solve the polyp segmentation problem, colonoscopy has a different image
domain compared to general images and requires the extraction of semantic features with
detailed information. Classical architectures such as the pyramidal spatial pooling network
and Deeplab mentioned above employ multi-scale strategies in the backbone network to
facilitate the capture of detailed feature information with multiple receptive field sizes, but
these methods are usually deployed at the end of the backbone network and are insufficient
to recover accurate spatial information. The emergence of DeeplabV3+ [11] connects the
low-level feature maps of the backbone network to compensate for the above shortcomings,
but it is still not enough to extract relevant detailed features from the images. Both Unet [1]
and the feature pyramid network [32] (FPN) employ incremental upsampling of the feature
maps and the corresponding scaling of the low-level feature maps. The difference is that
FPN uses element-wise addition, while UNet uses channel cascade aggregation features.
UNet++ [12] reduces the semantic gap between low and high layers by adding additional
layers and dense connections.

As the polyp segmentation research progresses, ResUNet++ [13] constructs a U-shaped
network that includes residual blocks from ResNet, the empty space pyramidal pooling
module from Deeplab, and the SE attention mechanism from SENet to achieve the task
of polyp segmentation. The parallel reverse attention network [18] (PraNet) adopts most
of the network techniques in [33] and adds the parallel partial decoder in [34] combined
with the low-level feature map of the backbone network, so that the boundary information
can be mined better, but the segmentation performance is relatively low for small polyps.
The self-attention mechanism [35] better extracts the fine-grained feature maps, making
the feature maps with low-level details along with high-level semantic information, but
is computationally more intensive. The emergence of axial attention [36] can solve the
bottleneck of self-attention by carrying out a series of problems by means of a single axis.
In summary, a large number of methods have been used to solve the polyp segmentation
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problem, including two adjacent layers to extract the contextual information of the polyp
representation. Deep convolution contains details and semantic information from shallow
to deep layers, and these layers play a larger role in representing polyp segmentation
objects with different shapes and sizes. The advantages and disadvantages of some classical
segmentation models are shown in Table 1.
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Table 1. Advantages and disadvantages of classical segmentation models.

Segmentation
Model

Parameter
Amount

Context
Information Fusion

Attention
Mechanism

Perception of
Detail and Edges

Computing
Resources

UNet [1] large yes no normal high
UNet++ [12] large yes no well high
Deeplab [21] large yes no normal high

ResUNet++ [13] small yes no normal low
AttentionUNet [22] large yes yes well high

PraNet [18] small yes yes well low

3. Method
3.1. Overall Architecture

The nonlinear activation-free uncertainty contextual attention network (NAF_UCANet)
mentioned in this paper is based on the parallel reverse attention network (PraNet) with
Res2Net [37] as the backbone network for feature extraction to extract features of polyp
segmentation images. Res2Net provides a stronger semantic information modeling ca-
pability by introducing multi-scale feature representation and parallel paths with high
parameter utilization and scalability and low computational overhead compared to com-
plex network structures. The overall architecture of the network proposed in this paper
is shown in Figure 2. The entire network architecture consists of a simple parallel axial
channel attention encoder network and a corresponding decoder network. The simple
parallel axial channel attention encoder (SPACA -e) is used in the bottom-up flow and skip
connection feature fusion path. This module simplifies the parallel axial channel attention
by using a parallel nonlinear activation-free network instead of the traditional convolution,
incorporating layer normalization as well as a simple gated linear unit, and enhances
the nonlinearity by the product of two linear variations, so as to achieve the effect of the
architecture mentioned in this paper. Reducing the number of channels in the input feature
map achieves each cost of the reduced bottom-up flow and skip connection feature fusion.
After extracting the polyp feature maps in the backbone network, the simple parallel axial
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channel attention encoder is introduced in each layer of the skip connection, and the feature
maps obtained by all three SPACA-e modules are used to fuse low-level features with edge
information and global semantic high-level features (as shown by the green arrow part
in Figure 2). In addition, the resulting feature maps are simultaneously fed into the sim-
ple parallel axial channel attention decoder (SPACA-d) and uncertainty context attention
(UCA). In the network architecture of this paper, the three feature maps of the SPACA-e
module are aggregated for use in the SPACA-d module to initially predict the saliency
maps of the input polyps. Immediately afterwards, the feature maps from the SPACA-e
and SPACA-d modules are concatenated with the UCA part in skip connection. Among
them, the feature maps obtained by the SPACA-d module are used in the upsampling part
for context guidance. The feature maps at this point are then element-wise summed with
the output salient feature maps from the UCA. From the bottom up, after the first UCA, the
feature maps obtained from SPACA-e is channel-connected with the feature maps of the
previous UCA to enter the next UCA (blue and black arrows for making the connection in
Figure 2). For the network as a whole, the salient feature maps obtained from the previous
UCA serves as the contextual guidance for the next UCA (as shown in Figure 2 with purple
arrows). Subsequently, the output of the UCA goes into a 1 × 1 convolutional layer and is
summed with the previously mentioned contextual guidance. Finally, after completing the
three UCA modules, a sigmoid activation function and a bilinear upsampling with a scale
factor of 4 are used to obtain the final output feature maps.
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3.2. Simple Parallel Axial Channel Attention

Researchers are currently searching for better techniques to extract fine-grained feature
maps so that the feature maps have low-level details along with high-level semantic infor-
mation. The self-attention mechanism [35] can solve the above problems better, but there is
also a bottleneck of a large amount of calculation. The emergence of axial attention [36],
which uses a single axis to perform a series of operations and connect them sequentially,
solves the above problems at the same time to a certain extent. Based on this, this paper
proposes simple parallel axial channel attention, which simplifies axial attention to some
extent and introduces a channel attention module. It can extract local information and
global dependencies and uses the strategy of axial channel attention to calculate non-local
features in the horizontal and vertical directions, and the two are in parallel. Compared
to the sequential methods, the parallel configuration of attention in both horizontal and
vertical directions has the same degree of contribution to the final output. For the extraction
task of enhanced image features, the data needs to be processed at a higher resolution,
so it is more critical when choosing the attention mechanism. Local information can be
better obtained through deep convolution, and at the same time adding channel attention
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can avoid large calculation problems and maintain the global information in each feature
map. Importantly, the parallel axial channel connections, with the ability to aggregate
multiple feature maps between elements through add operations. Compared with the
cascade method, due to the parallel connection of the horizontal and vertical axes of the
same input, the performance is not degraded. In addition, parallel axial attention uses
element-wise summation to avoid the artifacts generated by single axis attention.

The simple parallel axial channel attention proposed in this paper is shown in Figure 3,
and the input feature maps are used to calculate the horizontal and vertical axes. Using
the encoder and decoder in this module, the channel attention module is introduced to
efficiently enhance the feature map of the backbone network output, improving spatial
location as well as channel correlation, while allowing better representation of the global
refinement function. The simple parallel axial channel attention encoder (SPACA-e) is
designed where the encoder first aggregates the low-level feature maps from the top-down
stream and uses them in the bottom-up stream. In order to be able to reduce the number of
channels while maintaining detailed information, a nonlinear activation-free network of
SPACA-e is introduced, as shown in Figure 4a. First, the feature maps from the backbone
network are fed into the parallel nonlinear activation-free network. They are then channel-
connected and output into successive convolutional layers. As can be seen from the overall
architecture of the network, the output of the SPACA-e module is used for the decoder
module as well as the upsampling module. Likewise, this paper accordingly introduces
the simple parallel axial channel attention decoder (SPACA-d), which additionally adds
SPACA to the structure, which is able to better aggregate the feature maps of the encoder
outputs from different layers. The simple parallel axial channel attention decoder is shown
in Figure 4b, where the yellow arrows in the figure indicate the feature aggregation of
different layers of encoders.
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3.3. Nonlinear Activation-Free Network

It is understood that the SPACA introduced in the previous subsection can avoid
large computational cost while obtaining local information. To perform the task of feature
extraction enhancement, the nonlinear activation-free network is introduced in the SPACA,
which is unfolded based on the UNet architecture in order to reduce the complexity between
blocks. The neural network is stacked in blocks, and how to design the structure within
the blocks is the problem. It contains the most common components: convolution, the
ReLu activation function, normalization, etc. Normalization is a commonly used module
in computer vision tasks. Layer normalization is introduced in the module of this paper,
which is extremely important for image feature extraction and can stabilize the training
process. Activation functions are also widely used in computer vision and commonly used
are ReLu activation functions, while GELU tends to replace ReLu. In the module of this
paper, the simple gate is used to instead, which maintains the image deblurring property.
The attention mechanism is an unavoidable topic in the design of the intra-block. Since
the image feature extraction task processes data with high resolution, it is necessary to
maintain the global information of the feature while solving the computational problem.
The introduction of channel attention is able to solve these problems simultaneously. The
architecture of the nonlinear activation-free function is shown in Figure 5a,b. In this
architecture, each component is trivial, such as layer normalization, convolutional layers,
simple gates, and simple channel attention, and there are no nonlinear activation functions
(ReLu, Sigmoid, etc.) in the entire architecture. However, the combination of these simple
modules forms a more functional nonlinear activation-free network.
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The gated linear unit (GLU) can be expressed by the following formula:

Glu(m, f , g, σ) = f (m)� σ(g(m)) (1)

where m denotes the feature map, f and g denote linear transformations, and σ denotes a
nonlinear activation function, such as sigmoid, etc. � denotes the element multiplication.
As a special case of GLU, GELU emerges to solve the problem of intra-block complexity. It
can be expressed by the following formula:

Gelu(m) = mΦ(m) (2)

where Φ denotes the cumulative distribution function of the standard normal distribution.
It can be noted that GLU contains nonlinearity itself and does not depend on σ. So, on this
basis, the feature map is divided into two parts in the channel dimension for channel-wise
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and element-wise multiplication. The architecture of the simple gate is shown in Figure 6a.
Its formula is expressed as follows:

SG(m, n) = m� n (3)

where m and n denote feature maps of the same size. In addition, a simplified channel
attention mechanism is introduced in the nonlinear activation-free network of this paper,
since this module can capture global information and also has some advantages in terms of
computational efficiency. The spatial information is first compressed into channels, and the
SCA architecture is shown in Figure 6b. The channel attention is similar to that of a gated
linear unit and can be considered as a special way of GLU. Retaining the role of aggregated
global information in channel attention and channel information interaction, the simplified
channel attention is expressed as:

SCA(m) = m×W pool(m) (4)
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Among them, m denotes the feature map, pool denotes the global average pooling of spatial
information aggregated into channels, and× denotes the channel multiplication operation.

3.4. Uncertainty Contextual Attention

The feature map obtained by the general polyp network after the decoder only exists
as the relative position of the polyp in the image, and the details of the edge information
are ignored. The method of saliency object detection and the reverse attention mechanism
are effective methods in polyp segmentation, paying attention to the reverse saliency map
as well as the saliency of reverse attention, and it is found that in both the feature maps
obtained by encoder and the feature maps obtained by reverse attention, generally the
boundary regions appear where the significance score is ambiguous, and the significance
score of the edge regions is usually close to 0.5. This paper designs an uncertainty contextual
attention method based on reverse attention to produce reverse saliency features and
compute foreground and background features by aggregating pixel features. In the field of
image segmentation, the threshold for whether the prediction of the final feature map is
the correct pixel is also generally set to 0.5.

Based on this assumption, an uncertainty contextual attention module is designed
as a self-attention mechanism that incorporates the semantic feature extraction from un-
certainty regions and calculates the foreground feature maps, background feature maps,
and uncertainty region maps, respectively, so as to enhance attention to edge features.
The detailed structure is shown in Figure 7. The previously calculated input salient map
is marked as map, the foreground feature map is map f = max(map− 0.5, 0), the back-
ground feature map is mapb = max(0.5−map, 0), and the uncertainty region map is
mapu = 0.5− abs(0.5−m). It can be seen that the uncertainty region represents the joint
region of the foreground feature map and the background feature map, so there are redun-
dant parts in both, which somehow makes the uncertainty less useful, so the maximum
operation needs to be used to calculate the foreground and background features. Then
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the pixels of the input feature map m are computed and fused with the feature maps of
each region, and the feature vectors of the foreground features, background features, and
uncertainty region features are calculated separately and expressed as follows:

v f = ∑
i∈I

map f imi (5)

vb = ∑
i∈I

mapbimi (6)

vu = ∑
i∈I

mapuimi (7)

where i ∈ I denotes the pixel points belonging to the spatial dimension. v f denotes the
foreground feature vector, vb denotes the background feature vector, and vu denotes the
uncertainty region feature vector. After that, the similarity between each feature map from
the encoder and each feature vector is calculated and expressed as follows:

sim f i =
eϕ(mi)>δ(v f )

eϕ(mi)>δ(v f ) + eϕ(mi)>δ(vb) + eϕ(mi)>δ(vu)
(8)

simbi =
eϕ(mi)>δ(vb)

eϕ(mi)>δ(v f ) + eϕ(mi)>δ(vb) + eϕ(mi)>δ(vu)
(9)

simui =
eϕ(mi)>δ(u)

eϕ(mi)>δ(v f ) + eϕ(mi)>δ(vb) + eϕ(mi)>δ(vu)
(10)
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Among them, the similarity scores sim f , simb, and simu are obtained for each feature
vector by summing the weights sim f i, simbi, and simui. Then the weighted average is
obtained for each pixel of the feature map, which is represented as follows:

pxi = τ
(

sim f iσ
(

v f

))
+ τ(simbiσ(vb)) + τ(simuiσ(vu)) (11)

where ϕ(•), δ(•), τ(•), and σ(•) denote the point-wise convolution operation. pxi repre-
sents each pixel in the contextual feature map, which can be represented by the weighted
average of three feature representation vectors. The pixel px of the feature map and the
input feature map m are channel-connected to obtain the final output feature map.
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4. Experimental Analysis

This section discusses the datasets, experimental details, and comparison of results
with other experimental benchmark methods. Including the ablation experiments of the
module in this paper, five commonly used polyp segmentation benchmarks are used to
validate the effectiveness of the polyp segmentation network in this paper. In addition, the
interpretability of the network is enhanced through qualitative and quantitative approaches.

4.1. Experimental Datasets and Evaluation Metrics

In this paper, randomly selected images from two datasets, CVC-ClinicDB and Kvasir,
were used for training. From these, 900 and 550 pictures were used, respectively; a total of
1450 pictures were used as the training set and other data were used as the test set. Five of
the popular datasets in polyp segmentation were used for this paper.

The CVC-ClinicDB contains 612 images from 25 colonoscopies with an image resolu-
tion size of 384 × 288 pixels. Of the images in this dataset, 550 images were used as the
training set and the remaining 62 images were used as the test set.

The Kvasir dataset contains 1000 polyp images, which are different from other polyp
datasets, with image resolution sizes ranging from 332 × 487 pixels to 1920 × 1072 pixels.
In addition, the size and shape of polyps in the images varied. Of these, 900 images were
selected as the training set and the remaining 100 images were used as the test set.

The CVC-ColonDB dataset is derived from 15 colonoscopy sequences, from which
380 images were selected, all of which were used as a test set.

The ETIS dataset contains 1000 images of endoscopic polyps, and 196 images from
34 colonoscopies with a resolution size of 1225 × 966 pixels were taken from this dataset
for this paper. The polyps in these images are all small and have a more similar structure to
the margins, so they are somewhat challenging.

The CVC-300 dataset is a test set from EndoScene, which contains 912 images from
44 colonoscopies of 36 patients. It was used as a test set.

In the quantitative analysis of the experiment, the mean intersection over union
(mIoU), mean Dice coefficient and mean absolute error (MAE) were used as the evaluation
indexes of the experiment. IoU is the ratio of the intersection and union of the predicted
result and the ground truth, which lies between 0 and 1. The calculation formula of IoU is
as follows:

IoU =
A ∩ B
A ∪ B

=
TP

TP + FP + FN
(12)

In addition, the Dice coefficient is the most frequently used metric for medical image
segmentation and it is an ensemble similarity metric. The calculation formula is:

Dice =
2|A ∩ B|
|A|+|B| =

2∗TP
2∗TP + FP + FN

(13)

The mean absolute error represents the average of the distance between the predicted
value A and the sample true value B to evaluate the pixel-level accuracy. It is expressed as:

MAE =
1
n

n

∑
i=1
|Bi − Ai| (14)

In the above formula, A denotes the predicted value and B denotes the ground truth.
TP is predicted as a positive example and the actual as a positive example; FP is predicted
as a positive example and the actual as a negative example; FN is predicted as a negative
example and the actual as a positive example; TN is predicted as a negative example and
the actual as a negative example.

4.2. Experimental Details

The model was implemented based on Pytorch, and a single NVIDIA TESLA P40
24GB GPU was used to train the model. The batch size for all experiments was set to
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32, while using Res2Net as the backbone network. As shown in each sky-blue box in the
overall architecture of the network in Figure 2, the intermediate backbone feature maps
were extracted from the residual block at the end of each stage. Correspondingly, the step
size and expansion rate were modified to increase the spatial size of the feature map. The
sizes of the images were uniformly adjusted to 352 × 352 pixels in the training phase,
and then the images were adjusted to their initial sizes. During training, additional data
enhancement methods were used, including random flipping on the horizontal and vertical
axes and random multi-scale scaling of images from 0.75–1.25 times. In addition, because
the polyp images may be rotated, the data were randomly rotated within 0–360 degrees for
data augmentation and the Adam optimizer was used to optimize the learning rate. The
initial learning rate was set to 1 × 10−4, and the experimental model was iterated 250 times.
The loss function L used in the experiment combines the binary cross entropy (BCE) loss
function and the intersection over union ratio (IoU) loss function, which is as follows:

L = LBCE + LIoU (15)

LBCE = −∑
i∈I

yilog(ŷi) + (1− yi) log(1− ŷi) (16)

LIoU = 1−
∑
i∈I

yi ŷi

∑
i∈I

yi + ŷi − yi ŷi
(17)

where i ∈ I refers to a pixel in the output value and the ground truth, y is the ground truth,
and ŷ denotes the output.

5. Results
5.1. Experimental Results under Different Methods

This paper compares the proposed method with previous state-of-the-art methods
on five common polyp segmentation benchmarks. In order to effectively validate the
advantages of the polyp segmentation network in this paper, UNet, UNet++, ResUNet++,
AttentionUNet, and PraNet were selected as the polyp segmentation models for comparison.
During the experiment, the network structure was changed while keeping other conditions
consistent. Tables 2 and 3 demonstrate the selected polyp segmentation models and the
evaluation metrics of the method in this paper on the five polyp segmentation benchmarks.
Among them, the higher value of the mean intersection over union(mIoU) and the mean
Dice (mDic) indicate the better the performance of this method; the lower value of the mean
absolute error (MAE) indicates the better the performance of this method. In addition, the
segmentation visualization results of each network model are shown in Figure 8. From the
quantitative and qualitative analysis of the experiments, the generalization performance of
the proposed nonlinear activation-free uncertainty contextual attention polyp segmentation
network as well as the segmentation results have some degree of advantages compared
with other methods.

Table 2. Performance comparison of each method on the CVC-ClinicDB and Kvasir datasets.

Method
CVC-ClinicDB Kvasir

mIoU mDic MAE mIoU mDic MAE

Unet [1] 0.7556 0.8232 0.0193 0.7462 0.8184 0.0550
UNet++ [12] 0.7298 0.7945 0.0226 0.7430 0.8215 0.0482

ResUNet++ [13] 0.7964 0.8092 0.0160 0.7933 0.8132 0.0544
AttentionUNet [22] 0.7745 0.8493 0.0216 0.7675 0.8420 0.0437

PraNet [18] 0.8490 0.8992 0.0092 0.8403 0.8980 0.0302
NAF_UCANet 0.8824 0.9276 0.0063 0.8576 0.9133 0.0250
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Table 3. Performance comparison of each method on the CVC-ColonDB, ETIS, and CVC-300 datasets.

Method
CVC-ColonDB ETIS CVC-300

mIoU mDic MAE mIoU mDic MAE mIoU mDic MAE

Unet [1] 0.4442 0.5120 0.0614 0.3352 0.3980 0.0363 0.6274 0.7102 0.0221
UNet++ [12] 0.4104 0.4830 0.0641 0.3446 0.4013 0.0355 0.6240 0.7074 0.0182

ResUNet++ [13] 0.3879 0.4844 0.0783 0.2274 0.2886 0.0552 0.4946 0.5968 0.0253
AttentionUNet [22] 0.5346 0.6224 0.0504 0.3720 0.4228 0.0390 0.7392 0.8254 0.0137

PraNet [18] 0.6403 0.7098 0.0455 0.6273 0.6796 0.0316 0.7971 0.8713 0.0103
NAF_UCANet 0.7120 0.7847 0.0334 0.6782 0.7644 0.0124 0.8496 0.9122 0.0049
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It can be seen from Table 2 that the NAF_UCANet in this paper achieves an mIoU of
0.8824, as well as an mDic coefficient of 0.9276 and an MAE of 0.0063. Compared with the
better performing PraNet, the mIoU increased by 3.34%, the mDic coefficient increased by
2.84%, and at the same time the MAE decreased by 0.29%.

From the various evaluation metrics of different polyp segmentation networks on
the Kvasir dataset in Table 2, it can be seen that the NAF_UCANet network in this paper
obtained an mIoU of 0.8576, an mDic coefficient of 0.9133, and an MAE value of 0.0250.
Compared to the current leading performance PraNet network, the mIoU increased by
1.67%, the mDic factor increased by 1.53%, and the MAE decreased by 0.52%.

From Table 3, the method in this paper achieved an mIoU of 0.7120, an mDice coeffi-
cient of 0.7847, and an MAE of 0.0334, which is a 7.17% increase in mIoU, a 7.49% increase
in mDic coefficient, and a 1.21% decrease in MAE compared to the performance of PraNet
on the CVC-ColonDB dataset.

As shown by the data in Table 3, the current PraNet network with better polyp
segmentation results had an mIoU value of 0.6273 on the ETIS dataset, an mDic coefficient of
0.6796, and an MAE of 0.0316. It had a better performance compared with some commonly
used polyp segmentation networks. The NAF_UCANet in this paper achieved an mIoU of
0.6782, as well as an mDic coefficient of 0.7644 and an MAE of 0.0124, both of which are
more significant improvements compared to the better performing PraNet.

From Table 3, the method in this paper achieved an mIoU of 0.8496, an mDic coefficient
of 0.9122, and an MAE of 0.0049, which is a 5.25% increase in the mIoU, a 4.09% increase in
the mDic coefficient, and a 0.54% decrease in the MAE compared to the performance of
PraNet on the CVC-300 dataset.

From the above quantitative and qualitative analysis of different networks in each
experimental dataset, the network in this paper has a better effect on the segmentation of
polyp images that are smaller and have similar pixels around them. For the five classical polyp
segmentation benchmarks used in this paper, all evaluation metrics have been improved to
a certain extent. Three datasets, CVC-ColonDB, ETIS, and CVC-300, were not trained with



Information 2023, 14, 362 14 of 18

the model, but also showed significant improvements in the evaluation metrics. The mean
Dice coefficient, an important evaluation metric for medical image segmentation, increased
by 7.49%, 4.09%, and 8.48% on the three datasets that were not involved in model training,
respectively, which to some extent indicates the effectiveness and generalization of the method
in this paper. In addition, due to the variable size of polyps in the five polyp benchmarks, a
longitudinal comparison of the mean Dice coefficients of the different methods in the five
datasets showed that our method has improved to a certain extent. Whether for the CVC-
ColonDB dataset with a large polyp area or the ETIS and CVC-300 datasets with a small polyp
area, the method in this paper can effectively segment the polyp area, which is less affected by
the similarity of surrounding pixels as well as blurring. The high agreement with the ground
truth better demonstrates the performance of the method in this paper.

5.2. Ablation Experiment of Different Modules

This subsection is designed to validate the effectiveness of the modules in the overall
architecture of the network. Ablation experiments with different modules were performed
in the five selected polyp datasets. UNet was used as a segmented baseline network for
comparison with the other baseline networks in this experiment. Res2Net fuses some
decoders as well as multiple features as the backbone network of the experiment and adds
each module for comparison experiments to reflect the role of different modules in terms of
data. In addition, experiments using ResNet50 as the baseline network, together with the
modules in this paper for experimental comparison, further illustrate the effectiveness of
the method proposed in this paper and also show that the backbone network used in this
paper has a higher performance than the other baseline networks for segmentation. The
ablation experiments are shown in Tables 4 and 5. The experimental data reflect the high
and low performance judging criteria as in the previous subsection.

Table 4. Ablation experiments for each module on the CVC-ClinicDB and Kvasir datasets.

Method
CVC-ClinicDB Kvasir

mIoU mDic MAE mIoU mDic MAE

UNet 0.7556 0.8232 0.0193 0.7462 0.8184 0.0550
ResNet50 0.8382 0.8806 0.0119 0.8255 0.8746 0.0291

ResNet50+SPACA 0.8494 0.8920 0.0103 0.8328 0.8823 0.0289
ResNet50+NAF 0.8660 0.9101 0.0080 0.8451 0.8930 0.0276
ResNet50+UCA 0.8545 0.9012 0.0097 0.8436 0.8863 0.0284

Baseline 0.8700 0.9178 0.0079 0.8558 0.9022 0.0248
Baseline+SPACA 0.8632 0.9080 0.0083 0.8470 0.8979 0.0300

Baseline+NAF 0.8735 0.9195 0.0074 0.8529 0.9051 0.0285
Baseline+UCA 0.8703 0.9163 0.0077 0.8523 0.9050 0.0264
NAF_UCANet 0.8824 0.9276 0.0063 0.8576 0.9133 0.0250

Table 5. Ablation experiments for each module on the CVC-ColonDB, ETIS, and CVC-300 datasets.

Method
CVC-ColonDB ETIS CVC-300

mIoU mDic MAE mIoU mDic MAE mIoU mDic MAE

UNet 0.4442 0.5120 0.0614 0.3352 0.3980 0.0363 0.6274 0.7102 0.0221
ResNet50 0.6545 0.7348 0.0396 0.5525 0.6319 0.0277 0.7659 0.8455 0.0114

ResNet50+SPACA 0.6637 0.7370 0.0370 0.5770 0.6532 0.0247 0.7714 0.8500 0.0112
ResNet50+NAF 0.6722 0.7413 0.0376 0.5748 0.6520 0.0215 0.7958 0.8711 0.0086
ResNet50+UCA 0.6586 0.7393 0.0388 0.5756 0.6584 0.0236 0.7893 0.8672 0.0099

Baseline 0.6741 0.7474 0.0407 0.5898 0.6625 0.0261 0.8196 0.8905 0.0065
Baseline+SPACA 0.6862 0.7628 0.0354 0.6111 0.6921 0.0173 0.8214 0.8929 0.0060

Baseline+NAF 0.6837 0.7542 0.0331 0.5978 0.6696 0.0203 0.8287 0.8992 0.0056
Baseline+UCA 0.6779 0.7507 0.0395 0.6155 0.6938 0.0228 0.8370 0.9025 0.0055
NAF_UCANet 0.7120 0.7847 0.0334 0.6782 0.7644 0.0124 0.8496 0.9122 0.0049
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Performing the ablation experiments using each module on the above five polyp
segmentation benchmarks is compared with the evaluation metrics of our baseline network
on each dataset. In this experiment, UNet was added as the baseline network as well as
ResNet50 as the backbone network for the ablation experiments while the overall network
architecture remained unchanged. The choice of ResNet50 as the backbone network to
replace the backbone network Res2Net in this paper further proves that the selected
backbone network has certain advantages in this paper. At the same time, through different
baseline networks, the effectiveness of each module can also be better explained. The
CVC-Colon300 and ETIS are more challenging in the dataset chosen for this paper, but
each module in the method of this paper is fused with the chosen benchmark network, and
there is some improvement in performance. In particular, when the modules are fused to
form the network proposed in this paper, the mIoU, mDice coefficient, and MAE values
are significantly improved. For the simple parallel axial channel attention module, the
introduction of this module can make the segmentation performance of the whole network
better. Similarly, the introduction of the nonlinear activation-free network results in a better
improvement of the average segmentation level of the network. In addition, the inclusion
of the uncertainty contextual attention mechanism enables more precise segmentation of
the polyp area by quantitative analysis, which is less affected by the mucosa around the
polyp and the colon indicating blurred areas. It is better to judge that the uncertainty
area is closely related to the polyp boundary, so that the segmentation effect can be better
approximated to the ground truth. In addition, the fusion of the backbone network Res2Net
selected in this paper and the proposed modules and the segmentation diagram of the
NAF_UCANet in each dataset are given, as shown in Figure 9. The visualization of the
segmentation by network model visually analyzes the higher performance and accuracy of
the method in this paper to segment the polyp image, which is closer to the ground truth.
Especially for complex polyp datasets like ETIS, the modules introduced in the method
of this paper can better segment the polyp contours. In summary, through quantitative
and qualitative experimental analysis, the combination of various modules in the network
further proves the effectiveness of the method in this paper.
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6. Discussion

The accurate localization of polyps in colonoscopic images facilitates timely treatment.
Nowadays, accurate and efficient methods of polyp segmentation have gained much atten-
tion and are of great importance to the medical field. Medical image segmentation is also
applicable to other parts of the body, and the literature [4] has proposed a hybrid framework
to implement brain tumor segmentation that is able to handle complex problems such as
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noise influence and intensity variations between soft tissues. In addition, the literature [25]
has proposed a two-stage 3D UNet based on deep learning to complete the extraction
and multi-structure segmentation of brain tumor images. For polyp segmentation, the
literature [18] has introduced a parallel reverse attention mechanism network to precisely
segment polyps and mitigate the effects of noise caused by uneven light distribution and
the randomization of polyp location. In the literature [38], a text-guided attention archi-
tecture has been proposed to address the problem of variable size and number of polyps.
Table 6 compares the performance of the method proposed in this paper with some related
methods for multiple polyp segmentation datasets as well as segmentation of other parts.

Table 6. A comparison of the segmentation performance of the method in this paper and related
methods on the same evaluation metrics.

References Sensitivity% mDic % Segmented Parts

[4] 88.7 - Brain Tumor
[25] - 87.9 Brain Tumor
[18] 91.7; 90.9; 78.8; 81.2; 95.9 91.8; 89.4; 77.1; 68.0; 89.9 Polyp
[38] 91.3; 94.4; 90.3; 79.2; 82.9 89.8; 94.6; 90.2; 79.8; 81.9 Polyp

NAF_UCANet 94.3; 92.2; 80.1; 81.3; 93.9 92.8; 91.3; 78.5; 76.4; 91.2 Polyp

The method in this paper provides accurate segmentation of polyps to a certain extent,
but further improvement is needed. For example, there are obvious areas of fuzzy bubbles
in the colonoscopy images and areas with high pixel similarity around the polyps, which
may be classified as polyps by the method when it cannot be accurately judged. In addition,
the method in this paper is applied to 2D polyp segmentation, and the generalization for
some spatial 3D medical image segmentation is insufficient. In future work the judgment
of the uncertainty region will be further enhanced, so that the network can meet the
segmentation task with higher precision. The spatial context information can also be
considered to achieve 3D spatial image segmentation, thus improving the accuracy and
generalization of the method in this paper.

7. Conclusions

In this paper, a new polyp segmentation network, NAF_UCANet, is proposed to
achieve more effective segmentation for polyps with different shapes and sizes, colors and
textures, as well as mucous membrane and blurred areas around polyps. The introduction
of a nonlinear activation-free function in the network can enhance the uncertainty regions
on the saliency maps that are highly correlated with the boundary information. The
calculation of regions with fuzzy saliency scores is achieved using simple parallel axial
channel attention, which combines foreground and background regions to implement a
contextual attention module, so as to obtain both low-level features with edge details as well
as global semantic high-level features. Through experiments and analysis from quantitative
and qualitative perspectives, it is demonstrated that the polyp segmentation method
proposed in this paper has high segmentation accuracy and generalizability. Furthermore,
the effectiveness of the proposed network in performing segmentation of small polyps can
be further improved. In future work the judgment of the uncertainty region will be further
enhanced, so that the network can meet the segmentation task with higher precision.
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